mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-09-06 23:17:22 +00:00
Compare commits
615 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
50c064ffa4 | ||
|
1b0a9967c8 | ||
|
2605f7c29f | ||
|
6f5a3edd88 | ||
|
457146b0e4 | ||
|
f7fd8ffcf9 | ||
|
77bc792426 | ||
|
39146cc555 | ||
|
04141bbec8 | ||
|
40e5899972 | ||
|
025c7f9b3c | ||
|
2daa09c040 | ||
|
9776136649 | ||
|
68d27a6302 | ||
|
7fc18b7c35 | ||
|
9b412b51a8 | ||
|
b6ac05a66e | ||
|
435c8a7bc6 | ||
|
a69b18354b | ||
|
7b9e6921d0 | ||
|
fb2800cf9e | ||
|
12cbb21077 | ||
|
46d1a48999 | ||
|
ad0a761d53 | ||
|
43f503a38d | ||
|
d38744438b | ||
|
eb8914aa26 | ||
|
283140094f | ||
|
66ac1c304e | ||
|
0eb9e07711 | ||
|
f56c85b298 | ||
|
6a9a17c5b4 | ||
|
e24c49bedb | ||
|
2daed73aaa | ||
|
8ebdb3b89b | ||
|
a0e1293361 | ||
|
b669e55283 | ||
|
3e38446eae | ||
|
dac0a4a0cd | ||
|
897ba03078 | ||
|
e815a2fbf7 | ||
|
941383de4b | ||
|
5771c7957e | ||
|
72c233649d | ||
|
c7031361b0 | ||
|
59508574c9 | ||
|
d57d1ebc6d | ||
|
70b2ff1151 | ||
|
c3746539b3 | ||
|
405ab3ac74 | ||
|
94dd51566a | ||
|
b5718a500a | ||
|
2eaa390f2f | ||
|
9c666b95be | ||
|
dfc01a13bd | ||
|
d4328e6027 | ||
|
f9a3150438 | ||
|
6decf183dd | ||
|
67f940eadb | ||
|
56d0578d86 | ||
|
5e9e90507b | ||
|
8b4c50827c | ||
|
f8cdd73655 | ||
|
74dc02ca99 | ||
|
5915827d15 | ||
|
f9b0343aa1 | ||
|
938caa75d1 | ||
|
df66d28959 | ||
|
2710642f15 | ||
|
51b3dd91b5 | ||
|
d00cf142c0 | ||
|
ae8706ac08 | ||
|
5305e4a30f | ||
|
908a1cd368 | ||
|
19e0044e0e | ||
|
7ad43e970f | ||
|
fbb3fde754 | ||
|
81c81bed94 | ||
|
f3fc4cefd0 | ||
|
376ea248a4 | ||
|
9824f9349d | ||
|
eb90582db8 | ||
|
bad9e497b1 | ||
|
c3b993cfce | ||
|
2cb5c54d8b | ||
|
7f705915f0 | ||
|
2a8a21b82a | ||
|
2e09cba94e | ||
|
de9d151ad6 | ||
|
452b55ac6f | ||
|
fe31db07f9 | ||
|
52d79ea25e | ||
|
20833b29c1 | ||
|
978a9a9a25 | ||
|
9da4322aa9 | ||
|
5bdd77ddc6 | ||
|
2782dc006c | ||
|
de6c582b8f | ||
|
32bc329e91 | ||
|
4e50a79614 | ||
|
190fbf6cac | ||
|
a8bf4e46e9 | ||
|
478c793917 | ||
|
4b44c7978a | ||
|
0fbb958dd9 | ||
|
031e45ac19 | ||
|
96bf376b70 | ||
|
eca8d4efc1 | ||
|
d5a7f52b83 | ||
|
ae4ecbd67c | ||
|
0ba3a56ea7 | ||
|
1717cc17a1 | ||
|
947f7422dc | ||
|
cf14005b67 | ||
|
08ff6aec8e | ||
|
234f54ef5d | ||
|
df42ae734e | ||
|
4979c4b414 | ||
|
d6cc419c40 | ||
|
a73ce4080c | ||
|
456836bdb8 | ||
|
a51f1f134d | ||
|
db9ce0c25a | ||
|
92c8b9c8c3 | ||
|
06b0acb9f8 | ||
|
7c957d9ddc | ||
|
efab5bfde8 | ||
|
c886ca8e3f | ||
|
2cf7d73c9c | ||
|
f12cbcc847 | ||
|
df6c184b84 | ||
|
1ea7306eeb | ||
|
bb41c26531 | ||
|
1d4b2bd49d | ||
|
8dd2440f08 | ||
|
ab9b38da95 | ||
|
dacf12f8a4 | ||
|
3894eb481c | ||
|
0198d6896b | ||
|
6902521d6b | ||
|
590e8424e7 | ||
|
bc6916ab15 | ||
|
2590a40827 | ||
|
68006de8c0 | ||
|
9f0d366408 | ||
|
2bdb15a2b3 | ||
|
56b575a753 | ||
|
ff2f0787ae | ||
|
7c121d48fc | ||
|
8eac3d5af1 | ||
|
f47be637a0 | ||
|
c824087335 | ||
|
a92dacc7ff | ||
|
37c3430433 | ||
|
3bcf832db0 | ||
|
591ddbde9d | ||
|
eaa0bcd5d8 | ||
|
45abb9e24d | ||
|
a853e9b02b | ||
|
af20fb0fa7 | ||
|
3a17ac5154 | ||
|
1cdeab4b6b | ||
|
b2ce781961 | ||
|
400b5bb81e | ||
|
fd7ab3a598 | ||
|
9175c2921a | ||
|
1d3de02763 | ||
|
b6299ce397 | ||
|
8801a300c4 | ||
|
acdcb42e6d | ||
|
484adfcda8 | ||
|
4d01067a57 | ||
|
0991757ddb | ||
|
de0cb1a4e3 | ||
|
bca13420b2 | ||
|
236ca3bcfd | ||
|
b2aa6357d8 | ||
|
941dd4838a | ||
|
91d727b6ad | ||
|
2c00f5b26e | ||
|
4f981df7bb | ||
|
c24e51e2b6 | ||
|
f565744867 | ||
|
d3ee8621f0 | ||
|
e38c12f765 | ||
|
d71b45a8e9 | ||
|
6f9527c726 | ||
|
9a99b8de2a | ||
|
c32b0150bd | ||
|
86327e97f9 | ||
|
4fd18ec7fe | ||
|
dc6f896071 | ||
|
c5d087dada | ||
|
bda2db7003 | ||
|
53d4a0ecde | ||
|
db19127d28 | ||
|
3ec7e5fed5 | ||
|
8bd07cbd32 | ||
|
f5b9a678fc | ||
|
1c8f8fdfe7 | ||
|
f63c473166 | ||
|
936354a1a2 | ||
|
43d059b477 | ||
|
173f9b3460 | ||
|
eb51d876a5 | ||
|
bee1edbf25 | ||
|
13c17b092a | ||
|
800601121e | ||
|
79e77af304 | ||
|
4d6273fa05 | ||
|
c9567f0d7c | ||
|
37d3c2b1d2 | ||
|
b689dada3d | ||
|
e914d32b37 | ||
|
5dc3fa344c | ||
|
c7859bf681 | ||
|
620b6de028 | ||
|
c1635f79fe | ||
|
a9d3ef2b51 | ||
|
aa107249fd | ||
|
0c47283dd5 | ||
|
f49bb58215 | ||
|
b91ad29ae4 | ||
|
8a869e037b | ||
|
20f082b760 | ||
|
ef81273d4a | ||
|
3761274ee3 | ||
|
506c779d82 | ||
|
892b57a1eb | ||
|
94cc4adbf9 | ||
|
2e189bcfa2 | ||
|
a21d0b5ec6 | ||
|
ebb5f3b09e | ||
|
5c4bed42d6 | ||
|
c15d037109 | ||
|
56f704c464 | ||
|
14a0414265 | ||
|
6dbdfe00fc | ||
|
00c9df4239 | ||
|
9c725887c5 | ||
|
9562cc594f | ||
|
56f6752ff7 | ||
|
31c8c9ee86 | ||
|
0f671daf30 | ||
|
e1027a9562 | ||
|
628dac5835 | ||
|
fed48bc999 | ||
|
7be5e15e9a | ||
|
365b9e1882 | ||
|
e5bb5b6ef7 | ||
|
f9e4a6c53d | ||
|
e0099aab60 | ||
|
925087886c | ||
|
35f8cd693e | ||
|
a795a89c2d | ||
|
92602b3122 | ||
|
aa86a2af7b | ||
|
6f1cf1828a | ||
|
bb5c38fbfe | ||
|
169c1737b2 | ||
|
8244efa09b | ||
|
4c1abeb200 | ||
|
b41683eaa9 | ||
|
1f29718795 | ||
|
5716a7957e | ||
|
7c21c277dd | ||
|
91ddbb5531 | ||
|
21be310e1f | ||
|
0a687648e0 | ||
|
80c6b9ba67 | ||
|
1f20ad7f37 | ||
|
8de7078240 | ||
|
b88a7f7aa8 | ||
|
313d627fa8 | ||
|
cbe1d9a015 | ||
|
a4288e2a0d | ||
|
4f631a4b79 | ||
|
e992483f35 | ||
|
4671eacb6e | ||
|
c76a5ddb5e | ||
|
1989ec5ad4 | ||
|
0124d9db97 | ||
|
02ce675a0b | ||
|
64da97bfdc | ||
|
23d6eebff1 | ||
|
8dcb59a15c | ||
|
ebe25312b5 | ||
|
28b5c6868e | ||
|
0c09631813 | ||
|
23d821b773 | ||
|
cc958e0927 | ||
|
7e23641591 | ||
|
dc8bc17324 | ||
|
23b16d2e92 | ||
|
5200dbc4d7 | ||
|
3fd42c46c9 | ||
|
19015d79e6 | ||
|
3eef220768 | ||
|
2f088898f8 | ||
|
f091dd9113 | ||
|
2a32386a9e | ||
|
45055b1505 | ||
|
afcda88760 | ||
|
3ad0dcd851 | ||
|
ac32743210 | ||
|
978342c480 | ||
|
8e6a927032 | ||
|
0bf52e1c29 | ||
|
06242f0b2a | ||
|
4398de71ba | ||
|
15f504ecc3 | ||
|
06be451456 | ||
|
e498f4275e | ||
|
1633ef7862 | ||
|
2cff74aa54 | ||
|
040b4dc52a | ||
|
35d8e5ff77 | ||
|
d3b39d8167 | ||
|
c7b3d7e9a3 | ||
|
10f8839bbd | ||
|
1eb568c807 | ||
|
12cf4a55d7 | ||
|
e81f6052e3 | ||
|
bbebc4350c | ||
|
ac7c169a27 | ||
|
268b01fc93 | ||
|
9c7647aba9 | ||
|
1f2edeba51 | ||
|
b3781ada45 | ||
|
0d8780b3c1 | ||
|
64a89cc58f | ||
|
f092bd3cb1 | ||
|
c4309f5679 | ||
|
e19bb8dcc1 | ||
|
c9436f15f8 | ||
|
8c867dcf95 | ||
|
d3e98391d4 | ||
|
ef336eb454 | ||
|
12f5536026 | ||
|
6a0d8f4144 | ||
|
7f80339fb4 | ||
|
9ea074c99c | ||
|
4188b4b1c3 | ||
|
41ea4e9ed8 | ||
|
9fe9084341 | ||
|
9f894428c1 | ||
|
4227106b4f | ||
|
82754ede58 | ||
|
a1d0cd37b7 | ||
|
5e13ca3b5e | ||
|
7c96233f5b | ||
|
3ecf08cf9b | ||
|
04c561baea | ||
|
5eaf733651 | ||
|
d0435a5528 | ||
|
55cc572d5c | ||
|
8577d4dafa | ||
|
08aec2537e | ||
|
975db73aae | ||
|
6cb09240ab | ||
|
c74b0f34a6 | ||
|
3e47a232cc | ||
|
2e356405e1 | ||
|
f59d94282d | ||
|
b0ad3bdf9c | ||
|
733c7cbfe7 | ||
|
a95684213c | ||
|
76b4107999 | ||
|
b2bb2df3f0 | ||
|
3ec4de4fb1 | ||
|
bf1572765c | ||
|
0717ed4979 | ||
|
ab421e4170 | ||
|
c5f6ecae68 | ||
|
7dbffc940a | ||
|
8f4e6e3510 | ||
|
86325e7d2b | ||
|
cf6c6180d3 | ||
|
da315ac908 | ||
|
3b95963eb1 | ||
|
1fdd80e31b | ||
|
926db38db9 | ||
|
f483cbbcfb | ||
|
0d111296af | ||
|
9fb53f4297 | ||
|
69ef08bfd4 | ||
|
0159f116c1 | ||
|
da6f2ce044 | ||
|
053001186e | ||
|
177e8ad783 | ||
|
047f682030 | ||
|
041db246b1 | ||
|
54888a3988 | ||
|
c726551ec7 | ||
|
a36ba0413a | ||
|
79d0bda1ef | ||
|
a7def3c367 | ||
|
1ee9867ea6 | ||
|
44f209f331 | ||
|
274017806f | ||
|
90adb6539a | ||
|
be4ec9ea51 | ||
|
b89fab51c3 | ||
|
6247c7997f | ||
|
9baa4450b0 | ||
|
2a449eba1a | ||
|
dfd5366112 | ||
|
dc180862df | ||
|
9d9dcbbb71 | ||
|
ed151f1707 | ||
|
302f6b794d | ||
|
1925943660 | ||
|
0e358a9a14 | ||
|
2c9e553b57 | ||
|
ee4ee316dd | ||
|
12e39ecc84 | ||
|
eb20ad907e | ||
|
61b286c258 | ||
|
77231d00cc | ||
|
4322396088 | ||
|
c5dc49f442 | ||
|
0684f982b7 | ||
|
b5d8851c44 | ||
|
b0782ed74e | ||
|
3e76c55801 | ||
|
834068244e | ||
|
d833d0a183 | ||
|
1f50c6dd16 | ||
|
9ca336934a | ||
|
251390fddf | ||
|
aaa548fb65 | ||
|
7710da503b | ||
|
18969b4179 | ||
|
ecb6400b06 | ||
|
67393e0e09 | ||
|
442d9a9682 | ||
|
7434263165 | ||
|
d20d0e4e7a | ||
|
836abc427a | ||
|
8cc6b2774e | ||
|
e98e66bdf0 | ||
|
791c4e82a5 | ||
|
110da31d50 | ||
|
0e9a706904 | ||
|
28b5f9d6a2 | ||
|
00af69a3f5 | ||
|
e61403174d | ||
|
632a2472a2 | ||
|
d62a07a69e | ||
|
85d4a29cf2 | ||
|
6678e49cbf | ||
|
839c5d2943 | ||
|
79b4cf1158 | ||
|
9b9d6bcd23 | ||
|
2b1dd3ed9b | ||
|
7afe68e315 | ||
|
0f58ce0fd7 | ||
|
badcb373ae | ||
|
e5cf8a43d4 | ||
|
aba4b44da4 | ||
|
c4fa9c5f23 | ||
|
22688de9e8 | ||
|
042efb2b5a | ||
|
060a77f4b7 | ||
|
ffd64eb3d2 | ||
|
4822be0ece | ||
|
d3b71287c4 | ||
|
67ac98b9ab | ||
|
9e0c6e36ee | ||
|
d0d431fb54 | ||
|
718ca83a1d | ||
|
e0c159de00 | ||
|
6652918ae8 | ||
|
4f3ecf4361 | ||
|
dd5da3b1e8 | ||
|
45a4387c68 | ||
|
c6b2840e07 | ||
|
6362f50fd3 | ||
|
d5622c8672 | ||
|
3abc50cf7a | ||
|
0f68468f14 | ||
|
6d45200ca3 | ||
|
80aee80548 | ||
|
3d27f3c127 | ||
|
9fd7966c55 | ||
|
4529ee32e2 | ||
|
3a5629f0ba | ||
|
fe74aea4de | ||
|
76ac58dbab | ||
|
db0ddec2c6 | ||
|
c6980ff71d | ||
|
a4840003f5 | ||
|
aad41e57a9 | ||
|
24a8500588 | ||
|
63c69ecc14 | ||
|
1c775fca2c | ||
|
1073bc458a | ||
|
f8dafe61f8 | ||
|
c97e51d9bd | ||
|
2e779a95d2 | ||
|
0c609064a6 | ||
|
059509e018 | ||
|
2c9951d2c9 | ||
|
290110274b | ||
|
7d02c6373c | ||
|
0b0d36d660 | ||
|
807c66dd3a | ||
|
f0c0d646b5 | ||
|
390f3d9c4d | ||
|
19a9995875 | ||
|
95eab24247 | ||
|
3da5a0cbd7 | ||
|
447e3e12a3 | ||
|
5b922fc10b | ||
|
e661af1add | ||
|
192d023325 | ||
|
6b91fe9819 | ||
|
82231cb04b | ||
|
39dc72add2 | ||
|
ac158bf0a9 | ||
|
7b2915f4f2 | ||
|
64354dbe19 | ||
|
901c8d25f8 | ||
|
b346b01223 | ||
|
73b419dfd6 | ||
|
48f34f0472 | ||
|
e1769235f3 | ||
|
ac00138ca8 | ||
|
28b5801bcc | ||
|
f2ed8ab04c | ||
|
781b4dc8b5 | ||
|
19a236251a | ||
|
0d481b01df | ||
|
5de2528d34 | ||
|
317ca72377 | ||
|
c6e719240a | ||
|
e554a1df99 | ||
|
d9e7a1ed1e | ||
|
d968f10737 | ||
|
dc80127dee | ||
|
c591c84c75 | ||
|
e290f5ae11 | ||
|
b8d209b283 | ||
|
f195b81974 | ||
|
1293de346e | ||
|
1b41c409cc | ||
|
38d471113f | ||
|
b31beb25be | ||
|
e3db22d262 | ||
|
e2d2e6687f | ||
|
b64ec05134 | ||
|
511e627899 | ||
|
ab0b2b9992 | ||
|
0021eed5fb | ||
|
8c35d8a3f6 | ||
|
e5420844de | ||
|
0fca5f58db | ||
|
07880038b0 | ||
|
d2d5d4c04e | ||
|
d7301e26c3 | ||
|
752b981e37 | ||
|
5f2db375f3 | ||
|
cac1b4fba4 | ||
|
236c4d02b6 | ||
|
8645eace5b | ||
|
47cce54b3b | ||
|
5a0fe35f86 | ||
|
d3f8b474d0 | ||
|
27145495e7 | ||
|
1a8da3fdd5 | ||
|
444bfb5945 | ||
|
cfee240e9c | ||
|
83a1dd5ced | ||
|
bf75e804cc | ||
|
83e4f60a37 | ||
|
ae11605013 | ||
|
08b336cf15 | ||
|
eeeec86be6 | ||
|
9dbd897323 | ||
|
71337c0fd5 | ||
|
4e015180b6 | ||
|
70591bc581 | ||
|
288f97a3fd | ||
|
1126373bf2 | ||
|
fd0d43d29c | ||
|
cc6a7697cf | ||
|
2140ea8f77 | ||
|
9dd5cc76f6 | ||
|
7b1e54eed8 | ||
|
188a7bbf1f | ||
|
b7a0c5286a | ||
|
32a2d6321c | ||
|
d2f6961693 | ||
|
107076ac35 | ||
|
0b73460446 | ||
|
39d5522650 | ||
|
68d6c87589 | ||
|
222c536631 | ||
|
bd3f695938 | ||
|
1b1a7c45bf | ||
|
8a58fe28fa | ||
|
9c67e6f927 | ||
|
8d2dedc5a2 | ||
|
944cb31883 | ||
|
b38ffe1f08 | ||
|
19f89d3f35 | ||
|
504fc92feb | ||
|
5eb5e5ed8e | ||
|
88be42de45 | ||
|
704a2d5808 | ||
|
e915fe538e | ||
|
5295bef18b | ||
|
ae69eb7a40 | ||
|
46f434b815 | ||
|
cce111bd6a |
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**To Reproduce**
|
||||
Steps to reproduce the behavior:
|
||||
1. Go to '...'
|
||||
2. Click on '....'
|
||||
3. Scroll down to '....'
|
||||
4. See error
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**Desktop (please complete the following information):**
|
||||
- OS: [e.g. iOS]
|
||||
- Browser [e.g. chrome, safari]
|
||||
- Version [e.g. 22]
|
||||
|
||||
**Smartphone (please complete the following information):**
|
||||
- Device: [e.g. iPhone6]
|
||||
- OS: [e.g. iOS8.1]
|
||||
- Browser [e.g. stock browser, safari]
|
||||
- Version [e.g. 22]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
22
.gitignore
vendored
22
.gitignore
vendored
@@ -1,2 +1,22 @@
|
||||
|
||||
benchmark_data.csv
|
||||
data analysis/keys/keytemp.json
|
||||
data analysis/__pycache__/analysis.cpython-37.pyc
|
||||
apps/android/source/app/src/main/res/drawable-v24/uuh.png
|
||||
apps/android/source/app/src/main/java/com/example/titanscouting/tits.java
|
||||
|
||||
data analysis/analysis.cp37-win_amd64.pyd
|
||||
data analysis/analysis/analysis.c
|
||||
data analysis/analysis/analysis.cp37-win_amd64.pyd
|
||||
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.cp37-win_amd64.exp
|
||||
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.cp37-win_amd64.lib
|
||||
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.obj
|
||||
data analysis/test.ipynb
|
||||
data analysis/.ipynb_checkpoints/test-checkpoint.ipynb
|
||||
.vscode/settings.json
|
||||
.vscode
|
||||
data analysis/arthur_pull.ipynb
|
||||
data analysis/keys.txt
|
||||
data analysis/check_for_new_matches.ipynb
|
||||
data analysis/test.ipynb
|
||||
data analysis/visualize_pit.ipynb
|
||||
data analysis/config/keys.config
|
1
CONTRIBUTING.md
Normal file
1
CONTRIBUTING.md
Normal file
@@ -0,0 +1 @@
|
||||
These sets of code is more unstable than an antimatter bear taunted with a barrel of fish. Add at your own risk.
|
674
LICENSE
Normal file
674
LICENSE
Normal file
@@ -0,0 +1,674 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
3
README.md
Normal file
3
README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# tr2022-strategy
|
||||
Titan Robotics 2022 Strategy Team Repository
|
||||
Use at your own risk
|
14
analysis-master/analysis.egg-info/PKG-INFO
Normal file
14
analysis-master/analysis.egg-info/PKG-INFO
Normal file
@@ -0,0 +1,14 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: analysis
|
||||
Version: 1.0.0.8
|
||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||
Author: The Titan Scouting Team
|
||||
Author-email: titanscout2022@gmail.com
|
||||
License: GNU General Public License v3.0
|
||||
Description: UNKNOWN
|
||||
Platform: UNKNOWN
|
||||
Classifier: Programming Language :: Python :: 3
|
||||
Classifier: Operating System :: OS Independent
|
||||
Requires-Python: >=3.6
|
||||
Description-Content-Type: text/markdown
|
12
analysis-master/analysis.egg-info/SOURCES.txt
Normal file
12
analysis-master/analysis.egg-info/SOURCES.txt
Normal file
@@ -0,0 +1,12 @@
|
||||
setup.py
|
||||
analysis/__init__.py
|
||||
analysis/analysis.py
|
||||
analysis/regression.py
|
||||
analysis/titanlearn.py
|
||||
analysis/trueskill.py
|
||||
analysis/visualization.py
|
||||
analysis.egg-info/PKG-INFO
|
||||
analysis.egg-info/SOURCES.txt
|
||||
analysis.egg-info/dependency_links.txt
|
||||
analysis.egg-info/requires.txt
|
||||
analysis.egg-info/top_level.txt
|
1
analysis-master/analysis.egg-info/dependency_links.txt
Normal file
1
analysis-master/analysis.egg-info/dependency_links.txt
Normal file
@@ -0,0 +1 @@
|
||||
|
6
analysis-master/analysis.egg-info/requires.txt
Normal file
6
analysis-master/analysis.egg-info/requires.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
numba
|
||||
numpy
|
||||
scipy
|
||||
scikit-learn
|
||||
six
|
||||
matplotlib
|
1
analysis-master/analysis.egg-info/top_level.txt
Normal file
1
analysis-master/analysis.egg-info/top_level.txt
Normal file
@@ -0,0 +1 @@
|
||||
analysis
|
0
analysis-master/analysis/__init__.py
Normal file
0
analysis-master/analysis/__init__.py
Normal file
BIN
analysis-master/analysis/__pycache__/__init__.cpython-37.pyc
Normal file
BIN
analysis-master/analysis/__pycache__/__init__.cpython-37.pyc
Normal file
Binary file not shown.
BIN
analysis-master/analysis/__pycache__/analysis.cpython-36.pyc
Normal file
BIN
analysis-master/analysis/__pycache__/analysis.cpython-36.pyc
Normal file
Binary file not shown.
BIN
analysis-master/analysis/__pycache__/analysis.cpython-37.pyc
Normal file
BIN
analysis-master/analysis/__pycache__/analysis.cpython-37.pyc
Normal file
Binary file not shown.
BIN
analysis-master/analysis/__pycache__/regression.cpython-37.pyc
Normal file
BIN
analysis-master/analysis/__pycache__/regression.cpython-37.pyc
Normal file
Binary file not shown.
BIN
analysis-master/analysis/__pycache__/titanlearn.cpython-37.pyc
Normal file
BIN
analysis-master/analysis/__pycache__/titanlearn.cpython-37.pyc
Normal file
Binary file not shown.
BIN
analysis-master/analysis/__pycache__/trueskill.cpython-37.pyc
Normal file
BIN
analysis-master/analysis/__pycache__/trueskill.cpython-37.pyc
Normal file
Binary file not shown.
790
analysis-master/analysis/analysis.py
Normal file
790
analysis-master/analysis/analysis.py
Normal file
@@ -0,0 +1,790 @@
|
||||
# Titan Robotics Team 2022: Data Analysis Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been optimized for multhreaded computing
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.006"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.006:
|
||||
- cleaned up imports
|
||||
1.1.13.005:
|
||||
- cleaned up package
|
||||
1.1.13.004:
|
||||
- small fixes to regression to improve performance
|
||||
1.1.13.003:
|
||||
- filtered nans from regression
|
||||
1.1.13.002:
|
||||
- removed torch requirement, and moved Regression back to regression.py
|
||||
1.1.13.001:
|
||||
- bug fix with linear regression not returning a proper value
|
||||
- cleaned up regression
|
||||
- fixed bug with polynomial regressions
|
||||
1.1.13.000:
|
||||
- fixed all regressions to now properly work
|
||||
1.1.12.006:
|
||||
- fixed bg with a division by zero in histo_analysis
|
||||
1.1.12.005:
|
||||
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
||||
1.1.12.004:
|
||||
- renamed gliko to glicko
|
||||
1.1.12.003:
|
||||
- removed depreciated code
|
||||
1.1.12.002:
|
||||
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
||||
1.1.12.001:
|
||||
- improved readibility of regression outputs by stripping tensor data
|
||||
- used map with lambda to acheive the improved readibility
|
||||
- lost numba jit support with regression, and generated_jit hangs at execution
|
||||
- TODO: reimplement correct numba integration in regression
|
||||
1.1.12.000:
|
||||
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
||||
1.1.11.010:
|
||||
- alphabeticaly ordered import lists
|
||||
1.1.11.009:
|
||||
- bug fixes
|
||||
1.1.11.008:
|
||||
- bug fixes
|
||||
1.1.11.007:
|
||||
- bug fixes
|
||||
1.1.11.006:
|
||||
- tested min and max
|
||||
- bug fixes
|
||||
1.1.11.005:
|
||||
- added min and max in basic_stats
|
||||
1.1.11.004:
|
||||
- bug fixes
|
||||
1.1.11.003:
|
||||
- bug fixes
|
||||
1.1.11.002:
|
||||
- consolidated metrics
|
||||
- fixed __all__
|
||||
1.1.11.001:
|
||||
- added test/train split to RandomForestClassifier and RandomForestRegressor
|
||||
1.1.11.000:
|
||||
- added RandomForestClassifier and RandomForestRegressor
|
||||
- note: untested
|
||||
1.1.10.000:
|
||||
- added numba.jit to remaining functions
|
||||
1.1.9.002:
|
||||
- kernelized PCA and KNN
|
||||
1.1.9.001:
|
||||
- fixed bugs with SVM and NaiveBayes
|
||||
1.1.9.000:
|
||||
- added SVM class, subclasses, and functions
|
||||
- note: untested
|
||||
1.1.8.000:
|
||||
- added NaiveBayes classification engine
|
||||
- note: untested
|
||||
1.1.7.000:
|
||||
- added knn()
|
||||
- added confusion matrix to decisiontree()
|
||||
1.1.6.002:
|
||||
- changed layout of __changelog to be vscode friendly
|
||||
1.1.6.001:
|
||||
- added additional hyperparameters to decisiontree()
|
||||
1.1.6.000:
|
||||
- fixed __version__
|
||||
- fixed __all__ order
|
||||
- added decisiontree()
|
||||
1.1.5.003:
|
||||
- added pca
|
||||
1.1.5.002:
|
||||
- reduced import list
|
||||
- added kmeans clustering engine
|
||||
1.1.5.001:
|
||||
- simplified regression by using .to(device)
|
||||
1.1.5.000:
|
||||
- added polynomial regression to regression(); untested
|
||||
1.1.4.000:
|
||||
- added trueskill()
|
||||
1.1.3.002:
|
||||
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
|
||||
1.1.3.001:
|
||||
- changed glicko2() to return tuple instead of array
|
||||
1.1.3.000:
|
||||
- added glicko2_engine class and glicko()
|
||||
- verified glicko2() accuracy
|
||||
1.1.2.003:
|
||||
- fixed elo()
|
||||
1.1.2.002:
|
||||
- added elo()
|
||||
- elo() has bugs to be fixed
|
||||
1.1.2.001:
|
||||
- readded regrression import
|
||||
1.1.2.000:
|
||||
- integrated regression.py as regression class
|
||||
- removed regression import
|
||||
- fixed metadata for regression class
|
||||
- fixed metadata for analysis class
|
||||
1.1.1.001:
|
||||
- regression_engine() bug fixes, now actaully regresses
|
||||
1.1.1.000:
|
||||
- added regression_engine()
|
||||
- added all regressions except polynomial
|
||||
1.1.0.007:
|
||||
- updated _init_device()
|
||||
1.1.0.006:
|
||||
- removed useless try statements
|
||||
1.1.0.005:
|
||||
- removed impossible outcomes
|
||||
1.1.0.004:
|
||||
- added performance metrics (r^2, mse, rms)
|
||||
1.1.0.003:
|
||||
- resolved nopython mode for mean, median, stdev, variance
|
||||
1.1.0.002:
|
||||
- snapped (removed) majority of uneeded imports
|
||||
- forced object mode (bad) on all jit
|
||||
- TODO: stop numba complaining about not being able to compile in nopython mode
|
||||
1.1.0.001:
|
||||
- removed from sklearn import * to resolve uneeded wildcard imports
|
||||
1.1.0.000:
|
||||
- removed c_entities,nc_entities,obstacles,objectives from __all__
|
||||
- applied numba.jit to all functions
|
||||
- depreciated and removed stdev_z_split
|
||||
- cleaned up histo_analysis to include numpy and numba.jit optimizations
|
||||
- depreciated and removed all regression functions in favor of future pytorch optimizer
|
||||
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
|
||||
- optimized z_normalize using sklearn.preprocessing.normalize
|
||||
- TODO: implement kernel/function based pytorch regression optimizer
|
||||
1.0.9.000:
|
||||
- refactored
|
||||
- numpyed everything
|
||||
- removed stats in favor of numpy functions
|
||||
1.0.8.005:
|
||||
- minor fixes
|
||||
1.0.8.004:
|
||||
- removed a few unused dependencies
|
||||
1.0.8.003:
|
||||
- added p_value function
|
||||
1.0.8.002:
|
||||
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
|
||||
1.0.8.001:
|
||||
- refactors
|
||||
- bugfixes
|
||||
1.0.8.000:
|
||||
- depreciated histo_analysis_old
|
||||
- depreciated debug
|
||||
- altered basic_analysis to take array data instead of filepath
|
||||
- refactor
|
||||
- optimization
|
||||
1.0.7.002:
|
||||
- bug fixes
|
||||
1.0.7.001:
|
||||
- bug fixes
|
||||
1.0.7.000:
|
||||
- added tanh_regression (logistical regression)
|
||||
- bug fixes
|
||||
1.0.6.005:
|
||||
- added z_normalize function to normalize dataset
|
||||
- bug fixes
|
||||
1.0.6.004:
|
||||
- bug fixes
|
||||
1.0.6.003:
|
||||
- bug fixes
|
||||
1.0.6.002:
|
||||
- bug fixes
|
||||
1.0.6.001:
|
||||
- corrected __all__ to contain all of the functions
|
||||
1.0.6.000:
|
||||
- added calc_overfit, which calculates two measures of overfit, error and performance
|
||||
- added calculating overfit to optimize_regression
|
||||
1.0.5.000:
|
||||
- added optimize_regression function, which is a sample function to find the optimal regressions
|
||||
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
||||
- planned addition: overfit detection in the optimize_regression function
|
||||
1.0.4.002:
|
||||
- added __changelog__
|
||||
- updated debug function with log and exponential regressions
|
||||
1.0.4.001:
|
||||
- added log regressions
|
||||
- added exponential regressions
|
||||
- added log_regression and exp_regression to __all__
|
||||
1.0.3.008:
|
||||
- added debug function to further consolidate functions
|
||||
1.0.3.007:
|
||||
- added builtin benchmark function
|
||||
- added builtin random (linear) data generation function
|
||||
- added device initialization (_init_device)
|
||||
1.0.3.006:
|
||||
- reorganized the imports list to be in alphabetical order
|
||||
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
||||
1.0.3.005:
|
||||
- major bug fixes
|
||||
- updated historical analysis
|
||||
- depreciated old historical analysis
|
||||
1.0.3.004:
|
||||
- added __version__, __author__, __all__
|
||||
- added polynomial regression
|
||||
- added root mean squared function
|
||||
- added r squared function
|
||||
1.0.3.003:
|
||||
- bug fixes
|
||||
- added c_entities
|
||||
1.0.3.002:
|
||||
- bug fixes
|
||||
- added nc_entities, obstacles, objectives
|
||||
- consolidated statistics.py to analysis.py
|
||||
1.0.3.001:
|
||||
- compiled 1d, column, and row basic stats into basic stats function
|
||||
1.0.3.000:
|
||||
- added historical analysis function
|
||||
1.0.2.xxx:
|
||||
- added z score test
|
||||
1.0.1.xxx:
|
||||
- major bug fixes
|
||||
1.0.0.xxx:
|
||||
- added loading csv
|
||||
- added 1d, column, row basic stats
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'load_csv',
|
||||
'basic_stats',
|
||||
'z_score',
|
||||
'z_normalize',
|
||||
'histo_analysis',
|
||||
'regression',
|
||||
'elo',
|
||||
'glicko2',
|
||||
'trueskill',
|
||||
'RegressionMetrics',
|
||||
'ClassificationMetrics',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
'knn_classifier',
|
||||
'knn_regressor',
|
||||
'NaiveBayes',
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'Glicko2',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
# now back to your regularly scheduled programming:
|
||||
|
||||
# imports (now in alphabetical order! v 1.0.3.006):
|
||||
|
||||
import csv
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import *
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
from analysis import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
csvfile.close()
|
||||
return file_array
|
||||
|
||||
# expects 1d array
|
||||
@jit(forceobj=True)
|
||||
def basic_stats(data):
|
||||
|
||||
data_t = np.array(data).astype(float)
|
||||
|
||||
_mean = mean(data_t)
|
||||
_median = median(data_t)
|
||||
_stdev = stdev(data_t)
|
||||
_variance = variance(data_t)
|
||||
_min = npmin(data_t)
|
||||
_max = npmax(data_t)
|
||||
|
||||
return _mean, _median, _stdev, _variance, _min, _max
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
@jit(forceobj=True)
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean) / stdev
|
||||
|
||||
return score
|
||||
|
||||
# expects 2d array, normalizes across all axes
|
||||
@jit(forceobj=True)
|
||||
def z_normalize(array, *args):
|
||||
|
||||
array = np.array(array)
|
||||
for arg in args:
|
||||
array = sklearn.preprocessing.normalize(array, axis = arg)
|
||||
|
||||
return array
|
||||
|
||||
@jit(forceobj=True)
|
||||
# expects 2d array of [x,y]
|
||||
def histo_analysis(hist_data):
|
||||
|
||||
if(len(hist_data[0]) > 2):
|
||||
|
||||
hist_data = np.array(hist_data)
|
||||
derivative = np.array(len(hist_data) - 1, dtype = float)
|
||||
t = np.diff(hist_data)
|
||||
derivative = t[1] / t[0]
|
||||
np.sort(derivative)
|
||||
|
||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||
|
||||
else:
|
||||
|
||||
return None
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
regressions = []
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b):
|
||||
|
||||
return a * x + b
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.log(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.exp(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
inputs = np.array([inputs])
|
||||
outputs = np.array([outputs])
|
||||
|
||||
plys = []
|
||||
limit = len(outputs[0])
|
||||
|
||||
for i in range(2, limit):
|
||||
|
||||
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
|
||||
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
|
||||
model = model.fit(np.rot90(inputs), np.rot90(outputs))
|
||||
|
||||
params = model.steps[1][1].intercept_.tolist()
|
||||
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
|
||||
params.flatten()
|
||||
params = params.tolist()
|
||||
|
||||
plys.append(params)
|
||||
|
||||
regressions.append(plys)
|
||||
|
||||
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.tanh(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
return regressions
|
||||
|
||||
def elo(starting_score, opposing_score, observed, N, K):
|
||||
|
||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||
|
||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||
|
||||
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||
|
||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||
|
||||
return (player.rating, player.rd, player.vol)
|
||||
|
||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
|
||||
team_ratings = []
|
||||
|
||||
for team in teams_data:
|
||||
team_temp = []
|
||||
for player in team:
|
||||
player = Trueskill.Rating(player[0], player[1])
|
||||
team_temp.append(player)
|
||||
team_ratings.append(team_temp)
|
||||
|
||||
return Trueskill.rate(teams_data, observations)
|
||||
|
||||
class RegressionMetrics():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
||||
|
||||
def r_squared(self, predictions, targets): # assumes equal size inputs
|
||||
|
||||
return sklearn.metrics.r2_score(targets, predictions)
|
||||
|
||||
def mse(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.mean_squared_error(targets, predictions)
|
||||
|
||||
def rms(self, predictions, targets):
|
||||
|
||||
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
||||
|
||||
class ClassificationMetrics():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
|
||||
|
||||
def cm(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.confusion_matrix(targets, predictions)
|
||||
|
||||
def cr(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.classification_report(targets, predictions)
|
||||
|
||||
@jit(nopython=True)
|
||||
def mean(data):
|
||||
|
||||
return np.mean(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def median(data):
|
||||
|
||||
return np.median(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def stdev(data):
|
||||
|
||||
return np.std(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def variance(data):
|
||||
|
||||
return np.var(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def npmin(data):
|
||||
|
||||
return np.amin(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def npmax(data):
|
||||
|
||||
return np.amax(data)
|
||||
|
||||
@jit(forceobj=True)
|
||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||
|
||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||
kernel.fit(data)
|
||||
predictions = kernel.predict(data)
|
||||
centers = kernel.cluster_centers_
|
||||
|
||||
return centers, predictions
|
||||
|
||||
@jit(forceobj=True)
|
||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||
|
||||
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||
|
||||
return kernel.fit_transform(data)
|
||||
|
||||
@jit(forceobj=True)
|
||||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||
model = model.fit(data_train,labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
metrics = ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
return model, metrics
|
||||
|
||||
@jit(forceobj=True)
|
||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsClassifier()
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
model.fit(data_train, outputs_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, RegressionMetrics(predictions, outputs_test)
|
||||
|
||||
class NaiveBayes:
|
||||
|
||||
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
class SVM:
|
||||
|
||||
class CustomKernel:
|
||||
|
||||
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
||||
|
||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||
|
||||
class StandardKernel:
|
||||
|
||||
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
||||
|
||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||
|
||||
class PrebuiltKernel:
|
||||
|
||||
class Linear:
|
||||
|
||||
def __new__(cls):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'linear')
|
||||
|
||||
class Polynomial:
|
||||
|
||||
def __new__(cls, power, r_bias):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
||||
|
||||
class RBF:
|
||||
|
||||
def __new__(cls, gamma):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
||||
|
||||
class Sigmoid:
|
||||
|
||||
def __new__(cls, r_bias):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
||||
|
||||
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
|
||||
|
||||
return kernel.fit(train_data, train_outputs)
|
||||
|
||||
def eval_classification(self, kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return ClassificationMetrics(predictions, test_outputs)
|
||||
|
||||
def eval_regression(self, kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return RegressionMetrics(predictions, test_outputs)
|
||||
|
||||
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||
kernel.fit(data_train, labels_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||
kernel.fit(data_train, outputs_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||
|
||||
class Glicko2:
|
||||
|
||||
_tau = 0.5
|
||||
|
||||
def getRating(self):
|
||||
return (self.__rating * 173.7178) + 1500
|
||||
|
||||
def setRating(self, rating):
|
||||
self.__rating = (rating - 1500) / 173.7178
|
||||
|
||||
rating = property(getRating, setRating)
|
||||
|
||||
def getRd(self):
|
||||
return self.__rd * 173.7178
|
||||
|
||||
def setRd(self, rd):
|
||||
self.__rd = rd / 173.7178
|
||||
|
||||
rd = property(getRd, setRd)
|
||||
|
||||
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
||||
|
||||
self.setRating(rating)
|
||||
self.setRd(rd)
|
||||
self.vol = vol
|
||||
|
||||
def _preRatingRD(self):
|
||||
|
||||
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
||||
|
||||
def update_player(self, rating_list, RD_list, outcome_list):
|
||||
|
||||
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
||||
RD_list = [x / 173.7178 for x in RD_list]
|
||||
|
||||
v = self._v(rating_list, RD_list)
|
||||
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
||||
self._preRatingRD()
|
||||
|
||||
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempSum += self._g(RD_list[i]) * \
|
||||
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||
self.__rating += math.pow(self.__rd, 2) * tempSum
|
||||
|
||||
|
||||
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
||||
|
||||
i = 0
|
||||
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
||||
a = math.log(math.pow(self.vol, 2))
|
||||
tau = self._tau
|
||||
x0 = a
|
||||
x1 = 0
|
||||
|
||||
while x0 != x1:
|
||||
# New iteration, so x(i) becomes x(i-1)
|
||||
x0 = x1
|
||||
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
||||
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
||||
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
||||
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
||||
(math.pow(self.__rating, 2) + v) \
|
||||
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
||||
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
||||
x1 = x0 - (h1 / h2)
|
||||
|
||||
return math.exp(x1 / 2)
|
||||
|
||||
def _delta(self, rating_list, RD_list, outcome_list, v):
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||
return v * tempSum
|
||||
|
||||
def _v(self, rating_list, RD_list):
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempE = self._E(rating_list[i], RD_list[i])
|
||||
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
||||
return 1 / tempSum
|
||||
|
||||
def _E(self, p2rating, p2RD):
|
||||
|
||||
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
||||
(self.__rating - p2rating)))
|
||||
|
||||
def _g(self, RD):
|
||||
|
||||
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
||||
|
||||
def did_not_compete(self):
|
||||
|
||||
self._preRatingRD()
|
220
analysis-master/analysis/regression.py
Normal file
220
analysis-master/analysis/regression.py
Normal file
@@ -0,0 +1,220 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.004:
|
||||
- bug fixes
|
||||
- fixed changelog
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'factorial',
|
||||
'take_all_pwrs',
|
||||
'num_poly_terms',
|
||||
'set_device',
|
||||
'LinearRegKernel',
|
||||
'SigmoidalRegKernel',
|
||||
'LogRegKernel',
|
||||
'PolyRegKernel',
|
||||
'ExpRegKernel',
|
||||
'SigmoidalRegKernelArthur',
|
||||
'SGDTrain',
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
import torch
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def set_device(self, new_device):
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,mtx)+long_bias
|
||||
|
||||
class SigmoidalRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||||
|
||||
class SigmoidalRegKernelArthur():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class LogRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class ExpRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class PolyRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=self.num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def num_poly_terms(self,num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||
def factorial(self,n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*self.factorial(n-1)
|
||||
def take_all_pwrs(self, vec, pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||
for i in torch.t(combins).to(device).to(torch.float):
|
||||
out *= i
|
||||
if pwr == 1:
|
||||
return out
|
||||
else:
|
||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(self.take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data)
|
||||
ls=loss(pred,ground)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
122
analysis-master/analysis/titanlearn.py
Normal file
122
analysis-master/analysis/titanlearn.py
Normal file
@@ -0,0 +1,122 @@
|
||||
# Titan Robotics Team 2022: ML Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import titanlearn'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is optimized for multhreaded computing
|
||||
# this module learns from its mistakes far faster than 2022's captains
|
||||
# setup:
|
||||
|
||||
__version__ = "2.0.1.001"
|
||||
|
||||
#changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
2.0.1.001:
|
||||
- removed matplotlib import
|
||||
- removed graphloss()
|
||||
2.0.1.000:
|
||||
- added net, dataset, dataloader, and stdtrain template definitions
|
||||
- added graphloss function
|
||||
2.0.0.001:
|
||||
- added clear functions
|
||||
2.0.0.000:
|
||||
- complete rewrite planned
|
||||
- depreciated 1.0.0.xxx versions
|
||||
- added simple training loop
|
||||
1.0.0.xxx:
|
||||
-added generation of ANNS, basic SGD training
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>,"
|
||||
"Jacob Levine <jlevine@ttic.edu>,"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'clear',
|
||||
'net',
|
||||
'dataset',
|
||||
'dataloader',
|
||||
'train',
|
||||
'stdtrainer',
|
||||
]
|
||||
|
||||
import torch
|
||||
from os import system, name
|
||||
import numpy as np
|
||||
|
||||
def clear():
|
||||
if name == 'nt':
|
||||
_ = system('cls')
|
||||
else:
|
||||
_ = system('clear')
|
||||
|
||||
class net(torch.nn.Module): #template for standard neural net
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def forward(self, input):
|
||||
pass
|
||||
|
||||
class dataset(torch.utils.data.Dataset): #template for standard dataset
|
||||
|
||||
def __init__(self):
|
||||
super(torch.utils.data.Dataset).__init__()
|
||||
|
||||
def __getitem__(self, index):
|
||||
pass
|
||||
|
||||
def __len__(self):
|
||||
pass
|
||||
|
||||
def dataloader(dataset, batch_size, num_workers, shuffle = True):
|
||||
|
||||
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
||||
|
||||
def train(device, net, epochs, trainloader, optimizer, criterion): #expects standard dataloader, whch returns (inputs, labels)
|
||||
|
||||
dataset_len = trainloader.dataset.__len__()
|
||||
iter_count = 0
|
||||
running_loss = 0
|
||||
running_loss_list = []
|
||||
|
||||
for epoch in range(epochs): # loop over the dataset multiple times
|
||||
|
||||
for i, data in enumerate(trainloader, 0):
|
||||
|
||||
inputs = data[0].to(device)
|
||||
labels = data[1].to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels.to(torch.float))
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# monitoring steps below
|
||||
|
||||
iter_count += 1
|
||||
running_loss += loss.item()
|
||||
running_loss_list.append(running_loss)
|
||||
clear()
|
||||
|
||||
print("training on: " + device)
|
||||
print("iteration: " + str(i) + "/" + str(int(dataset_len / trainloader.batch_size)) + " | " + "epoch: " + str(epoch) + "/" + str(epochs))
|
||||
print("current batch loss: " + str(loss.item))
|
||||
print("running loss: " + str(running_loss / iter_count))
|
||||
|
||||
return net, running_loss_list
|
||||
print("finished training")
|
||||
|
||||
def stdtrainer(net, criterion, optimizer, dataloader, epochs, batch_size):
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
net = net.to(device)
|
||||
criterion = criterion.to(device)
|
||||
optimizer = optimizer.to(device)
|
||||
trainloader = dataloader
|
||||
|
||||
return train(device, net, epochs, trainloader, optimizer, criterion)
|
907
analysis-master/analysis/trueskill.py
Normal file
907
analysis-master/analysis/trueskill.py
Normal file
@@ -0,0 +1,907 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
from itertools import chain
|
||||
import math
|
||||
|
||||
from six import iteritems
|
||||
from six.moves import map, range, zip
|
||||
from six import iterkeys
|
||||
|
||||
import copy
|
||||
try:
|
||||
from numbers import Number
|
||||
except ImportError:
|
||||
Number = (int, long, float, complex)
|
||||
|
||||
inf = float('inf')
|
||||
|
||||
class Gaussian(object):
|
||||
#: Precision, the inverse of the variance.
|
||||
pi = 0
|
||||
#: Precision adjusted mean, the precision multiplied by the mean.
|
||||
tau = 0
|
||||
|
||||
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
|
||||
if mu is not None:
|
||||
if sigma is None:
|
||||
raise TypeError('sigma argument is needed')
|
||||
elif sigma == 0:
|
||||
raise ValueError('sigma**2 should be greater than 0')
|
||||
pi = sigma ** -2
|
||||
tau = pi * mu
|
||||
self.pi = pi
|
||||
self.tau = tau
|
||||
|
||||
@property
|
||||
def mu(self):
|
||||
return self.pi and self.tau / self.pi
|
||||
|
||||
@property
|
||||
def sigma(self):
|
||||
return math.sqrt(1 / self.pi) if self.pi else inf
|
||||
|
||||
def __mul__(self, other):
|
||||
pi, tau = self.pi + other.pi, self.tau + other.tau
|
||||
return Gaussian(pi=pi, tau=tau)
|
||||
|
||||
def __truediv__(self, other):
|
||||
pi, tau = self.pi - other.pi, self.tau - other.tau
|
||||
return Gaussian(pi=pi, tau=tau)
|
||||
|
||||
__div__ = __truediv__ # for Python 2
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.pi == other.pi and self.tau == other.tau
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.mu < other.mu
|
||||
|
||||
def __le__(self, other):
|
||||
return self.mu <= other.mu
|
||||
|
||||
def __gt__(self, other):
|
||||
return self.mu > other.mu
|
||||
|
||||
def __ge__(self, other):
|
||||
return self.mu >= other.mu
|
||||
|
||||
def __repr__(self):
|
||||
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
|
||||
|
||||
def _repr_latex_(self):
|
||||
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
|
||||
return '$%s$' % latex
|
||||
|
||||
class Matrix(list):
|
||||
def __init__(self, src, height=None, width=None):
|
||||
if callable(src):
|
||||
f, src = src, {}
|
||||
size = [height, width]
|
||||
if not height:
|
||||
def set_height(height):
|
||||
size[0] = height
|
||||
size[0] = set_height
|
||||
if not width:
|
||||
def set_width(width):
|
||||
size[1] = width
|
||||
size[1] = set_width
|
||||
try:
|
||||
for (r, c), val in f(*size):
|
||||
src[r, c] = val
|
||||
except TypeError:
|
||||
raise TypeError('A callable src must return an interable '
|
||||
'which generates a tuple containing '
|
||||
'coordinate and value')
|
||||
height, width = tuple(size)
|
||||
if height is None or width is None:
|
||||
raise TypeError('A callable src must call set_height and '
|
||||
'set_width if the size is non-deterministic')
|
||||
if isinstance(src, list):
|
||||
is_number = lambda x: isinstance(x, Number)
|
||||
unique_col_sizes = set(map(len, src))
|
||||
everything_are_number = filter(is_number, sum(src, []))
|
||||
if len(unique_col_sizes) != 1 or not everything_are_number:
|
||||
raise ValueError('src must be a rectangular array of numbers')
|
||||
two_dimensional_array = src
|
||||
elif isinstance(src, dict):
|
||||
if not height or not width:
|
||||
w = h = 0
|
||||
for r, c in iterkeys(src):
|
||||
if not height:
|
||||
h = max(h, r + 1)
|
||||
if not width:
|
||||
w = max(w, c + 1)
|
||||
if not height:
|
||||
height = h
|
||||
if not width:
|
||||
width = w
|
||||
two_dimensional_array = []
|
||||
for r in range(height):
|
||||
row = []
|
||||
two_dimensional_array.append(row)
|
||||
for c in range(width):
|
||||
row.append(src.get((r, c), 0))
|
||||
else:
|
||||
raise TypeError('src must be a list or dict or callable')
|
||||
super(Matrix, self).__init__(two_dimensional_array)
|
||||
|
||||
@property
|
||||
def height(self):
|
||||
return len(self)
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return len(self[0])
|
||||
|
||||
def transpose(self):
|
||||
height, width = self.height, self.width
|
||||
src = {}
|
||||
for c in range(width):
|
||||
for r in range(height):
|
||||
src[c, r] = self[r][c]
|
||||
return type(self)(src, height=width, width=height)
|
||||
|
||||
def minor(self, row_n, col_n):
|
||||
height, width = self.height, self.width
|
||||
if not (0 <= row_n < height):
|
||||
raise ValueError('row_n should be between 0 and %d' % height)
|
||||
elif not (0 <= col_n < width):
|
||||
raise ValueError('col_n should be between 0 and %d' % width)
|
||||
two_dimensional_array = []
|
||||
for r in range(height):
|
||||
if r == row_n:
|
||||
continue
|
||||
row = []
|
||||
two_dimensional_array.append(row)
|
||||
for c in range(width):
|
||||
if c == col_n:
|
||||
continue
|
||||
row.append(self[r][c])
|
||||
return type(self)(two_dimensional_array)
|
||||
|
||||
def determinant(self):
|
||||
height, width = self.height, self.width
|
||||
if height != width:
|
||||
raise ValueError('Only square matrix can calculate a determinant')
|
||||
tmp, rv = copy.deepcopy(self), 1.
|
||||
for c in range(width - 1, 0, -1):
|
||||
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
|
||||
pivot = tmp[r][c]
|
||||
if not pivot:
|
||||
return 0.
|
||||
tmp[r], tmp[c] = tmp[c], tmp[r]
|
||||
if r != c:
|
||||
rv = -rv
|
||||
rv *= pivot
|
||||
fact = -1. / pivot
|
||||
for r in range(c):
|
||||
f = fact * tmp[r][c]
|
||||
for x in range(c):
|
||||
tmp[r][x] += f * tmp[c][x]
|
||||
return rv * tmp[0][0]
|
||||
|
||||
def adjugate(self):
|
||||
height, width = self.height, self.width
|
||||
if height != width:
|
||||
raise ValueError('Only square matrix can be adjugated')
|
||||
if height == 2:
|
||||
a, b = self[0][0], self[0][1]
|
||||
c, d = self[1][0], self[1][1]
|
||||
return type(self)([[d, -b], [-c, a]])
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
sign = -1 if (r + c) % 2 else 1
|
||||
src[r, c] = self.minor(r, c).determinant() * sign
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def inverse(self):
|
||||
if self.height == self.width == 1:
|
||||
return type(self)([[1. / self[0][0]]])
|
||||
return (1. / self.determinant()) * self.adjugate()
|
||||
|
||||
def __add__(self, other):
|
||||
height, width = self.height, self.width
|
||||
if (height, width) != (other.height, other.width):
|
||||
raise ValueError('Must be same size')
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = self[r][c] + other[r][c]
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __mul__(self, other):
|
||||
if self.width != other.height:
|
||||
raise ValueError('Bad size')
|
||||
height, width = self.height, other.width
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = sum(self[r][x] * other[x][c]
|
||||
for x in range(self.width))
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __rmul__(self, other):
|
||||
if not isinstance(other, Number):
|
||||
raise TypeError('The operand should be a number')
|
||||
height, width = self.height, self.width
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = other * self[r][c]
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __repr__(self):
|
||||
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
|
||||
|
||||
def _repr_latex_(self):
|
||||
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
|
||||
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
|
||||
return '$%s$' % latex
|
||||
|
||||
def _gen_erfcinv(erfc, math=math):
|
||||
def erfcinv(y):
|
||||
"""The inverse function of erfc."""
|
||||
if y >= 2:
|
||||
return -100.
|
||||
elif y <= 0:
|
||||
return 100.
|
||||
zero_point = y < 1
|
||||
if not zero_point:
|
||||
y = 2 - y
|
||||
t = math.sqrt(-2 * math.log(y / 2.))
|
||||
x = -0.70711 * \
|
||||
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
|
||||
for i in range(2):
|
||||
err = erfc(x) - y
|
||||
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
|
||||
return x if zero_point else -x
|
||||
return erfcinv
|
||||
|
||||
def _gen_ppf(erfc, math=math):
|
||||
erfcinv = _gen_erfcinv(erfc, math)
|
||||
def ppf(x, mu=0, sigma=1):
|
||||
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
|
||||
return ppf
|
||||
|
||||
def erfc(x):
|
||||
z = abs(x)
|
||||
t = 1. / (1. + z / 2.)
|
||||
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
|
||||
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
|
||||
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
|
||||
-0.82215223 + t * 0.17087277
|
||||
)))
|
||||
)))
|
||||
)))
|
||||
return 2. - r if x < 0 else r
|
||||
|
||||
def cdf(x, mu=0, sigma=1):
|
||||
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
|
||||
|
||||
|
||||
def pdf(x, mu=0, sigma=1):
|
||||
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
|
||||
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
|
||||
|
||||
ppf = _gen_ppf(erfc)
|
||||
|
||||
def choose_backend(backend):
|
||||
if backend is None: # fallback
|
||||
return cdf, pdf, ppf
|
||||
elif backend == 'mpmath':
|
||||
try:
|
||||
import mpmath
|
||||
except ImportError:
|
||||
raise ImportError('Install "mpmath" to use this backend')
|
||||
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
|
||||
elif backend == 'scipy':
|
||||
try:
|
||||
from scipy.stats import norm
|
||||
except ImportError:
|
||||
raise ImportError('Install "scipy" to use this backend')
|
||||
return norm.cdf, norm.pdf, norm.ppf
|
||||
raise ValueError('%r backend is not defined' % backend)
|
||||
|
||||
def available_backends():
|
||||
backends = [None]
|
||||
for backend in ['mpmath', 'scipy']:
|
||||
try:
|
||||
__import__(backend)
|
||||
except ImportError:
|
||||
continue
|
||||
backends.append(backend)
|
||||
return backends
|
||||
|
||||
class Node(object):
|
||||
|
||||
pass
|
||||
|
||||
class Variable(Node, Gaussian):
|
||||
|
||||
def __init__(self):
|
||||
self.messages = {}
|
||||
super(Variable, self).__init__()
|
||||
|
||||
def set(self, val):
|
||||
delta = self.delta(val)
|
||||
self.pi, self.tau = val.pi, val.tau
|
||||
return delta
|
||||
|
||||
def delta(self, other):
|
||||
pi_delta = abs(self.pi - other.pi)
|
||||
if pi_delta == inf:
|
||||
return 0.
|
||||
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
|
||||
|
||||
def update_message(self, factor, pi=0, tau=0, message=None):
|
||||
message = message or Gaussian(pi=pi, tau=tau)
|
||||
old_message, self[factor] = self[factor], message
|
||||
return self.set(self / old_message * message)
|
||||
|
||||
def update_value(self, factor, pi=0, tau=0, value=None):
|
||||
value = value or Gaussian(pi=pi, tau=tau)
|
||||
old_message = self[factor]
|
||||
self[factor] = value * old_message / self
|
||||
return self.set(value)
|
||||
|
||||
def __getitem__(self, factor):
|
||||
return self.messages[factor]
|
||||
|
||||
def __setitem__(self, factor, message):
|
||||
self.messages[factor] = message
|
||||
|
||||
def __repr__(self):
|
||||
args = (type(self).__name__, super(Variable, self).__repr__(),
|
||||
len(self.messages), '' if len(self.messages) == 1 else 's')
|
||||
return '<%s %s with %d connection%s>' % args
|
||||
|
||||
|
||||
class Factor(Node):
|
||||
|
||||
def __init__(self, variables):
|
||||
self.vars = variables
|
||||
for var in variables:
|
||||
var[self] = Gaussian()
|
||||
|
||||
def down(self):
|
||||
return 0
|
||||
|
||||
def up(self):
|
||||
return 0
|
||||
|
||||
@property
|
||||
def var(self):
|
||||
assert len(self.vars) == 1
|
||||
return self.vars[0]
|
||||
|
||||
def __repr__(self):
|
||||
args = (type(self).__name__, len(self.vars),
|
||||
'' if len(self.vars) == 1 else 's')
|
||||
return '<%s with %d connection%s>' % args
|
||||
|
||||
|
||||
class PriorFactor(Factor):
|
||||
|
||||
def __init__(self, var, val, dynamic=0):
|
||||
super(PriorFactor, self).__init__([var])
|
||||
self.val = val
|
||||
self.dynamic = dynamic
|
||||
|
||||
def down(self):
|
||||
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
|
||||
value = Gaussian(self.val.mu, sigma)
|
||||
return self.var.update_value(self, value=value)
|
||||
|
||||
|
||||
class LikelihoodFactor(Factor):
|
||||
|
||||
def __init__(self, mean_var, value_var, variance):
|
||||
super(LikelihoodFactor, self).__init__([mean_var, value_var])
|
||||
self.mean = mean_var
|
||||
self.value = value_var
|
||||
self.variance = variance
|
||||
|
||||
def calc_a(self, var):
|
||||
return 1. / (1. + self.variance * var.pi)
|
||||
|
||||
def down(self):
|
||||
# update value.
|
||||
msg = self.mean / self.mean[self]
|
||||
a = self.calc_a(msg)
|
||||
return self.value.update_message(self, a * msg.pi, a * msg.tau)
|
||||
|
||||
def up(self):
|
||||
# update mean.
|
||||
msg = self.value / self.value[self]
|
||||
a = self.calc_a(msg)
|
||||
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
|
||||
|
||||
|
||||
class SumFactor(Factor):
|
||||
|
||||
def __init__(self, sum_var, term_vars, coeffs):
|
||||
super(SumFactor, self).__init__([sum_var] + term_vars)
|
||||
self.sum = sum_var
|
||||
self.terms = term_vars
|
||||
self.coeffs = coeffs
|
||||
|
||||
def down(self):
|
||||
vals = self.terms
|
||||
msgs = [var[self] for var in vals]
|
||||
return self.update(self.sum, vals, msgs, self.coeffs)
|
||||
|
||||
def up(self, index=0):
|
||||
coeff = self.coeffs[index]
|
||||
coeffs = []
|
||||
for x, c in enumerate(self.coeffs):
|
||||
try:
|
||||
if x == index:
|
||||
coeffs.append(1. / coeff)
|
||||
else:
|
||||
coeffs.append(-c / coeff)
|
||||
except ZeroDivisionError:
|
||||
coeffs.append(0.)
|
||||
vals = self.terms[:]
|
||||
vals[index] = self.sum
|
||||
msgs = [var[self] for var in vals]
|
||||
return self.update(self.terms[index], vals, msgs, coeffs)
|
||||
|
||||
def update(self, var, vals, msgs, coeffs):
|
||||
pi_inv = 0
|
||||
mu = 0
|
||||
for val, msg, coeff in zip(vals, msgs, coeffs):
|
||||
div = val / msg
|
||||
mu += coeff * div.mu
|
||||
if pi_inv == inf:
|
||||
continue
|
||||
try:
|
||||
# numpy.float64 handles floating-point error by different way.
|
||||
# For example, it can just warn RuntimeWarning on n/0 problem
|
||||
# instead of throwing ZeroDivisionError. So div.pi, the
|
||||
# denominator has to be a built-in float.
|
||||
pi_inv += coeff ** 2 / float(div.pi)
|
||||
except ZeroDivisionError:
|
||||
pi_inv = inf
|
||||
pi = 1. / pi_inv
|
||||
tau = pi * mu
|
||||
return var.update_message(self, pi, tau)
|
||||
|
||||
|
||||
class TruncateFactor(Factor):
|
||||
|
||||
def __init__(self, var, v_func, w_func, draw_margin):
|
||||
super(TruncateFactor, self).__init__([var])
|
||||
self.v_func = v_func
|
||||
self.w_func = w_func
|
||||
self.draw_margin = draw_margin
|
||||
|
||||
def up(self):
|
||||
val = self.var
|
||||
msg = self.var[self]
|
||||
div = val / msg
|
||||
sqrt_pi = math.sqrt(div.pi)
|
||||
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
|
||||
v = self.v_func(*args)
|
||||
w = self.w_func(*args)
|
||||
denom = (1. - w)
|
||||
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
|
||||
return val.update_value(self, pi, tau)
|
||||
|
||||
#: Default initial mean of ratings.
|
||||
MU = 25.
|
||||
#: Default initial standard deviation of ratings.
|
||||
SIGMA = MU / 3
|
||||
#: Default distance that guarantees about 76% chance of winning.
|
||||
BETA = SIGMA / 2
|
||||
#: Default dynamic factor.
|
||||
TAU = SIGMA / 100
|
||||
#: Default draw probability of the game.
|
||||
DRAW_PROBABILITY = .10
|
||||
#: A basis to check reliability of the result.
|
||||
DELTA = 0.0001
|
||||
|
||||
|
||||
def calc_draw_probability(draw_margin, size, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
|
||||
|
||||
|
||||
def calc_draw_margin(draw_probability, size, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
|
||||
|
||||
|
||||
def _team_sizes(rating_groups):
|
||||
team_sizes = [0]
|
||||
for group in rating_groups:
|
||||
team_sizes.append(len(group) + team_sizes[-1])
|
||||
del team_sizes[0]
|
||||
return team_sizes
|
||||
|
||||
|
||||
def _floating_point_error(env):
|
||||
if env.backend == 'mpmath':
|
||||
msg = 'Set "mpmath.mp.dps" to higher'
|
||||
else:
|
||||
msg = 'Cannot calculate correctly, set backend to "mpmath"'
|
||||
return FloatingPointError(msg)
|
||||
|
||||
|
||||
class Rating(Gaussian):
|
||||
def __init__(self, mu=None, sigma=None):
|
||||
if isinstance(mu, tuple):
|
||||
mu, sigma = mu
|
||||
elif isinstance(mu, Gaussian):
|
||||
mu, sigma = mu.mu, mu.sigma
|
||||
if mu is None:
|
||||
mu = global_env().mu
|
||||
if sigma is None:
|
||||
sigma = global_env().sigma
|
||||
super(Rating, self).__init__(mu, sigma)
|
||||
|
||||
def __int__(self):
|
||||
return int(self.mu)
|
||||
|
||||
def __long__(self):
|
||||
return long(self.mu)
|
||||
|
||||
def __float__(self):
|
||||
return float(self.mu)
|
||||
|
||||
def __iter__(self):
|
||||
return iter((self.mu, self.sigma))
|
||||
|
||||
def __repr__(self):
|
||||
c = type(self)
|
||||
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
|
||||
return '%s(mu=%.3f, sigma=%.3f)' % args
|
||||
|
||||
|
||||
class TrueSkill(object):
|
||||
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||
draw_probability=DRAW_PROBABILITY, backend=None):
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
self.beta = beta
|
||||
self.tau = tau
|
||||
self.draw_probability = draw_probability
|
||||
self.backend = backend
|
||||
if isinstance(backend, tuple):
|
||||
self.cdf, self.pdf, self.ppf = backend
|
||||
else:
|
||||
self.cdf, self.pdf, self.ppf = choose_backend(backend)
|
||||
|
||||
def create_rating(self, mu=None, sigma=None):
|
||||
if mu is None:
|
||||
mu = self.mu
|
||||
if sigma is None:
|
||||
sigma = self.sigma
|
||||
return Rating(mu, sigma)
|
||||
|
||||
def v_win(self, diff, draw_margin):
|
||||
x = diff - draw_margin
|
||||
denom = self.cdf(x)
|
||||
return (self.pdf(x) / denom) if denom else -x
|
||||
|
||||
def v_draw(self, diff, draw_margin):
|
||||
abs_diff = abs(diff)
|
||||
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||
denom = self.cdf(a) - self.cdf(b)
|
||||
numer = self.pdf(b) - self.pdf(a)
|
||||
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
|
||||
|
||||
def w_win(self, diff, draw_margin):
|
||||
x = diff - draw_margin
|
||||
v = self.v_win(diff, draw_margin)
|
||||
w = v * (v + x)
|
||||
if 0 < w < 1:
|
||||
return w
|
||||
raise _floating_point_error(self)
|
||||
|
||||
def w_draw(self, diff, draw_margin):
|
||||
abs_diff = abs(diff)
|
||||
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||
denom = self.cdf(a) - self.cdf(b)
|
||||
if not denom:
|
||||
raise _floating_point_error(self)
|
||||
v = self.v_draw(abs_diff, draw_margin)
|
||||
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
|
||||
|
||||
def validate_rating_groups(self, rating_groups):
|
||||
# check group sizes
|
||||
if len(rating_groups) < 2:
|
||||
raise ValueError('Need multiple rating groups')
|
||||
elif not all(rating_groups):
|
||||
raise ValueError('Each group must contain multiple ratings')
|
||||
# check group types
|
||||
group_types = set(map(type, rating_groups))
|
||||
if len(group_types) != 1:
|
||||
raise TypeError('All groups should be same type')
|
||||
elif group_types.pop() is Rating:
|
||||
raise TypeError('Rating cannot be a rating group')
|
||||
# normalize rating_groups
|
||||
if isinstance(rating_groups[0], dict):
|
||||
dict_rating_groups = rating_groups
|
||||
rating_groups = []
|
||||
keys = []
|
||||
for dict_rating_group in dict_rating_groups:
|
||||
rating_group, key_group = [], []
|
||||
for key, rating in iteritems(dict_rating_group):
|
||||
rating_group.append(rating)
|
||||
key_group.append(key)
|
||||
rating_groups.append(tuple(rating_group))
|
||||
keys.append(tuple(key_group))
|
||||
else:
|
||||
rating_groups = list(rating_groups)
|
||||
keys = None
|
||||
return rating_groups, keys
|
||||
|
||||
def validate_weights(self, weights, rating_groups, keys=None):
|
||||
if weights is None:
|
||||
weights = [(1,) * len(g) for g in rating_groups]
|
||||
elif isinstance(weights, dict):
|
||||
weights_dict, weights = weights, []
|
||||
for x, group in enumerate(rating_groups):
|
||||
w = []
|
||||
weights.append(w)
|
||||
for y, rating in enumerate(group):
|
||||
if keys is not None:
|
||||
y = keys[x][y]
|
||||
w.append(weights_dict.get((x, y), 1))
|
||||
return weights
|
||||
|
||||
def factor_graph_builders(self, rating_groups, ranks, weights):
|
||||
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||
flatten_weights = sum(map(tuple, weights), ())
|
||||
size = len(flatten_ratings)
|
||||
group_size = len(rating_groups)
|
||||
# create variables
|
||||
rating_vars = [Variable() for x in range(size)]
|
||||
perf_vars = [Variable() for x in range(size)]
|
||||
team_perf_vars = [Variable() for x in range(group_size)]
|
||||
team_diff_vars = [Variable() for x in range(group_size - 1)]
|
||||
team_sizes = _team_sizes(rating_groups)
|
||||
# layer builders
|
||||
def build_rating_layer():
|
||||
for rating_var, rating in zip(rating_vars, flatten_ratings):
|
||||
yield PriorFactor(rating_var, rating, self.tau)
|
||||
def build_perf_layer():
|
||||
for rating_var, perf_var in zip(rating_vars, perf_vars):
|
||||
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
|
||||
def build_team_perf_layer():
|
||||
for team, team_perf_var in enumerate(team_perf_vars):
|
||||
if team > 0:
|
||||
start = team_sizes[team - 1]
|
||||
else:
|
||||
start = 0
|
||||
end = team_sizes[team]
|
||||
child_perf_vars = perf_vars[start:end]
|
||||
coeffs = flatten_weights[start:end]
|
||||
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
|
||||
def build_team_diff_layer():
|
||||
for team, team_diff_var in enumerate(team_diff_vars):
|
||||
yield SumFactor(team_diff_var,
|
||||
team_perf_vars[team:team + 2], [+1, -1])
|
||||
def build_trunc_layer():
|
||||
for x, team_diff_var in enumerate(team_diff_vars):
|
||||
if callable(self.draw_probability):
|
||||
# dynamic draw probability
|
||||
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
|
||||
args = (Rating(team_perf1), Rating(team_perf2), self)
|
||||
draw_probability = self.draw_probability(*args)
|
||||
else:
|
||||
# static draw probability
|
||||
draw_probability = self.draw_probability
|
||||
size = sum(map(len, rating_groups[x:x + 2]))
|
||||
draw_margin = calc_draw_margin(draw_probability, size, self)
|
||||
if ranks[x] == ranks[x + 1]: # is a tie?
|
||||
v_func, w_func = self.v_draw, self.w_draw
|
||||
else:
|
||||
v_func, w_func = self.v_win, self.w_win
|
||||
yield TruncateFactor(team_diff_var,
|
||||
v_func, w_func, draw_margin)
|
||||
# build layers
|
||||
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
|
||||
build_team_diff_layer, build_trunc_layer)
|
||||
|
||||
def run_schedule(self, build_rating_layer, build_perf_layer,
|
||||
build_team_perf_layer, build_team_diff_layer,
|
||||
build_trunc_layer, min_delta=DELTA):
|
||||
if min_delta <= 0:
|
||||
raise ValueError('min_delta must be greater than 0')
|
||||
layers = []
|
||||
def build(builders):
|
||||
layers_built = [list(build()) for build in builders]
|
||||
layers.extend(layers_built)
|
||||
return layers_built
|
||||
# gray arrows
|
||||
layers_built = build([build_rating_layer,
|
||||
build_perf_layer,
|
||||
build_team_perf_layer])
|
||||
rating_layer, perf_layer, team_perf_layer = layers_built
|
||||
for f in chain(*layers_built):
|
||||
f.down()
|
||||
# arrow #1, #2, #3
|
||||
team_diff_layer, trunc_layer = build([build_team_diff_layer,
|
||||
build_trunc_layer])
|
||||
team_diff_len = len(team_diff_layer)
|
||||
for x in range(10):
|
||||
if team_diff_len == 1:
|
||||
# only two teams
|
||||
team_diff_layer[0].down()
|
||||
delta = trunc_layer[0].up()
|
||||
else:
|
||||
# multiple teams
|
||||
delta = 0
|
||||
for x in range(team_diff_len - 1):
|
||||
team_diff_layer[x].down()
|
||||
delta = max(delta, trunc_layer[x].up())
|
||||
team_diff_layer[x].up(1) # up to right variable
|
||||
for x in range(team_diff_len - 1, 0, -1):
|
||||
team_diff_layer[x].down()
|
||||
delta = max(delta, trunc_layer[x].up())
|
||||
team_diff_layer[x].up(0) # up to left variable
|
||||
# repeat until to small update
|
||||
if delta <= min_delta:
|
||||
break
|
||||
# up both ends
|
||||
team_diff_layer[0].up(0)
|
||||
team_diff_layer[team_diff_len - 1].up(1)
|
||||
# up the remainder of the black arrows
|
||||
for f in team_perf_layer:
|
||||
for x in range(len(f.vars) - 1):
|
||||
f.up(x)
|
||||
for f in perf_layer:
|
||||
f.up()
|
||||
return layers
|
||||
|
||||
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||
weights = self.validate_weights(weights, rating_groups, keys)
|
||||
group_size = len(rating_groups)
|
||||
if ranks is None:
|
||||
ranks = range(group_size)
|
||||
elif len(ranks) != group_size:
|
||||
raise ValueError('Wrong ranks')
|
||||
# sort rating groups by rank
|
||||
by_rank = lambda x: x[1][1]
|
||||
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
|
||||
key=by_rank)
|
||||
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
|
||||
for x, (g, r, w) in sorting:
|
||||
sorted_rating_groups.append(g)
|
||||
sorted_ranks.append(r)
|
||||
# make weights to be greater than 0
|
||||
sorted_weights.append(max(min_delta, w_) for w_ in w)
|
||||
# build factor graph
|
||||
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
|
||||
builders = self.factor_graph_builders(*args)
|
||||
args = builders + (min_delta,)
|
||||
layers = self.run_schedule(*args)
|
||||
# make result
|
||||
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
|
||||
transformed_groups = []
|
||||
for start, end in zip([0] + team_sizes[:-1], team_sizes):
|
||||
group = []
|
||||
for f in rating_layer[start:end]:
|
||||
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
|
||||
transformed_groups.append(tuple(group))
|
||||
by_hint = lambda x: x[0]
|
||||
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
|
||||
key=by_hint)
|
||||
if keys is None:
|
||||
return [g for x, g in unsorting]
|
||||
# restore the structure with input dictionary keys
|
||||
return [dict(zip(keys[x], g)) for x, g in unsorting]
|
||||
|
||||
def quality(self, rating_groups, weights=None):
|
||||
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||
weights = self.validate_weights(weights, rating_groups, keys)
|
||||
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||
flatten_weights = sum(map(tuple, weights), ())
|
||||
length = len(flatten_ratings)
|
||||
# a vector of all of the skill means
|
||||
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
|
||||
# a matrix whose diagonal values are the variances (sigma ** 2) of each
|
||||
# of the players.
|
||||
def variance_matrix(height, width):
|
||||
variances = (r.sigma ** 2 for r in flatten_ratings)
|
||||
for x, variance in enumerate(variances):
|
||||
yield (x, x), variance
|
||||
variance_matrix = Matrix(variance_matrix, length, length)
|
||||
# the player-team assignment and comparison matrix
|
||||
def rotated_a_matrix(set_height, set_width):
|
||||
t = 0
|
||||
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
|
||||
rating_groups[1:])):
|
||||
for x in range(t, t + len(cur)):
|
||||
yield (r, x), flatten_weights[x]
|
||||
t += 1
|
||||
x += 1
|
||||
for x in range(x, x + len(_next)):
|
||||
yield (r, x), -flatten_weights[x]
|
||||
set_height(r + 1)
|
||||
set_width(x + 1)
|
||||
rotated_a_matrix = Matrix(rotated_a_matrix)
|
||||
a_matrix = rotated_a_matrix.transpose()
|
||||
# match quality further derivation
|
||||
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
|
||||
_atsa = rotated_a_matrix * variance_matrix * a_matrix
|
||||
start = mean_matrix.transpose() * a_matrix
|
||||
middle = _ata + _atsa
|
||||
end = rotated_a_matrix * mean_matrix
|
||||
# make result
|
||||
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
|
||||
s_arg = _ata.determinant() / middle.determinant()
|
||||
return math.exp(e_arg) * math.sqrt(s_arg)
|
||||
|
||||
def expose(self, rating):
|
||||
k = self.mu / self.sigma
|
||||
return rating.mu - k * rating.sigma
|
||||
|
||||
def make_as_global(self):
|
||||
return setup(env=self)
|
||||
|
||||
def __repr__(self):
|
||||
c = type(self)
|
||||
if callable(self.draw_probability):
|
||||
f = self.draw_probability
|
||||
draw_probability = '.'.join([f.__module__, f.__name__])
|
||||
else:
|
||||
draw_probability = '%.1f%%' % (self.draw_probability * 100)
|
||||
if self.backend is None:
|
||||
backend = ''
|
||||
elif isinstance(self.backend, tuple):
|
||||
backend = ', backend=...'
|
||||
else:
|
||||
backend = ', backend=%r' % self.backend
|
||||
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
|
||||
self.beta, self.tau, draw_probability, backend)
|
||||
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
|
||||
'draw_probability=%s%s)' % args)
|
||||
|
||||
|
||||
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
ranks = [0, 0 if drawn else 1]
|
||||
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
|
||||
return teams[0][0], teams[1][0]
|
||||
|
||||
|
||||
def quality_1vs1(rating1, rating2, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return env.quality([(rating1,), (rating2,)])
|
||||
|
||||
|
||||
def global_env():
|
||||
try:
|
||||
global_env.__trueskill__
|
||||
except AttributeError:
|
||||
# setup the default environment
|
||||
setup()
|
||||
return global_env.__trueskill__
|
||||
|
||||
|
||||
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
|
||||
if env is None:
|
||||
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
|
||||
global_env.__trueskill__ = env
|
||||
return env
|
||||
|
||||
|
||||
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||
return global_env().rate(rating_groups, ranks, weights, min_delta)
|
||||
|
||||
|
||||
def quality(rating_groups, weights=None):
|
||||
return global_env().quality(rating_groups, weights)
|
||||
|
||||
|
||||
def expose(rating):
|
||||
return global_env().expose(rating)
|
34
analysis-master/analysis/visualization.py
Normal file
34
analysis-master/analysis/visualization.py
Normal file
@@ -0,0 +1,34 @@
|
||||
# Titan Robotics Team 2022: Visualization Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import visualization'
|
||||
# this should be included in the local directory or environment variable
|
||||
# fancy
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.000"
|
||||
|
||||
#changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.0.0.000:
|
||||
- created visualization.py
|
||||
- added graphloss()
|
||||
- added imports
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>,"
|
||||
"Jacob Levine <jlevine@ttic.edu>,"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'graphloss',
|
||||
]
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def graphloss(losses):
|
||||
|
||||
x = range(0, len(losses))
|
||||
plt.plot(x, losses)
|
||||
plt.show()
|
1
analysis-master/build.sh
Normal file
1
analysis-master/build.sh
Normal file
@@ -0,0 +1 @@
|
||||
python3 setup.py sdist bdist_wheel
|
0
analysis-master/build/lib/analysis/__init__.py
Normal file
0
analysis-master/build/lib/analysis/__init__.py
Normal file
790
analysis-master/build/lib/analysis/analysis.py
Normal file
790
analysis-master/build/lib/analysis/analysis.py
Normal file
@@ -0,0 +1,790 @@
|
||||
# Titan Robotics Team 2022: Data Analysis Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been optimized for multhreaded computing
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.006"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.006:
|
||||
- cleaned up imports
|
||||
1.1.13.005:
|
||||
- cleaned up package
|
||||
1.1.13.004:
|
||||
- small fixes to regression to improve performance
|
||||
1.1.13.003:
|
||||
- filtered nans from regression
|
||||
1.1.13.002:
|
||||
- removed torch requirement, and moved Regression back to regression.py
|
||||
1.1.13.001:
|
||||
- bug fix with linear regression not returning a proper value
|
||||
- cleaned up regression
|
||||
- fixed bug with polynomial regressions
|
||||
1.1.13.000:
|
||||
- fixed all regressions to now properly work
|
||||
1.1.12.006:
|
||||
- fixed bg with a division by zero in histo_analysis
|
||||
1.1.12.005:
|
||||
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
||||
1.1.12.004:
|
||||
- renamed gliko to glicko
|
||||
1.1.12.003:
|
||||
- removed depreciated code
|
||||
1.1.12.002:
|
||||
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
||||
1.1.12.001:
|
||||
- improved readibility of regression outputs by stripping tensor data
|
||||
- used map with lambda to acheive the improved readibility
|
||||
- lost numba jit support with regression, and generated_jit hangs at execution
|
||||
- TODO: reimplement correct numba integration in regression
|
||||
1.1.12.000:
|
||||
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
||||
1.1.11.010:
|
||||
- alphabeticaly ordered import lists
|
||||
1.1.11.009:
|
||||
- bug fixes
|
||||
1.1.11.008:
|
||||
- bug fixes
|
||||
1.1.11.007:
|
||||
- bug fixes
|
||||
1.1.11.006:
|
||||
- tested min and max
|
||||
- bug fixes
|
||||
1.1.11.005:
|
||||
- added min and max in basic_stats
|
||||
1.1.11.004:
|
||||
- bug fixes
|
||||
1.1.11.003:
|
||||
- bug fixes
|
||||
1.1.11.002:
|
||||
- consolidated metrics
|
||||
- fixed __all__
|
||||
1.1.11.001:
|
||||
- added test/train split to RandomForestClassifier and RandomForestRegressor
|
||||
1.1.11.000:
|
||||
- added RandomForestClassifier and RandomForestRegressor
|
||||
- note: untested
|
||||
1.1.10.000:
|
||||
- added numba.jit to remaining functions
|
||||
1.1.9.002:
|
||||
- kernelized PCA and KNN
|
||||
1.1.9.001:
|
||||
- fixed bugs with SVM and NaiveBayes
|
||||
1.1.9.000:
|
||||
- added SVM class, subclasses, and functions
|
||||
- note: untested
|
||||
1.1.8.000:
|
||||
- added NaiveBayes classification engine
|
||||
- note: untested
|
||||
1.1.7.000:
|
||||
- added knn()
|
||||
- added confusion matrix to decisiontree()
|
||||
1.1.6.002:
|
||||
- changed layout of __changelog to be vscode friendly
|
||||
1.1.6.001:
|
||||
- added additional hyperparameters to decisiontree()
|
||||
1.1.6.000:
|
||||
- fixed __version__
|
||||
- fixed __all__ order
|
||||
- added decisiontree()
|
||||
1.1.5.003:
|
||||
- added pca
|
||||
1.1.5.002:
|
||||
- reduced import list
|
||||
- added kmeans clustering engine
|
||||
1.1.5.001:
|
||||
- simplified regression by using .to(device)
|
||||
1.1.5.000:
|
||||
- added polynomial regression to regression(); untested
|
||||
1.1.4.000:
|
||||
- added trueskill()
|
||||
1.1.3.002:
|
||||
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
|
||||
1.1.3.001:
|
||||
- changed glicko2() to return tuple instead of array
|
||||
1.1.3.000:
|
||||
- added glicko2_engine class and glicko()
|
||||
- verified glicko2() accuracy
|
||||
1.1.2.003:
|
||||
- fixed elo()
|
||||
1.1.2.002:
|
||||
- added elo()
|
||||
- elo() has bugs to be fixed
|
||||
1.1.2.001:
|
||||
- readded regrression import
|
||||
1.1.2.000:
|
||||
- integrated regression.py as regression class
|
||||
- removed regression import
|
||||
- fixed metadata for regression class
|
||||
- fixed metadata for analysis class
|
||||
1.1.1.001:
|
||||
- regression_engine() bug fixes, now actaully regresses
|
||||
1.1.1.000:
|
||||
- added regression_engine()
|
||||
- added all regressions except polynomial
|
||||
1.1.0.007:
|
||||
- updated _init_device()
|
||||
1.1.0.006:
|
||||
- removed useless try statements
|
||||
1.1.0.005:
|
||||
- removed impossible outcomes
|
||||
1.1.0.004:
|
||||
- added performance metrics (r^2, mse, rms)
|
||||
1.1.0.003:
|
||||
- resolved nopython mode for mean, median, stdev, variance
|
||||
1.1.0.002:
|
||||
- snapped (removed) majority of uneeded imports
|
||||
- forced object mode (bad) on all jit
|
||||
- TODO: stop numba complaining about not being able to compile in nopython mode
|
||||
1.1.0.001:
|
||||
- removed from sklearn import * to resolve uneeded wildcard imports
|
||||
1.1.0.000:
|
||||
- removed c_entities,nc_entities,obstacles,objectives from __all__
|
||||
- applied numba.jit to all functions
|
||||
- depreciated and removed stdev_z_split
|
||||
- cleaned up histo_analysis to include numpy and numba.jit optimizations
|
||||
- depreciated and removed all regression functions in favor of future pytorch optimizer
|
||||
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
|
||||
- optimized z_normalize using sklearn.preprocessing.normalize
|
||||
- TODO: implement kernel/function based pytorch regression optimizer
|
||||
1.0.9.000:
|
||||
- refactored
|
||||
- numpyed everything
|
||||
- removed stats in favor of numpy functions
|
||||
1.0.8.005:
|
||||
- minor fixes
|
||||
1.0.8.004:
|
||||
- removed a few unused dependencies
|
||||
1.0.8.003:
|
||||
- added p_value function
|
||||
1.0.8.002:
|
||||
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
|
||||
1.0.8.001:
|
||||
- refactors
|
||||
- bugfixes
|
||||
1.0.8.000:
|
||||
- depreciated histo_analysis_old
|
||||
- depreciated debug
|
||||
- altered basic_analysis to take array data instead of filepath
|
||||
- refactor
|
||||
- optimization
|
||||
1.0.7.002:
|
||||
- bug fixes
|
||||
1.0.7.001:
|
||||
- bug fixes
|
||||
1.0.7.000:
|
||||
- added tanh_regression (logistical regression)
|
||||
- bug fixes
|
||||
1.0.6.005:
|
||||
- added z_normalize function to normalize dataset
|
||||
- bug fixes
|
||||
1.0.6.004:
|
||||
- bug fixes
|
||||
1.0.6.003:
|
||||
- bug fixes
|
||||
1.0.6.002:
|
||||
- bug fixes
|
||||
1.0.6.001:
|
||||
- corrected __all__ to contain all of the functions
|
||||
1.0.6.000:
|
||||
- added calc_overfit, which calculates two measures of overfit, error and performance
|
||||
- added calculating overfit to optimize_regression
|
||||
1.0.5.000:
|
||||
- added optimize_regression function, which is a sample function to find the optimal regressions
|
||||
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
||||
- planned addition: overfit detection in the optimize_regression function
|
||||
1.0.4.002:
|
||||
- added __changelog__
|
||||
- updated debug function with log and exponential regressions
|
||||
1.0.4.001:
|
||||
- added log regressions
|
||||
- added exponential regressions
|
||||
- added log_regression and exp_regression to __all__
|
||||
1.0.3.008:
|
||||
- added debug function to further consolidate functions
|
||||
1.0.3.007:
|
||||
- added builtin benchmark function
|
||||
- added builtin random (linear) data generation function
|
||||
- added device initialization (_init_device)
|
||||
1.0.3.006:
|
||||
- reorganized the imports list to be in alphabetical order
|
||||
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
||||
1.0.3.005:
|
||||
- major bug fixes
|
||||
- updated historical analysis
|
||||
- depreciated old historical analysis
|
||||
1.0.3.004:
|
||||
- added __version__, __author__, __all__
|
||||
- added polynomial regression
|
||||
- added root mean squared function
|
||||
- added r squared function
|
||||
1.0.3.003:
|
||||
- bug fixes
|
||||
- added c_entities
|
||||
1.0.3.002:
|
||||
- bug fixes
|
||||
- added nc_entities, obstacles, objectives
|
||||
- consolidated statistics.py to analysis.py
|
||||
1.0.3.001:
|
||||
- compiled 1d, column, and row basic stats into basic stats function
|
||||
1.0.3.000:
|
||||
- added historical analysis function
|
||||
1.0.2.xxx:
|
||||
- added z score test
|
||||
1.0.1.xxx:
|
||||
- major bug fixes
|
||||
1.0.0.xxx:
|
||||
- added loading csv
|
||||
- added 1d, column, row basic stats
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'load_csv',
|
||||
'basic_stats',
|
||||
'z_score',
|
||||
'z_normalize',
|
||||
'histo_analysis',
|
||||
'regression',
|
||||
'elo',
|
||||
'glicko2',
|
||||
'trueskill',
|
||||
'RegressionMetrics',
|
||||
'ClassificationMetrics',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
'knn_classifier',
|
||||
'knn_regressor',
|
||||
'NaiveBayes',
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'Glicko2',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
# now back to your regularly scheduled programming:
|
||||
|
||||
# imports (now in alphabetical order! v 1.0.3.006):
|
||||
|
||||
import csv
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import *
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
from analysis import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
csvfile.close()
|
||||
return file_array
|
||||
|
||||
# expects 1d array
|
||||
@jit(forceobj=True)
|
||||
def basic_stats(data):
|
||||
|
||||
data_t = np.array(data).astype(float)
|
||||
|
||||
_mean = mean(data_t)
|
||||
_median = median(data_t)
|
||||
_stdev = stdev(data_t)
|
||||
_variance = variance(data_t)
|
||||
_min = npmin(data_t)
|
||||
_max = npmax(data_t)
|
||||
|
||||
return _mean, _median, _stdev, _variance, _min, _max
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
@jit(forceobj=True)
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean) / stdev
|
||||
|
||||
return score
|
||||
|
||||
# expects 2d array, normalizes across all axes
|
||||
@jit(forceobj=True)
|
||||
def z_normalize(array, *args):
|
||||
|
||||
array = np.array(array)
|
||||
for arg in args:
|
||||
array = sklearn.preprocessing.normalize(array, axis = arg)
|
||||
|
||||
return array
|
||||
|
||||
@jit(forceobj=True)
|
||||
# expects 2d array of [x,y]
|
||||
def histo_analysis(hist_data):
|
||||
|
||||
if(len(hist_data[0]) > 2):
|
||||
|
||||
hist_data = np.array(hist_data)
|
||||
derivative = np.array(len(hist_data) - 1, dtype = float)
|
||||
t = np.diff(hist_data)
|
||||
derivative = t[1] / t[0]
|
||||
np.sort(derivative)
|
||||
|
||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||
|
||||
else:
|
||||
|
||||
return None
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
regressions = []
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b):
|
||||
|
||||
return a * x + b
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.log(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.exp(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
inputs = np.array([inputs])
|
||||
outputs = np.array([outputs])
|
||||
|
||||
plys = []
|
||||
limit = len(outputs[0])
|
||||
|
||||
for i in range(2, limit):
|
||||
|
||||
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
|
||||
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
|
||||
model = model.fit(np.rot90(inputs), np.rot90(outputs))
|
||||
|
||||
params = model.steps[1][1].intercept_.tolist()
|
||||
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
|
||||
params.flatten()
|
||||
params = params.tolist()
|
||||
|
||||
plys.append(params)
|
||||
|
||||
regressions.append(plys)
|
||||
|
||||
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.tanh(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
return regressions
|
||||
|
||||
def elo(starting_score, opposing_score, observed, N, K):
|
||||
|
||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||
|
||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||
|
||||
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||
|
||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||
|
||||
return (player.rating, player.rd, player.vol)
|
||||
|
||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
|
||||
team_ratings = []
|
||||
|
||||
for team in teams_data:
|
||||
team_temp = []
|
||||
for player in team:
|
||||
player = Trueskill.Rating(player[0], player[1])
|
||||
team_temp.append(player)
|
||||
team_ratings.append(team_temp)
|
||||
|
||||
return Trueskill.rate(teams_data, observations)
|
||||
|
||||
class RegressionMetrics():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
||||
|
||||
def r_squared(self, predictions, targets): # assumes equal size inputs
|
||||
|
||||
return sklearn.metrics.r2_score(targets, predictions)
|
||||
|
||||
def mse(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.mean_squared_error(targets, predictions)
|
||||
|
||||
def rms(self, predictions, targets):
|
||||
|
||||
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
||||
|
||||
class ClassificationMetrics():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
|
||||
|
||||
def cm(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.confusion_matrix(targets, predictions)
|
||||
|
||||
def cr(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.classification_report(targets, predictions)
|
||||
|
||||
@jit(nopython=True)
|
||||
def mean(data):
|
||||
|
||||
return np.mean(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def median(data):
|
||||
|
||||
return np.median(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def stdev(data):
|
||||
|
||||
return np.std(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def variance(data):
|
||||
|
||||
return np.var(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def npmin(data):
|
||||
|
||||
return np.amin(data)
|
||||
|
||||
@jit(nopython=True)
|
||||
def npmax(data):
|
||||
|
||||
return np.amax(data)
|
||||
|
||||
@jit(forceobj=True)
|
||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||
|
||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||
kernel.fit(data)
|
||||
predictions = kernel.predict(data)
|
||||
centers = kernel.cluster_centers_
|
||||
|
||||
return centers, predictions
|
||||
|
||||
@jit(forceobj=True)
|
||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||
|
||||
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||
|
||||
return kernel.fit_transform(data)
|
||||
|
||||
@jit(forceobj=True)
|
||||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||
model = model.fit(data_train,labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
metrics = ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
return model, metrics
|
||||
|
||||
@jit(forceobj=True)
|
||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsClassifier()
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
model.fit(data_train, outputs_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, RegressionMetrics(predictions, outputs_test)
|
||||
|
||||
class NaiveBayes:
|
||||
|
||||
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
class SVM:
|
||||
|
||||
class CustomKernel:
|
||||
|
||||
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
||||
|
||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||
|
||||
class StandardKernel:
|
||||
|
||||
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
||||
|
||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||
|
||||
class PrebuiltKernel:
|
||||
|
||||
class Linear:
|
||||
|
||||
def __new__(cls):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'linear')
|
||||
|
||||
class Polynomial:
|
||||
|
||||
def __new__(cls, power, r_bias):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
||||
|
||||
class RBF:
|
||||
|
||||
def __new__(cls, gamma):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
||||
|
||||
class Sigmoid:
|
||||
|
||||
def __new__(cls, r_bias):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
||||
|
||||
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
|
||||
|
||||
return kernel.fit(train_data, train_outputs)
|
||||
|
||||
def eval_classification(self, kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return ClassificationMetrics(predictions, test_outputs)
|
||||
|
||||
def eval_regression(self, kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return RegressionMetrics(predictions, test_outputs)
|
||||
|
||||
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||
kernel.fit(data_train, labels_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||
kernel.fit(data_train, outputs_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||
|
||||
class Glicko2:
|
||||
|
||||
_tau = 0.5
|
||||
|
||||
def getRating(self):
|
||||
return (self.__rating * 173.7178) + 1500
|
||||
|
||||
def setRating(self, rating):
|
||||
self.__rating = (rating - 1500) / 173.7178
|
||||
|
||||
rating = property(getRating, setRating)
|
||||
|
||||
def getRd(self):
|
||||
return self.__rd * 173.7178
|
||||
|
||||
def setRd(self, rd):
|
||||
self.__rd = rd / 173.7178
|
||||
|
||||
rd = property(getRd, setRd)
|
||||
|
||||
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
||||
|
||||
self.setRating(rating)
|
||||
self.setRd(rd)
|
||||
self.vol = vol
|
||||
|
||||
def _preRatingRD(self):
|
||||
|
||||
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
||||
|
||||
def update_player(self, rating_list, RD_list, outcome_list):
|
||||
|
||||
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
||||
RD_list = [x / 173.7178 for x in RD_list]
|
||||
|
||||
v = self._v(rating_list, RD_list)
|
||||
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
||||
self._preRatingRD()
|
||||
|
||||
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempSum += self._g(RD_list[i]) * \
|
||||
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||
self.__rating += math.pow(self.__rd, 2) * tempSum
|
||||
|
||||
|
||||
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
||||
|
||||
i = 0
|
||||
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
||||
a = math.log(math.pow(self.vol, 2))
|
||||
tau = self._tau
|
||||
x0 = a
|
||||
x1 = 0
|
||||
|
||||
while x0 != x1:
|
||||
# New iteration, so x(i) becomes x(i-1)
|
||||
x0 = x1
|
||||
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
||||
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
||||
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
||||
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
||||
(math.pow(self.__rating, 2) + v) \
|
||||
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
||||
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
||||
x1 = x0 - (h1 / h2)
|
||||
|
||||
return math.exp(x1 / 2)
|
||||
|
||||
def _delta(self, rating_list, RD_list, outcome_list, v):
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||
return v * tempSum
|
||||
|
||||
def _v(self, rating_list, RD_list):
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempE = self._E(rating_list[i], RD_list[i])
|
||||
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
||||
return 1 / tempSum
|
||||
|
||||
def _E(self, p2rating, p2RD):
|
||||
|
||||
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
||||
(self.__rating - p2rating)))
|
||||
|
||||
def _g(self, RD):
|
||||
|
||||
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
||||
|
||||
def did_not_compete(self):
|
||||
|
||||
self._preRatingRD()
|
220
analysis-master/build/lib/analysis/regression.py
Normal file
220
analysis-master/build/lib/analysis/regression.py
Normal file
@@ -0,0 +1,220 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.004:
|
||||
- bug fixes
|
||||
- fixed changelog
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'factorial',
|
||||
'take_all_pwrs',
|
||||
'num_poly_terms',
|
||||
'set_device',
|
||||
'LinearRegKernel',
|
||||
'SigmoidalRegKernel',
|
||||
'LogRegKernel',
|
||||
'PolyRegKernel',
|
||||
'ExpRegKernel',
|
||||
'SigmoidalRegKernelArthur',
|
||||
'SGDTrain',
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
import torch
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def set_device(self, new_device):
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,mtx)+long_bias
|
||||
|
||||
class SigmoidalRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||||
|
||||
class SigmoidalRegKernelArthur():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class LogRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class ExpRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class PolyRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=self.num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def num_poly_terms(self,num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||
def factorial(self,n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*self.factorial(n-1)
|
||||
def take_all_pwrs(self, vec, pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||
for i in torch.t(combins).to(device).to(torch.float):
|
||||
out *= i
|
||||
if pwr == 1:
|
||||
return out
|
||||
else:
|
||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(self.take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data)
|
||||
ls=loss(pred,ground)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
122
analysis-master/build/lib/analysis/titanlearn.py
Normal file
122
analysis-master/build/lib/analysis/titanlearn.py
Normal file
@@ -0,0 +1,122 @@
|
||||
# Titan Robotics Team 2022: ML Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import titanlearn'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is optimized for multhreaded computing
|
||||
# this module learns from its mistakes far faster than 2022's captains
|
||||
# setup:
|
||||
|
||||
__version__ = "2.0.1.001"
|
||||
|
||||
#changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
2.0.1.001:
|
||||
- removed matplotlib import
|
||||
- removed graphloss()
|
||||
2.0.1.000:
|
||||
- added net, dataset, dataloader, and stdtrain template definitions
|
||||
- added graphloss function
|
||||
2.0.0.001:
|
||||
- added clear functions
|
||||
2.0.0.000:
|
||||
- complete rewrite planned
|
||||
- depreciated 1.0.0.xxx versions
|
||||
- added simple training loop
|
||||
1.0.0.xxx:
|
||||
-added generation of ANNS, basic SGD training
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>,"
|
||||
"Jacob Levine <jlevine@ttic.edu>,"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'clear',
|
||||
'net',
|
||||
'dataset',
|
||||
'dataloader',
|
||||
'train',
|
||||
'stdtrainer',
|
||||
]
|
||||
|
||||
import torch
|
||||
from os import system, name
|
||||
import numpy as np
|
||||
|
||||
def clear():
|
||||
if name == 'nt':
|
||||
_ = system('cls')
|
||||
else:
|
||||
_ = system('clear')
|
||||
|
||||
class net(torch.nn.Module): #template for standard neural net
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def forward(self, input):
|
||||
pass
|
||||
|
||||
class dataset(torch.utils.data.Dataset): #template for standard dataset
|
||||
|
||||
def __init__(self):
|
||||
super(torch.utils.data.Dataset).__init__()
|
||||
|
||||
def __getitem__(self, index):
|
||||
pass
|
||||
|
||||
def __len__(self):
|
||||
pass
|
||||
|
||||
def dataloader(dataset, batch_size, num_workers, shuffle = True):
|
||||
|
||||
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
||||
|
||||
def train(device, net, epochs, trainloader, optimizer, criterion): #expects standard dataloader, whch returns (inputs, labels)
|
||||
|
||||
dataset_len = trainloader.dataset.__len__()
|
||||
iter_count = 0
|
||||
running_loss = 0
|
||||
running_loss_list = []
|
||||
|
||||
for epoch in range(epochs): # loop over the dataset multiple times
|
||||
|
||||
for i, data in enumerate(trainloader, 0):
|
||||
|
||||
inputs = data[0].to(device)
|
||||
labels = data[1].to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels.to(torch.float))
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# monitoring steps below
|
||||
|
||||
iter_count += 1
|
||||
running_loss += loss.item()
|
||||
running_loss_list.append(running_loss)
|
||||
clear()
|
||||
|
||||
print("training on: " + device)
|
||||
print("iteration: " + str(i) + "/" + str(int(dataset_len / trainloader.batch_size)) + " | " + "epoch: " + str(epoch) + "/" + str(epochs))
|
||||
print("current batch loss: " + str(loss.item))
|
||||
print("running loss: " + str(running_loss / iter_count))
|
||||
|
||||
return net, running_loss_list
|
||||
print("finished training")
|
||||
|
||||
def stdtrainer(net, criterion, optimizer, dataloader, epochs, batch_size):
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
net = net.to(device)
|
||||
criterion = criterion.to(device)
|
||||
optimizer = optimizer.to(device)
|
||||
trainloader = dataloader
|
||||
|
||||
return train(device, net, epochs, trainloader, optimizer, criterion)
|
907
analysis-master/build/lib/analysis/trueskill.py
Normal file
907
analysis-master/build/lib/analysis/trueskill.py
Normal file
@@ -0,0 +1,907 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
from itertools import chain
|
||||
import math
|
||||
|
||||
from six import iteritems
|
||||
from six.moves import map, range, zip
|
||||
from six import iterkeys
|
||||
|
||||
import copy
|
||||
try:
|
||||
from numbers import Number
|
||||
except ImportError:
|
||||
Number = (int, long, float, complex)
|
||||
|
||||
inf = float('inf')
|
||||
|
||||
class Gaussian(object):
|
||||
#: Precision, the inverse of the variance.
|
||||
pi = 0
|
||||
#: Precision adjusted mean, the precision multiplied by the mean.
|
||||
tau = 0
|
||||
|
||||
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
|
||||
if mu is not None:
|
||||
if sigma is None:
|
||||
raise TypeError('sigma argument is needed')
|
||||
elif sigma == 0:
|
||||
raise ValueError('sigma**2 should be greater than 0')
|
||||
pi = sigma ** -2
|
||||
tau = pi * mu
|
||||
self.pi = pi
|
||||
self.tau = tau
|
||||
|
||||
@property
|
||||
def mu(self):
|
||||
return self.pi and self.tau / self.pi
|
||||
|
||||
@property
|
||||
def sigma(self):
|
||||
return math.sqrt(1 / self.pi) if self.pi else inf
|
||||
|
||||
def __mul__(self, other):
|
||||
pi, tau = self.pi + other.pi, self.tau + other.tau
|
||||
return Gaussian(pi=pi, tau=tau)
|
||||
|
||||
def __truediv__(self, other):
|
||||
pi, tau = self.pi - other.pi, self.tau - other.tau
|
||||
return Gaussian(pi=pi, tau=tau)
|
||||
|
||||
__div__ = __truediv__ # for Python 2
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.pi == other.pi and self.tau == other.tau
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.mu < other.mu
|
||||
|
||||
def __le__(self, other):
|
||||
return self.mu <= other.mu
|
||||
|
||||
def __gt__(self, other):
|
||||
return self.mu > other.mu
|
||||
|
||||
def __ge__(self, other):
|
||||
return self.mu >= other.mu
|
||||
|
||||
def __repr__(self):
|
||||
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
|
||||
|
||||
def _repr_latex_(self):
|
||||
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
|
||||
return '$%s$' % latex
|
||||
|
||||
class Matrix(list):
|
||||
def __init__(self, src, height=None, width=None):
|
||||
if callable(src):
|
||||
f, src = src, {}
|
||||
size = [height, width]
|
||||
if not height:
|
||||
def set_height(height):
|
||||
size[0] = height
|
||||
size[0] = set_height
|
||||
if not width:
|
||||
def set_width(width):
|
||||
size[1] = width
|
||||
size[1] = set_width
|
||||
try:
|
||||
for (r, c), val in f(*size):
|
||||
src[r, c] = val
|
||||
except TypeError:
|
||||
raise TypeError('A callable src must return an interable '
|
||||
'which generates a tuple containing '
|
||||
'coordinate and value')
|
||||
height, width = tuple(size)
|
||||
if height is None or width is None:
|
||||
raise TypeError('A callable src must call set_height and '
|
||||
'set_width if the size is non-deterministic')
|
||||
if isinstance(src, list):
|
||||
is_number = lambda x: isinstance(x, Number)
|
||||
unique_col_sizes = set(map(len, src))
|
||||
everything_are_number = filter(is_number, sum(src, []))
|
||||
if len(unique_col_sizes) != 1 or not everything_are_number:
|
||||
raise ValueError('src must be a rectangular array of numbers')
|
||||
two_dimensional_array = src
|
||||
elif isinstance(src, dict):
|
||||
if not height or not width:
|
||||
w = h = 0
|
||||
for r, c in iterkeys(src):
|
||||
if not height:
|
||||
h = max(h, r + 1)
|
||||
if not width:
|
||||
w = max(w, c + 1)
|
||||
if not height:
|
||||
height = h
|
||||
if not width:
|
||||
width = w
|
||||
two_dimensional_array = []
|
||||
for r in range(height):
|
||||
row = []
|
||||
two_dimensional_array.append(row)
|
||||
for c in range(width):
|
||||
row.append(src.get((r, c), 0))
|
||||
else:
|
||||
raise TypeError('src must be a list or dict or callable')
|
||||
super(Matrix, self).__init__(two_dimensional_array)
|
||||
|
||||
@property
|
||||
def height(self):
|
||||
return len(self)
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return len(self[0])
|
||||
|
||||
def transpose(self):
|
||||
height, width = self.height, self.width
|
||||
src = {}
|
||||
for c in range(width):
|
||||
for r in range(height):
|
||||
src[c, r] = self[r][c]
|
||||
return type(self)(src, height=width, width=height)
|
||||
|
||||
def minor(self, row_n, col_n):
|
||||
height, width = self.height, self.width
|
||||
if not (0 <= row_n < height):
|
||||
raise ValueError('row_n should be between 0 and %d' % height)
|
||||
elif not (0 <= col_n < width):
|
||||
raise ValueError('col_n should be between 0 and %d' % width)
|
||||
two_dimensional_array = []
|
||||
for r in range(height):
|
||||
if r == row_n:
|
||||
continue
|
||||
row = []
|
||||
two_dimensional_array.append(row)
|
||||
for c in range(width):
|
||||
if c == col_n:
|
||||
continue
|
||||
row.append(self[r][c])
|
||||
return type(self)(two_dimensional_array)
|
||||
|
||||
def determinant(self):
|
||||
height, width = self.height, self.width
|
||||
if height != width:
|
||||
raise ValueError('Only square matrix can calculate a determinant')
|
||||
tmp, rv = copy.deepcopy(self), 1.
|
||||
for c in range(width - 1, 0, -1):
|
||||
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
|
||||
pivot = tmp[r][c]
|
||||
if not pivot:
|
||||
return 0.
|
||||
tmp[r], tmp[c] = tmp[c], tmp[r]
|
||||
if r != c:
|
||||
rv = -rv
|
||||
rv *= pivot
|
||||
fact = -1. / pivot
|
||||
for r in range(c):
|
||||
f = fact * tmp[r][c]
|
||||
for x in range(c):
|
||||
tmp[r][x] += f * tmp[c][x]
|
||||
return rv * tmp[0][0]
|
||||
|
||||
def adjugate(self):
|
||||
height, width = self.height, self.width
|
||||
if height != width:
|
||||
raise ValueError('Only square matrix can be adjugated')
|
||||
if height == 2:
|
||||
a, b = self[0][0], self[0][1]
|
||||
c, d = self[1][0], self[1][1]
|
||||
return type(self)([[d, -b], [-c, a]])
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
sign = -1 if (r + c) % 2 else 1
|
||||
src[r, c] = self.minor(r, c).determinant() * sign
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def inverse(self):
|
||||
if self.height == self.width == 1:
|
||||
return type(self)([[1. / self[0][0]]])
|
||||
return (1. / self.determinant()) * self.adjugate()
|
||||
|
||||
def __add__(self, other):
|
||||
height, width = self.height, self.width
|
||||
if (height, width) != (other.height, other.width):
|
||||
raise ValueError('Must be same size')
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = self[r][c] + other[r][c]
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __mul__(self, other):
|
||||
if self.width != other.height:
|
||||
raise ValueError('Bad size')
|
||||
height, width = self.height, other.width
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = sum(self[r][x] * other[x][c]
|
||||
for x in range(self.width))
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __rmul__(self, other):
|
||||
if not isinstance(other, Number):
|
||||
raise TypeError('The operand should be a number')
|
||||
height, width = self.height, self.width
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = other * self[r][c]
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __repr__(self):
|
||||
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
|
||||
|
||||
def _repr_latex_(self):
|
||||
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
|
||||
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
|
||||
return '$%s$' % latex
|
||||
|
||||
def _gen_erfcinv(erfc, math=math):
|
||||
def erfcinv(y):
|
||||
"""The inverse function of erfc."""
|
||||
if y >= 2:
|
||||
return -100.
|
||||
elif y <= 0:
|
||||
return 100.
|
||||
zero_point = y < 1
|
||||
if not zero_point:
|
||||
y = 2 - y
|
||||
t = math.sqrt(-2 * math.log(y / 2.))
|
||||
x = -0.70711 * \
|
||||
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
|
||||
for i in range(2):
|
||||
err = erfc(x) - y
|
||||
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
|
||||
return x if zero_point else -x
|
||||
return erfcinv
|
||||
|
||||
def _gen_ppf(erfc, math=math):
|
||||
erfcinv = _gen_erfcinv(erfc, math)
|
||||
def ppf(x, mu=0, sigma=1):
|
||||
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
|
||||
return ppf
|
||||
|
||||
def erfc(x):
|
||||
z = abs(x)
|
||||
t = 1. / (1. + z / 2.)
|
||||
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
|
||||
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
|
||||
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
|
||||
-0.82215223 + t * 0.17087277
|
||||
)))
|
||||
)))
|
||||
)))
|
||||
return 2. - r if x < 0 else r
|
||||
|
||||
def cdf(x, mu=0, sigma=1):
|
||||
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
|
||||
|
||||
|
||||
def pdf(x, mu=0, sigma=1):
|
||||
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
|
||||
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
|
||||
|
||||
ppf = _gen_ppf(erfc)
|
||||
|
||||
def choose_backend(backend):
|
||||
if backend is None: # fallback
|
||||
return cdf, pdf, ppf
|
||||
elif backend == 'mpmath':
|
||||
try:
|
||||
import mpmath
|
||||
except ImportError:
|
||||
raise ImportError('Install "mpmath" to use this backend')
|
||||
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
|
||||
elif backend == 'scipy':
|
||||
try:
|
||||
from scipy.stats import norm
|
||||
except ImportError:
|
||||
raise ImportError('Install "scipy" to use this backend')
|
||||
return norm.cdf, norm.pdf, norm.ppf
|
||||
raise ValueError('%r backend is not defined' % backend)
|
||||
|
||||
def available_backends():
|
||||
backends = [None]
|
||||
for backend in ['mpmath', 'scipy']:
|
||||
try:
|
||||
__import__(backend)
|
||||
except ImportError:
|
||||
continue
|
||||
backends.append(backend)
|
||||
return backends
|
||||
|
||||
class Node(object):
|
||||
|
||||
pass
|
||||
|
||||
class Variable(Node, Gaussian):
|
||||
|
||||
def __init__(self):
|
||||
self.messages = {}
|
||||
super(Variable, self).__init__()
|
||||
|
||||
def set(self, val):
|
||||
delta = self.delta(val)
|
||||
self.pi, self.tau = val.pi, val.tau
|
||||
return delta
|
||||
|
||||
def delta(self, other):
|
||||
pi_delta = abs(self.pi - other.pi)
|
||||
if pi_delta == inf:
|
||||
return 0.
|
||||
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
|
||||
|
||||
def update_message(self, factor, pi=0, tau=0, message=None):
|
||||
message = message or Gaussian(pi=pi, tau=tau)
|
||||
old_message, self[factor] = self[factor], message
|
||||
return self.set(self / old_message * message)
|
||||
|
||||
def update_value(self, factor, pi=0, tau=0, value=None):
|
||||
value = value or Gaussian(pi=pi, tau=tau)
|
||||
old_message = self[factor]
|
||||
self[factor] = value * old_message / self
|
||||
return self.set(value)
|
||||
|
||||
def __getitem__(self, factor):
|
||||
return self.messages[factor]
|
||||
|
||||
def __setitem__(self, factor, message):
|
||||
self.messages[factor] = message
|
||||
|
||||
def __repr__(self):
|
||||
args = (type(self).__name__, super(Variable, self).__repr__(),
|
||||
len(self.messages), '' if len(self.messages) == 1 else 's')
|
||||
return '<%s %s with %d connection%s>' % args
|
||||
|
||||
|
||||
class Factor(Node):
|
||||
|
||||
def __init__(self, variables):
|
||||
self.vars = variables
|
||||
for var in variables:
|
||||
var[self] = Gaussian()
|
||||
|
||||
def down(self):
|
||||
return 0
|
||||
|
||||
def up(self):
|
||||
return 0
|
||||
|
||||
@property
|
||||
def var(self):
|
||||
assert len(self.vars) == 1
|
||||
return self.vars[0]
|
||||
|
||||
def __repr__(self):
|
||||
args = (type(self).__name__, len(self.vars),
|
||||
'' if len(self.vars) == 1 else 's')
|
||||
return '<%s with %d connection%s>' % args
|
||||
|
||||
|
||||
class PriorFactor(Factor):
|
||||
|
||||
def __init__(self, var, val, dynamic=0):
|
||||
super(PriorFactor, self).__init__([var])
|
||||
self.val = val
|
||||
self.dynamic = dynamic
|
||||
|
||||
def down(self):
|
||||
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
|
||||
value = Gaussian(self.val.mu, sigma)
|
||||
return self.var.update_value(self, value=value)
|
||||
|
||||
|
||||
class LikelihoodFactor(Factor):
|
||||
|
||||
def __init__(self, mean_var, value_var, variance):
|
||||
super(LikelihoodFactor, self).__init__([mean_var, value_var])
|
||||
self.mean = mean_var
|
||||
self.value = value_var
|
||||
self.variance = variance
|
||||
|
||||
def calc_a(self, var):
|
||||
return 1. / (1. + self.variance * var.pi)
|
||||
|
||||
def down(self):
|
||||
# update value.
|
||||
msg = self.mean / self.mean[self]
|
||||
a = self.calc_a(msg)
|
||||
return self.value.update_message(self, a * msg.pi, a * msg.tau)
|
||||
|
||||
def up(self):
|
||||
# update mean.
|
||||
msg = self.value / self.value[self]
|
||||
a = self.calc_a(msg)
|
||||
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
|
||||
|
||||
|
||||
class SumFactor(Factor):
|
||||
|
||||
def __init__(self, sum_var, term_vars, coeffs):
|
||||
super(SumFactor, self).__init__([sum_var] + term_vars)
|
||||
self.sum = sum_var
|
||||
self.terms = term_vars
|
||||
self.coeffs = coeffs
|
||||
|
||||
def down(self):
|
||||
vals = self.terms
|
||||
msgs = [var[self] for var in vals]
|
||||
return self.update(self.sum, vals, msgs, self.coeffs)
|
||||
|
||||
def up(self, index=0):
|
||||
coeff = self.coeffs[index]
|
||||
coeffs = []
|
||||
for x, c in enumerate(self.coeffs):
|
||||
try:
|
||||
if x == index:
|
||||
coeffs.append(1. / coeff)
|
||||
else:
|
||||
coeffs.append(-c / coeff)
|
||||
except ZeroDivisionError:
|
||||
coeffs.append(0.)
|
||||
vals = self.terms[:]
|
||||
vals[index] = self.sum
|
||||
msgs = [var[self] for var in vals]
|
||||
return self.update(self.terms[index], vals, msgs, coeffs)
|
||||
|
||||
def update(self, var, vals, msgs, coeffs):
|
||||
pi_inv = 0
|
||||
mu = 0
|
||||
for val, msg, coeff in zip(vals, msgs, coeffs):
|
||||
div = val / msg
|
||||
mu += coeff * div.mu
|
||||
if pi_inv == inf:
|
||||
continue
|
||||
try:
|
||||
# numpy.float64 handles floating-point error by different way.
|
||||
# For example, it can just warn RuntimeWarning on n/0 problem
|
||||
# instead of throwing ZeroDivisionError. So div.pi, the
|
||||
# denominator has to be a built-in float.
|
||||
pi_inv += coeff ** 2 / float(div.pi)
|
||||
except ZeroDivisionError:
|
||||
pi_inv = inf
|
||||
pi = 1. / pi_inv
|
||||
tau = pi * mu
|
||||
return var.update_message(self, pi, tau)
|
||||
|
||||
|
||||
class TruncateFactor(Factor):
|
||||
|
||||
def __init__(self, var, v_func, w_func, draw_margin):
|
||||
super(TruncateFactor, self).__init__([var])
|
||||
self.v_func = v_func
|
||||
self.w_func = w_func
|
||||
self.draw_margin = draw_margin
|
||||
|
||||
def up(self):
|
||||
val = self.var
|
||||
msg = self.var[self]
|
||||
div = val / msg
|
||||
sqrt_pi = math.sqrt(div.pi)
|
||||
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
|
||||
v = self.v_func(*args)
|
||||
w = self.w_func(*args)
|
||||
denom = (1. - w)
|
||||
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
|
||||
return val.update_value(self, pi, tau)
|
||||
|
||||
#: Default initial mean of ratings.
|
||||
MU = 25.
|
||||
#: Default initial standard deviation of ratings.
|
||||
SIGMA = MU / 3
|
||||
#: Default distance that guarantees about 76% chance of winning.
|
||||
BETA = SIGMA / 2
|
||||
#: Default dynamic factor.
|
||||
TAU = SIGMA / 100
|
||||
#: Default draw probability of the game.
|
||||
DRAW_PROBABILITY = .10
|
||||
#: A basis to check reliability of the result.
|
||||
DELTA = 0.0001
|
||||
|
||||
|
||||
def calc_draw_probability(draw_margin, size, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
|
||||
|
||||
|
||||
def calc_draw_margin(draw_probability, size, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
|
||||
|
||||
|
||||
def _team_sizes(rating_groups):
|
||||
team_sizes = [0]
|
||||
for group in rating_groups:
|
||||
team_sizes.append(len(group) + team_sizes[-1])
|
||||
del team_sizes[0]
|
||||
return team_sizes
|
||||
|
||||
|
||||
def _floating_point_error(env):
|
||||
if env.backend == 'mpmath':
|
||||
msg = 'Set "mpmath.mp.dps" to higher'
|
||||
else:
|
||||
msg = 'Cannot calculate correctly, set backend to "mpmath"'
|
||||
return FloatingPointError(msg)
|
||||
|
||||
|
||||
class Rating(Gaussian):
|
||||
def __init__(self, mu=None, sigma=None):
|
||||
if isinstance(mu, tuple):
|
||||
mu, sigma = mu
|
||||
elif isinstance(mu, Gaussian):
|
||||
mu, sigma = mu.mu, mu.sigma
|
||||
if mu is None:
|
||||
mu = global_env().mu
|
||||
if sigma is None:
|
||||
sigma = global_env().sigma
|
||||
super(Rating, self).__init__(mu, sigma)
|
||||
|
||||
def __int__(self):
|
||||
return int(self.mu)
|
||||
|
||||
def __long__(self):
|
||||
return long(self.mu)
|
||||
|
||||
def __float__(self):
|
||||
return float(self.mu)
|
||||
|
||||
def __iter__(self):
|
||||
return iter((self.mu, self.sigma))
|
||||
|
||||
def __repr__(self):
|
||||
c = type(self)
|
||||
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
|
||||
return '%s(mu=%.3f, sigma=%.3f)' % args
|
||||
|
||||
|
||||
class TrueSkill(object):
|
||||
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||
draw_probability=DRAW_PROBABILITY, backend=None):
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
self.beta = beta
|
||||
self.tau = tau
|
||||
self.draw_probability = draw_probability
|
||||
self.backend = backend
|
||||
if isinstance(backend, tuple):
|
||||
self.cdf, self.pdf, self.ppf = backend
|
||||
else:
|
||||
self.cdf, self.pdf, self.ppf = choose_backend(backend)
|
||||
|
||||
def create_rating(self, mu=None, sigma=None):
|
||||
if mu is None:
|
||||
mu = self.mu
|
||||
if sigma is None:
|
||||
sigma = self.sigma
|
||||
return Rating(mu, sigma)
|
||||
|
||||
def v_win(self, diff, draw_margin):
|
||||
x = diff - draw_margin
|
||||
denom = self.cdf(x)
|
||||
return (self.pdf(x) / denom) if denom else -x
|
||||
|
||||
def v_draw(self, diff, draw_margin):
|
||||
abs_diff = abs(diff)
|
||||
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||
denom = self.cdf(a) - self.cdf(b)
|
||||
numer = self.pdf(b) - self.pdf(a)
|
||||
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
|
||||
|
||||
def w_win(self, diff, draw_margin):
|
||||
x = diff - draw_margin
|
||||
v = self.v_win(diff, draw_margin)
|
||||
w = v * (v + x)
|
||||
if 0 < w < 1:
|
||||
return w
|
||||
raise _floating_point_error(self)
|
||||
|
||||
def w_draw(self, diff, draw_margin):
|
||||
abs_diff = abs(diff)
|
||||
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||
denom = self.cdf(a) - self.cdf(b)
|
||||
if not denom:
|
||||
raise _floating_point_error(self)
|
||||
v = self.v_draw(abs_diff, draw_margin)
|
||||
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
|
||||
|
||||
def validate_rating_groups(self, rating_groups):
|
||||
# check group sizes
|
||||
if len(rating_groups) < 2:
|
||||
raise ValueError('Need multiple rating groups')
|
||||
elif not all(rating_groups):
|
||||
raise ValueError('Each group must contain multiple ratings')
|
||||
# check group types
|
||||
group_types = set(map(type, rating_groups))
|
||||
if len(group_types) != 1:
|
||||
raise TypeError('All groups should be same type')
|
||||
elif group_types.pop() is Rating:
|
||||
raise TypeError('Rating cannot be a rating group')
|
||||
# normalize rating_groups
|
||||
if isinstance(rating_groups[0], dict):
|
||||
dict_rating_groups = rating_groups
|
||||
rating_groups = []
|
||||
keys = []
|
||||
for dict_rating_group in dict_rating_groups:
|
||||
rating_group, key_group = [], []
|
||||
for key, rating in iteritems(dict_rating_group):
|
||||
rating_group.append(rating)
|
||||
key_group.append(key)
|
||||
rating_groups.append(tuple(rating_group))
|
||||
keys.append(tuple(key_group))
|
||||
else:
|
||||
rating_groups = list(rating_groups)
|
||||
keys = None
|
||||
return rating_groups, keys
|
||||
|
||||
def validate_weights(self, weights, rating_groups, keys=None):
|
||||
if weights is None:
|
||||
weights = [(1,) * len(g) for g in rating_groups]
|
||||
elif isinstance(weights, dict):
|
||||
weights_dict, weights = weights, []
|
||||
for x, group in enumerate(rating_groups):
|
||||
w = []
|
||||
weights.append(w)
|
||||
for y, rating in enumerate(group):
|
||||
if keys is not None:
|
||||
y = keys[x][y]
|
||||
w.append(weights_dict.get((x, y), 1))
|
||||
return weights
|
||||
|
||||
def factor_graph_builders(self, rating_groups, ranks, weights):
|
||||
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||
flatten_weights = sum(map(tuple, weights), ())
|
||||
size = len(flatten_ratings)
|
||||
group_size = len(rating_groups)
|
||||
# create variables
|
||||
rating_vars = [Variable() for x in range(size)]
|
||||
perf_vars = [Variable() for x in range(size)]
|
||||
team_perf_vars = [Variable() for x in range(group_size)]
|
||||
team_diff_vars = [Variable() for x in range(group_size - 1)]
|
||||
team_sizes = _team_sizes(rating_groups)
|
||||
# layer builders
|
||||
def build_rating_layer():
|
||||
for rating_var, rating in zip(rating_vars, flatten_ratings):
|
||||
yield PriorFactor(rating_var, rating, self.tau)
|
||||
def build_perf_layer():
|
||||
for rating_var, perf_var in zip(rating_vars, perf_vars):
|
||||
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
|
||||
def build_team_perf_layer():
|
||||
for team, team_perf_var in enumerate(team_perf_vars):
|
||||
if team > 0:
|
||||
start = team_sizes[team - 1]
|
||||
else:
|
||||
start = 0
|
||||
end = team_sizes[team]
|
||||
child_perf_vars = perf_vars[start:end]
|
||||
coeffs = flatten_weights[start:end]
|
||||
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
|
||||
def build_team_diff_layer():
|
||||
for team, team_diff_var in enumerate(team_diff_vars):
|
||||
yield SumFactor(team_diff_var,
|
||||
team_perf_vars[team:team + 2], [+1, -1])
|
||||
def build_trunc_layer():
|
||||
for x, team_diff_var in enumerate(team_diff_vars):
|
||||
if callable(self.draw_probability):
|
||||
# dynamic draw probability
|
||||
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
|
||||
args = (Rating(team_perf1), Rating(team_perf2), self)
|
||||
draw_probability = self.draw_probability(*args)
|
||||
else:
|
||||
# static draw probability
|
||||
draw_probability = self.draw_probability
|
||||
size = sum(map(len, rating_groups[x:x + 2]))
|
||||
draw_margin = calc_draw_margin(draw_probability, size, self)
|
||||
if ranks[x] == ranks[x + 1]: # is a tie?
|
||||
v_func, w_func = self.v_draw, self.w_draw
|
||||
else:
|
||||
v_func, w_func = self.v_win, self.w_win
|
||||
yield TruncateFactor(team_diff_var,
|
||||
v_func, w_func, draw_margin)
|
||||
# build layers
|
||||
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
|
||||
build_team_diff_layer, build_trunc_layer)
|
||||
|
||||
def run_schedule(self, build_rating_layer, build_perf_layer,
|
||||
build_team_perf_layer, build_team_diff_layer,
|
||||
build_trunc_layer, min_delta=DELTA):
|
||||
if min_delta <= 0:
|
||||
raise ValueError('min_delta must be greater than 0')
|
||||
layers = []
|
||||
def build(builders):
|
||||
layers_built = [list(build()) for build in builders]
|
||||
layers.extend(layers_built)
|
||||
return layers_built
|
||||
# gray arrows
|
||||
layers_built = build([build_rating_layer,
|
||||
build_perf_layer,
|
||||
build_team_perf_layer])
|
||||
rating_layer, perf_layer, team_perf_layer = layers_built
|
||||
for f in chain(*layers_built):
|
||||
f.down()
|
||||
# arrow #1, #2, #3
|
||||
team_diff_layer, trunc_layer = build([build_team_diff_layer,
|
||||
build_trunc_layer])
|
||||
team_diff_len = len(team_diff_layer)
|
||||
for x in range(10):
|
||||
if team_diff_len == 1:
|
||||
# only two teams
|
||||
team_diff_layer[0].down()
|
||||
delta = trunc_layer[0].up()
|
||||
else:
|
||||
# multiple teams
|
||||
delta = 0
|
||||
for x in range(team_diff_len - 1):
|
||||
team_diff_layer[x].down()
|
||||
delta = max(delta, trunc_layer[x].up())
|
||||
team_diff_layer[x].up(1) # up to right variable
|
||||
for x in range(team_diff_len - 1, 0, -1):
|
||||
team_diff_layer[x].down()
|
||||
delta = max(delta, trunc_layer[x].up())
|
||||
team_diff_layer[x].up(0) # up to left variable
|
||||
# repeat until to small update
|
||||
if delta <= min_delta:
|
||||
break
|
||||
# up both ends
|
||||
team_diff_layer[0].up(0)
|
||||
team_diff_layer[team_diff_len - 1].up(1)
|
||||
# up the remainder of the black arrows
|
||||
for f in team_perf_layer:
|
||||
for x in range(len(f.vars) - 1):
|
||||
f.up(x)
|
||||
for f in perf_layer:
|
||||
f.up()
|
||||
return layers
|
||||
|
||||
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||
weights = self.validate_weights(weights, rating_groups, keys)
|
||||
group_size = len(rating_groups)
|
||||
if ranks is None:
|
||||
ranks = range(group_size)
|
||||
elif len(ranks) != group_size:
|
||||
raise ValueError('Wrong ranks')
|
||||
# sort rating groups by rank
|
||||
by_rank = lambda x: x[1][1]
|
||||
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
|
||||
key=by_rank)
|
||||
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
|
||||
for x, (g, r, w) in sorting:
|
||||
sorted_rating_groups.append(g)
|
||||
sorted_ranks.append(r)
|
||||
# make weights to be greater than 0
|
||||
sorted_weights.append(max(min_delta, w_) for w_ in w)
|
||||
# build factor graph
|
||||
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
|
||||
builders = self.factor_graph_builders(*args)
|
||||
args = builders + (min_delta,)
|
||||
layers = self.run_schedule(*args)
|
||||
# make result
|
||||
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
|
||||
transformed_groups = []
|
||||
for start, end in zip([0] + team_sizes[:-1], team_sizes):
|
||||
group = []
|
||||
for f in rating_layer[start:end]:
|
||||
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
|
||||
transformed_groups.append(tuple(group))
|
||||
by_hint = lambda x: x[0]
|
||||
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
|
||||
key=by_hint)
|
||||
if keys is None:
|
||||
return [g for x, g in unsorting]
|
||||
# restore the structure with input dictionary keys
|
||||
return [dict(zip(keys[x], g)) for x, g in unsorting]
|
||||
|
||||
def quality(self, rating_groups, weights=None):
|
||||
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||
weights = self.validate_weights(weights, rating_groups, keys)
|
||||
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||
flatten_weights = sum(map(tuple, weights), ())
|
||||
length = len(flatten_ratings)
|
||||
# a vector of all of the skill means
|
||||
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
|
||||
# a matrix whose diagonal values are the variances (sigma ** 2) of each
|
||||
# of the players.
|
||||
def variance_matrix(height, width):
|
||||
variances = (r.sigma ** 2 for r in flatten_ratings)
|
||||
for x, variance in enumerate(variances):
|
||||
yield (x, x), variance
|
||||
variance_matrix = Matrix(variance_matrix, length, length)
|
||||
# the player-team assignment and comparison matrix
|
||||
def rotated_a_matrix(set_height, set_width):
|
||||
t = 0
|
||||
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
|
||||
rating_groups[1:])):
|
||||
for x in range(t, t + len(cur)):
|
||||
yield (r, x), flatten_weights[x]
|
||||
t += 1
|
||||
x += 1
|
||||
for x in range(x, x + len(_next)):
|
||||
yield (r, x), -flatten_weights[x]
|
||||
set_height(r + 1)
|
||||
set_width(x + 1)
|
||||
rotated_a_matrix = Matrix(rotated_a_matrix)
|
||||
a_matrix = rotated_a_matrix.transpose()
|
||||
# match quality further derivation
|
||||
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
|
||||
_atsa = rotated_a_matrix * variance_matrix * a_matrix
|
||||
start = mean_matrix.transpose() * a_matrix
|
||||
middle = _ata + _atsa
|
||||
end = rotated_a_matrix * mean_matrix
|
||||
# make result
|
||||
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
|
||||
s_arg = _ata.determinant() / middle.determinant()
|
||||
return math.exp(e_arg) * math.sqrt(s_arg)
|
||||
|
||||
def expose(self, rating):
|
||||
k = self.mu / self.sigma
|
||||
return rating.mu - k * rating.sigma
|
||||
|
||||
def make_as_global(self):
|
||||
return setup(env=self)
|
||||
|
||||
def __repr__(self):
|
||||
c = type(self)
|
||||
if callable(self.draw_probability):
|
||||
f = self.draw_probability
|
||||
draw_probability = '.'.join([f.__module__, f.__name__])
|
||||
else:
|
||||
draw_probability = '%.1f%%' % (self.draw_probability * 100)
|
||||
if self.backend is None:
|
||||
backend = ''
|
||||
elif isinstance(self.backend, tuple):
|
||||
backend = ', backend=...'
|
||||
else:
|
||||
backend = ', backend=%r' % self.backend
|
||||
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
|
||||
self.beta, self.tau, draw_probability, backend)
|
||||
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
|
||||
'draw_probability=%s%s)' % args)
|
||||
|
||||
|
||||
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
ranks = [0, 0 if drawn else 1]
|
||||
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
|
||||
return teams[0][0], teams[1][0]
|
||||
|
||||
|
||||
def quality_1vs1(rating1, rating2, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return env.quality([(rating1,), (rating2,)])
|
||||
|
||||
|
||||
def global_env():
|
||||
try:
|
||||
global_env.__trueskill__
|
||||
except AttributeError:
|
||||
# setup the default environment
|
||||
setup()
|
||||
return global_env.__trueskill__
|
||||
|
||||
|
||||
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
|
||||
if env is None:
|
||||
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
|
||||
global_env.__trueskill__ = env
|
||||
return env
|
||||
|
||||
|
||||
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||
return global_env().rate(rating_groups, ranks, weights, min_delta)
|
||||
|
||||
|
||||
def quality(rating_groups, weights=None):
|
||||
return global_env().quality(rating_groups, weights)
|
||||
|
||||
|
||||
def expose(rating):
|
||||
return global_env().expose(rating)
|
34
analysis-master/build/lib/analysis/visualization.py
Normal file
34
analysis-master/build/lib/analysis/visualization.py
Normal file
@@ -0,0 +1,34 @@
|
||||
# Titan Robotics Team 2022: Visualization Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import visualization'
|
||||
# this should be included in the local directory or environment variable
|
||||
# fancy
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.000"
|
||||
|
||||
#changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.0.0.000:
|
||||
- created visualization.py
|
||||
- added graphloss()
|
||||
- added imports
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>,"
|
||||
"Jacob Levine <jlevine@ttic.edu>,"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'graphloss',
|
||||
]
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def graphloss(losses):
|
||||
|
||||
x = range(0, len(losses))
|
||||
plt.plot(x, losses)
|
||||
plt.show()
|
BIN
analysis-master/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
Binary file not shown.
27
analysis-master/setup.py
Normal file
27
analysis-master/setup.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import setuptools
|
||||
|
||||
setuptools.setup(
|
||||
name="analysis", # Replace with your own username
|
||||
version="1.0.0.008",
|
||||
author="The Titan Scouting Team",
|
||||
author_email="titanscout2022@gmail.com",
|
||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||
long_description="",
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/titanscout2022/tr2022-strategy",
|
||||
packages=setuptools.find_packages(),
|
||||
install_requires=[
|
||||
"numba",
|
||||
"numpy",
|
||||
"scipy",
|
||||
"scikit-learn",
|
||||
"six",
|
||||
"matplotlib"
|
||||
],
|
||||
license = "GNU General Public License v3.0",
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
"Operating System :: OS Independent",
|
||||
],
|
||||
python_requires='>=3.6',
|
||||
)
|
Binary file not shown.
BIN
data analysis/__pycache__/data.cpython-37.pyc
Normal file
BIN
data analysis/__pycache__/data.cpython-37.pyc
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
data analysis/__pycache__/superscript.cpython-37.pyc
Normal file
BIN
data analysis/__pycache__/superscript.cpython-37.pyc
Normal file
Binary file not shown.
Binary file not shown.
1
data analysis/config/competition.config
Normal file
1
data analysis/config/competition.config
Normal file
@@ -0,0 +1 @@
|
||||
2020ilch
|
0
data analysis/config/database.config
Normal file
0
data analysis/config/database.config
Normal file
14
data analysis/config/stats.config
Normal file
14
data analysis/config/stats.config
Normal file
@@ -0,0 +1,14 @@
|
||||
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
wheel-mechanism
|
||||
low-balls
|
||||
high-balls
|
||||
wheel-success
|
||||
strategic-focus
|
||||
climb-mechanism
|
||||
attitude
|
102
data analysis/data.py
Normal file
102
data analysis/data.py
Normal file
@@ -0,0 +1,102 @@
|
||||
import requests
|
||||
import pymongo
|
||||
import pandas as pd
|
||||
import time
|
||||
|
||||
def pull_new_tba_matches(apikey, competition, cutoff):
|
||||
api_key= apikey
|
||||
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
|
||||
out = []
|
||||
for i in x.json():
|
||||
if (i["actual_time"] != None and i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
|
||||
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
|
||||
return out
|
||||
|
||||
def get_team_match_data(apikey, competition, team_num):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.matchdata
|
||||
out = {}
|
||||
for i in mdata.find({"competition" : competition, "team_scouted": team_num}):
|
||||
out[i['match']] = i['data']
|
||||
return pd.DataFrame(out)
|
||||
|
||||
def get_team_pit_data(apikey, competition, team_num):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.pitdata
|
||||
out = {}
|
||||
return mdata.find_one({"competition" : competition, "team_scouted": team_num})["data"]
|
||||
|
||||
def get_team_metrics_data(apikey, competition, team_num):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_processing
|
||||
mdata = db.team_metrics
|
||||
return mdata.find_one({"competition" : competition, "team": team_num})
|
||||
|
||||
def unkeyify_2l(layered_dict):
|
||||
out = {}
|
||||
for i in layered_dict.keys():
|
||||
add = []
|
||||
sortkey = []
|
||||
for j in layered_dict[i].keys():
|
||||
add.append([j,layered_dict[i][j]])
|
||||
add.sort(key = lambda x: x[0])
|
||||
out[i] = list(map(lambda x: x[1], add))
|
||||
return out
|
||||
|
||||
def get_match_data_formatted(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.teamlist
|
||||
x=mdata.find_one({"competition":competition})
|
||||
out = {}
|
||||
for i in x:
|
||||
try:
|
||||
out[int(i)] = unkeyify_2l(get_team_match_data(apikey, competition, int(i)).transpose().to_dict())
|
||||
except:
|
||||
pass
|
||||
return out
|
||||
|
||||
def get_pit_data_formatted(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.teamlist
|
||||
x=mdata.find_one({"competition":competition})
|
||||
out = {}
|
||||
for i in x:
|
||||
try:
|
||||
out[int(i)] = get_team_pit_data(apikey, competition, int(i))
|
||||
except:
|
||||
pass
|
||||
return out
|
||||
|
||||
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client[dbname]
|
||||
mdata = db[colname]
|
||||
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "data" : data}, True)
|
||||
|
||||
def push_team_metrics_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_metrics"):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client[dbname]
|
||||
mdata = db[colname]
|
||||
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True)
|
||||
|
||||
def push_team_pit_data(apikey, competition, variable, data, dbname = "data_processing", colname = "team_pit"):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client[dbname]
|
||||
mdata = db[colname]
|
||||
mdata.replace_one({"competition" : competition, "variable": variable}, {"competition" : competition, "variable" : variable, "data" : data}, True)
|
||||
|
||||
def get_analysis_flags(apikey, flag):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_processing
|
||||
mdata = db.flags
|
||||
return mdata.find_one({flag:{"$exists":True}})
|
||||
|
||||
def set_analysis_flags(apikey, flag, data):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_processing
|
||||
mdata = db.flags
|
||||
return mdata.replace_one({flag:{"$exists":True}}, data, True)
|
@@ -1,16 +0,0 @@
|
||||
import random
|
||||
|
||||
def generate(filename, x, y, low, high):
|
||||
|
||||
file = open(filename, "w")
|
||||
|
||||
for i in range (0, y, 1):
|
||||
|
||||
temp = ""
|
||||
|
||||
for j in range (0, x - 1, 1):
|
||||
|
||||
temp = str(random.uniform(low, high)) + "," + temp
|
||||
|
||||
temp = temp + str(random.uniform(low, high))
|
||||
file.write(temp + "\n")
|
59
data analysis/get_team_rankings.py
Normal file
59
data analysis/get_team_rankings.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import data as d
|
||||
from analysis import analysis as an
|
||||
import pymongo
|
||||
import operator
|
||||
|
||||
def load_config(file):
|
||||
config_vector = {}
|
||||
file = an.load_csv(file)
|
||||
for line in file[1:]:
|
||||
config_vector[line[0]] = line[1:]
|
||||
|
||||
return (file[0][0], config_vector)
|
||||
|
||||
def get_metrics_processed_formatted(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.teamlist
|
||||
x=mdata.find_one({"competition":competition})
|
||||
out = {}
|
||||
for i in x:
|
||||
try:
|
||||
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
|
||||
except:
|
||||
pass
|
||||
return out
|
||||
|
||||
def main():
|
||||
|
||||
apikey = an.load_csv("keys.txt")[0][0]
|
||||
tbakey = an.load_csv("keys.txt")[1][0]
|
||||
|
||||
competition, config = load_config("config.csv")
|
||||
|
||||
metrics = get_metrics_processed_formatted(apikey, competition)
|
||||
|
||||
elo = {}
|
||||
gl2 = {}
|
||||
|
||||
for team in metrics:
|
||||
|
||||
elo[team] = metrics[team]["metrics"]["elo"]["score"]
|
||||
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
|
||||
|
||||
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
|
||||
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
|
||||
|
||||
for team in elo:
|
||||
|
||||
print("teams sorted by elo:")
|
||||
print("" + str(team) + " | " + str(elo[team]))
|
||||
|
||||
print("*"*25)
|
||||
|
||||
for team in gl2:
|
||||
|
||||
print("teams sorted by glicko2:")
|
||||
print("" + str(team) + " | " + str(gl2[team]))
|
||||
|
||||
main()
|
374
data analysis/superscript.py
Normal file
374
data analysis/superscript.py
Normal file
@@ -0,0 +1,374 @@
|
||||
# Titan Robotics Team 2022: Superscript Script
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.5.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.0.5.000:
|
||||
improved user interface
|
||||
0.0.4.002:
|
||||
- removed unessasary code
|
||||
0.0.4.001:
|
||||
- fixed bug where X range for regression was determined before sanitization
|
||||
- better sanitized data
|
||||
0.0.4.000:
|
||||
- fixed spelling issue in __changelog__
|
||||
- addressed nan bug in regression
|
||||
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
|
||||
- fixed errors in metrics computing
|
||||
0.0.3.000:
|
||||
- added analysis to pit data
|
||||
0.0.2.001:
|
||||
- minor stability patches
|
||||
- implemented db syncing for timestamps
|
||||
- fixed bugs
|
||||
0.0.2.000:
|
||||
- finalized testing and small fixes
|
||||
0.0.1.004:
|
||||
- finished metrics implement, trueskill is bugged
|
||||
0.0.1.003:
|
||||
- working
|
||||
0.0.1.002:
|
||||
- started implement of metrics
|
||||
0.0.1.001:
|
||||
- cleaned up imports
|
||||
0.0.1.000:
|
||||
- tested working, can push to database
|
||||
0.0.0.009:
|
||||
- tested working
|
||||
- prints out stats for the time being, will push to database later
|
||||
0.0.0.008:
|
||||
- added data import
|
||||
- removed tba import
|
||||
- finished main method
|
||||
0.0.0.007:
|
||||
- added load_config
|
||||
- optimized simpleloop for readibility
|
||||
- added __all__ entries
|
||||
- added simplestats engine
|
||||
- pending testing
|
||||
0.0.0.006:
|
||||
- fixes
|
||||
0.0.0.005:
|
||||
- imported pickle
|
||||
- created custom database object
|
||||
0.0.0.004:
|
||||
- fixed simpleloop to actually return a vector
|
||||
0.0.0.003:
|
||||
- added metricsloop which is unfinished
|
||||
0.0.0.002:
|
||||
- added simpleloop which is untested until data is provided
|
||||
0.0.0.001:
|
||||
- created script
|
||||
- added analysis, numba, numpy imports
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"main",
|
||||
"load_config",
|
||||
"simpleloop",
|
||||
"simplestats",
|
||||
"metricsloop"
|
||||
]
|
||||
|
||||
# imports:
|
||||
|
||||
from analysis import analysis as an
|
||||
import data as d
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from os import system, name
|
||||
from pathlib import Path
|
||||
import time
|
||||
import warnings
|
||||
|
||||
def main():
|
||||
warnings.filterwarnings("ignore")
|
||||
while(True):
|
||||
|
||||
current_time = time.time()
|
||||
print("[OK] time: " + str(current_time))
|
||||
|
||||
start = time.time()
|
||||
config = load_config(Path("config/stats.config"))
|
||||
competition = an.load_csv(Path("config/competition.config"))[0][0]
|
||||
print("[OK] configs loaded")
|
||||
|
||||
apikey = an.load_csv(Path("config/keys.config"))[0][0]
|
||||
tbakey = an.load_csv(Path("config/keys.config"))[1][0]
|
||||
print("[OK] loaded keys")
|
||||
|
||||
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
||||
|
||||
if(previous_time == None):
|
||||
|
||||
d.set_analysis_flags(apikey, "latest_update", 0)
|
||||
previous_time = 0
|
||||
|
||||
else:
|
||||
|
||||
previous_time = previous_time["latest_update"]
|
||||
|
||||
print("[OK] analysis backtimed to: " + str(previous_time))
|
||||
|
||||
print("[OK] loading data")
|
||||
start = time.time()
|
||||
data = d.get_match_data_formatted(apikey, competition)
|
||||
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
|
||||
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running tests")
|
||||
start = time.time()
|
||||
results = simpleloop(data, config)
|
||||
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running metrics")
|
||||
start = time.time()
|
||||
metricsloop(tbakey, apikey, competition, previous_time)
|
||||
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running pit analysis")
|
||||
start = time.time()
|
||||
pit = pitloop(pit_data, config)
|
||||
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
|
||||
|
||||
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
||||
|
||||
print("[OK] pushing to database")
|
||||
start = time.time()
|
||||
push_to_database(apikey, competition, results, pit)
|
||||
print("[OK] pushed to database in " + str(time.time() - start) + " seconds")
|
||||
|
||||
clear()
|
||||
|
||||
def clear():
|
||||
|
||||
# for windows
|
||||
if name == 'nt':
|
||||
_ = system('cls')
|
||||
|
||||
# for mac and linux(here, os.name is 'posix')
|
||||
else:
|
||||
_ = system('clear')
|
||||
|
||||
def load_config(file):
|
||||
config_vector = {}
|
||||
file = an.load_csv(file)
|
||||
for line in file:
|
||||
config_vector[line[0]] = line[1:]
|
||||
|
||||
return config_vector
|
||||
|
||||
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
|
||||
return_vector = {}
|
||||
for team in data:
|
||||
variable_vector = {}
|
||||
for variable in data[team]:
|
||||
test_vector = {}
|
||||
variable_data = data[team][variable]
|
||||
if(variable in tests):
|
||||
for test in tests[variable]:
|
||||
test_vector[test] = simplestats(variable_data, test)
|
||||
else:
|
||||
pass
|
||||
variable_vector[variable] = test_vector
|
||||
return_vector[team] = variable_vector
|
||||
|
||||
return return_vector
|
||||
|
||||
def simplestats(data, test):
|
||||
|
||||
data = np.array(data)
|
||||
data = data[np.isfinite(data)]
|
||||
ranges = list(range(len(data)))
|
||||
|
||||
if(test == "basic_stats"):
|
||||
return an.basic_stats(data)
|
||||
|
||||
if(test == "historical_analysis"):
|
||||
return an.histo_analysis([ranges, data])
|
||||
|
||||
if(test == "regression_linear"):
|
||||
return an.regression(ranges, data, ['lin'])
|
||||
|
||||
if(test == "regression_logarithmic"):
|
||||
return an.regression(ranges, data, ['log'])
|
||||
|
||||
if(test == "regression_exponential"):
|
||||
return an.regression(ranges, data, ['exp'])
|
||||
|
||||
if(test == "regression_polynomial"):
|
||||
return an.regression(ranges, data, ['ply'])
|
||||
|
||||
if(test == "regression_sigmoidal"):
|
||||
return an.regression(ranges, data, ['sig'])
|
||||
|
||||
def push_to_database(apikey, competition, results, pit):
|
||||
|
||||
for team in results:
|
||||
|
||||
d.push_team_tests_data(apikey, competition, team, results[team])
|
||||
|
||||
for variable in pit:
|
||||
|
||||
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
||||
|
||||
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
|
||||
|
||||
elo_N = 400
|
||||
elo_K = 24
|
||||
|
||||
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
||||
|
||||
red = {}
|
||||
blu = {}
|
||||
|
||||
for match in matches:
|
||||
|
||||
red = load_metrics(apikey, competition, match, "red")
|
||||
blu = load_metrics(apikey, competition, match, "blue")
|
||||
|
||||
elo_red_total = 0
|
||||
elo_blu_total = 0
|
||||
|
||||
gl2_red_score_total = 0
|
||||
gl2_blu_score_total = 0
|
||||
|
||||
gl2_red_rd_total = 0
|
||||
gl2_blu_rd_total = 0
|
||||
|
||||
gl2_red_vol_total = 0
|
||||
gl2_blu_vol_total = 0
|
||||
|
||||
for team in red:
|
||||
|
||||
elo_red_total += red[team]["elo"]["score"]
|
||||
|
||||
gl2_red_score_total += red[team]["gl2"]["score"]
|
||||
gl2_red_rd_total += red[team]["gl2"]["rd"]
|
||||
gl2_red_vol_total += red[team]["gl2"]["vol"]
|
||||
|
||||
for team in blu:
|
||||
|
||||
elo_blu_total += blu[team]["elo"]["score"]
|
||||
|
||||
gl2_blu_score_total += blu[team]["gl2"]["score"]
|
||||
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
|
||||
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
|
||||
|
||||
red_elo = {"score": elo_red_total / len(red)}
|
||||
blu_elo = {"score": elo_blu_total / len(blu)}
|
||||
|
||||
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
|
||||
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
|
||||
|
||||
|
||||
if(match["winner"] == "red"):
|
||||
|
||||
observations = {"red": 1, "blu": 0}
|
||||
|
||||
elif(match["winner"] == "blue"):
|
||||
|
||||
observations = {"red": 0, "blu": 1}
|
||||
|
||||
else:
|
||||
|
||||
observations = {"red": 0.5, "blu": 0.5}
|
||||
|
||||
red_elo_delta = an.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
||||
blu_elo_delta = an.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
||||
|
||||
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
||||
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
||||
|
||||
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
||||
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
||||
|
||||
for team in red:
|
||||
|
||||
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
|
||||
|
||||
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
|
||||
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
|
||||
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
|
||||
|
||||
for team in blu:
|
||||
|
||||
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
|
||||
|
||||
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
|
||||
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
||||
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
||||
|
||||
temp_vector = {}
|
||||
temp_vector.update(red)
|
||||
temp_vector.update(blu)
|
||||
|
||||
for team in temp_vector:
|
||||
|
||||
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
|
||||
|
||||
def load_metrics(apikey, competition, match, group_name):
|
||||
|
||||
group = {}
|
||||
|
||||
for team in match[group_name]:
|
||||
|
||||
db_data = d.get_team_metrics_data(apikey, competition, team)
|
||||
|
||||
if d.get_team_metrics_data(apikey, competition, team) == None:
|
||||
|
||||
elo = {"score": 1500}
|
||||
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
|
||||
ts = {"mu": 25, "sigma": 25/3}
|
||||
|
||||
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
|
||||
|
||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||
|
||||
else:
|
||||
|
||||
metrics = db_data["metrics"]
|
||||
|
||||
elo = metrics["elo"]
|
||||
gl2 = metrics["gl2"]
|
||||
ts = metrics["ts"]
|
||||
|
||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||
|
||||
return group
|
||||
|
||||
def pitloop(pit, tests):
|
||||
|
||||
return_vector = {}
|
||||
for team in pit:
|
||||
for variable in pit[team]:
|
||||
if(variable in tests):
|
||||
if(not variable in return_vector):
|
||||
return_vector[variable] = []
|
||||
return_vector[variable].append(pit[team][variable])
|
||||
|
||||
return return_vector
|
||||
|
||||
main()
|
||||
|
||||
"""
|
||||
Metrics Defaults:
|
||||
|
||||
elo starting score = 1500
|
||||
elo N = 400
|
||||
elo K = 24
|
||||
|
||||
gl2 starting score = 1500
|
||||
gl2 starting rd = 350
|
||||
gl2 starting vol = 0.06
|
||||
"""
|
59
data analysis/visualize_pit.py
Normal file
59
data analysis/visualize_pit.py
Normal file
@@ -0,0 +1,59 @@
|
||||
# To add a new cell, type '# %%'
|
||||
# To add a new markdown cell, type '# %% [markdown]'
|
||||
# %%
|
||||
import matplotlib.pyplot as plt
|
||||
import data as d
|
||||
import pymongo
|
||||
|
||||
|
||||
# %%
|
||||
def get_pit_variable_data(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_processing
|
||||
mdata = db.team_pit
|
||||
out = {}
|
||||
return mdata.find()
|
||||
|
||||
|
||||
# %%
|
||||
def get_pit_variable_formatted(apikey, competition):
|
||||
temp = get_pit_variable_data(apikey, competition)
|
||||
out = {}
|
||||
for i in temp:
|
||||
out[i["variable"]] = i["data"]
|
||||
return out
|
||||
|
||||
|
||||
# %%
|
||||
pit = get_pit_variable_formatted("mongodb+srv://api-user-new:titanscout2022@2022-scouting-4vfuu.mongodb.net/test?authSource=admin&replicaSet=2022-scouting-shard-0&readPreference=primary&appname=MongoDB%20Compass&ssl=true", "2020ilch")
|
||||
|
||||
|
||||
# %%
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
# %%
|
||||
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(80,15))
|
||||
|
||||
i = 0
|
||||
|
||||
for variable in pit:
|
||||
|
||||
ax[i].hist(pit[variable])
|
||||
ax[i].invert_xaxis()
|
||||
|
||||
ax[i].set_xlabel('')
|
||||
ax[i].set_ylabel('Frequency')
|
||||
ax[i].set_title(variable)
|
||||
|
||||
plt.yticks(np.arange(len(pit[variable])))
|
||||
|
||||
i+=1
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
|
BIN
dep/2019/__pycache__/analysis.cpython-36.pyc
Normal file
BIN
dep/2019/__pycache__/analysis.cpython-36.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/analysis.cpython-37.pyc
Normal file
BIN
dep/2019/__pycache__/analysis.cpython-37.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/repack_json.cpython-37.pyc
Normal file
BIN
dep/2019/__pycache__/repack_json.cpython-37.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/superscript.cpython-37.pyc
Normal file
BIN
dep/2019/__pycache__/superscript.cpython-37.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/tbarequest.cpython-36.pyc
Normal file
BIN
dep/2019/__pycache__/tbarequest.cpython-36.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/tbarequest.cpython-37.pyc
Normal file
BIN
dep/2019/__pycache__/tbarequest.cpython-37.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/test.cpython-37.pyc
Normal file
BIN
dep/2019/__pycache__/test.cpython-37.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/titanlearn.cpython-37.pyc
Normal file
BIN
dep/2019/__pycache__/titanlearn.cpython-37.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/visualization.cpython-36.pyc
Normal file
BIN
dep/2019/__pycache__/visualization.cpython-36.pyc
Normal file
Binary file not shown.
BIN
dep/2019/__pycache__/visualization.cpython-37.pyc
Normal file
BIN
dep/2019/__pycache__/visualization.cpython-37.pyc
Normal file
Binary file not shown.
File diff suppressed because it is too large
Load Diff
944
dep/2019/analysis/analysis-low.py
Normal file
944
dep/2019/analysis/analysis-low.py
Normal file
@@ -0,0 +1,944 @@
|
||||
# Titan Robotics Team 2022: Data Analysis Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has not been optimized for multhreaded computing
|
||||
# number of easter eggs: 2
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.9.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.0.9.000:
|
||||
- refactored
|
||||
- numpyed everything
|
||||
- removed stats in favor of numpy functions
|
||||
1.0.8.005:
|
||||
- minor fixes
|
||||
1.0.8.004:
|
||||
- removed a few unused dependencies
|
||||
1.0.8.003:
|
||||
- added p_value function
|
||||
1.0.8.002:
|
||||
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
|
||||
1.0.8.001:
|
||||
- refactors
|
||||
- bugfixes
|
||||
1.0.8.000:
|
||||
- depreciated histo_analysis_old
|
||||
- depreciated debug
|
||||
- altered basic_analysis to take array data instead of filepath
|
||||
- refactor
|
||||
- optimization
|
||||
1.0.7.002:
|
||||
- bug fixes
|
||||
1.0.7.001:
|
||||
- bug fixes
|
||||
1.0.7.000:
|
||||
- added tanh_regression (logistical regression)
|
||||
- bug fixes
|
||||
1.0.6.005:
|
||||
- added z_normalize function to normalize dataset
|
||||
- bug fixes
|
||||
1.0.6.004:
|
||||
- bug fixes
|
||||
1.0.6.003:
|
||||
- bug fixes
|
||||
1.0.6.002:
|
||||
- bug fixes
|
||||
1.0.6.001:
|
||||
- corrected __all__ to contain all of the functions
|
||||
1.0.6.000:
|
||||
- added calc_overfit, which calculates two measures of overfit, error and performance
|
||||
- added calculating overfit to optimize_regression
|
||||
1.0.5.000:
|
||||
- added optimize_regression function, which is a sample function to find the optimal regressions
|
||||
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
||||
- planned addition: overfit detection in the optimize_regression function
|
||||
1.0.4.002:
|
||||
- added __changelog__
|
||||
- updated debug function with log and exponential regressions
|
||||
1.0.4.001:
|
||||
- added log regressions
|
||||
- added exponential regressions
|
||||
- added log_regression and exp_regression to __all__
|
||||
1.0.3.008:
|
||||
- added debug function to further consolidate functions
|
||||
1.0.3.007:
|
||||
- added builtin benchmark function
|
||||
- added builtin random (linear) data generation function
|
||||
- added device initialization (_init_device)
|
||||
1.0.3.006:
|
||||
- reorganized the imports list to be in alphabetical order
|
||||
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
||||
1.0.3.005:
|
||||
- major bug fixes
|
||||
- updated historical analysis
|
||||
- depreciated old historical analysis
|
||||
1.0.3.004:
|
||||
- added __version__, __author__, __all__
|
||||
- added polynomial regression
|
||||
- added root mean squared function
|
||||
- added r squared function
|
||||
1.0.3.003:
|
||||
- bug fixes
|
||||
- added c_entities
|
||||
1.0.3.002:
|
||||
- bug fixes
|
||||
- added nc_entities, obstacles, objectives
|
||||
- consolidated statistics.py to analysis.py
|
||||
1.0.3.001:
|
||||
- compiled 1d, column, and row basic stats into basic stats function
|
||||
1.0.3.000:
|
||||
- added historical analysis function
|
||||
1.0.2.xxx:
|
||||
- added z score test
|
||||
1.0.1.xxx:
|
||||
- major bug fixes
|
||||
1.0.0.xxx:
|
||||
- added loading csv
|
||||
- added 1d, column, row basic stats
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>, "
|
||||
"Jacob Levine <jlevine@ttic.edu>,"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'_init_device',
|
||||
'c_entities',
|
||||
'nc_entities',
|
||||
'obstacles',
|
||||
'objectives',
|
||||
'load_csv',
|
||||
'basic_stats',
|
||||
'z_score',
|
||||
'z_normalize',
|
||||
'stdev_z_split',
|
||||
'histo_analysis',
|
||||
'poly_regression',
|
||||
'log_regression',
|
||||
'exp_regression',
|
||||
'r_squared',
|
||||
'rms',
|
||||
'calc_overfit',
|
||||
'strip_data',
|
||||
'optimize_regression',
|
||||
'select_best_regression',
|
||||
'basic_analysis',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
# now back to your regularly scheduled programming:
|
||||
|
||||
# imports (now in alphabetical order! v 1.0.3.006):
|
||||
|
||||
from bisect import bisect_left, bisect_right
|
||||
import collections
|
||||
import csv
|
||||
from decimal import Decimal
|
||||
import functools
|
||||
from fractions import Fraction
|
||||
from itertools import groupby
|
||||
import math
|
||||
import matplotlib
|
||||
import numbers
|
||||
import numpy as np
|
||||
import pandas
|
||||
import random
|
||||
import scipy
|
||||
from scipy.optimize import curve_fit
|
||||
from scipy import stats
|
||||
from sklearn import *
|
||||
# import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002
|
||||
import time
|
||||
import torch
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def _init_device(setting, arg): # initiates computation device for ANNs
|
||||
if setting == "cuda":
|
||||
try:
|
||||
return torch.device(setting + ":" + str(arg) if torch.cuda.is_available() else "cpu")
|
||||
except:
|
||||
raise error("could not assign cuda or cpu")
|
||||
elif setting == "cpu":
|
||||
try:
|
||||
return torch.device("cpu")
|
||||
except:
|
||||
raise error("could not assign cpu")
|
||||
else:
|
||||
raise error("specified device does not exist")
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
csvfile.close()
|
||||
return file_array
|
||||
|
||||
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||
def basic_stats(data, method, arg):
|
||||
|
||||
if method == 'debug':
|
||||
return "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
|
||||
|
||||
if method == "1d" or method == 0:
|
||||
|
||||
data_t = np.array(data).astype(float)
|
||||
|
||||
_mean = mean(data_t)
|
||||
_median = median(data_t)
|
||||
try:
|
||||
_mode = mode(data_t)
|
||||
except:
|
||||
_mode = None
|
||||
try:
|
||||
_stdev = stdev(data_t)
|
||||
except:
|
||||
_stdev = None
|
||||
try:
|
||||
_variance = variance(data_t)
|
||||
except:
|
||||
_variance = None
|
||||
|
||||
return _mean, _median, _mode, _stdev, _variance
|
||||
"""
|
||||
elif method == "column" or method == 1:
|
||||
|
||||
c_data = []
|
||||
c_data_sorted = []
|
||||
|
||||
for i in data:
|
||||
try:
|
||||
c_data.append(float(i[arg]))
|
||||
except:
|
||||
pass
|
||||
|
||||
_mean = mean(c_data)
|
||||
_median = median(c_data)
|
||||
try:
|
||||
_mode = mode(c_data)
|
||||
except:
|
||||
_mode = None
|
||||
try:
|
||||
_stdev = stdev(c_data)
|
||||
except:
|
||||
_stdev = None
|
||||
try:
|
||||
_variance = variance(c_data)
|
||||
except:
|
||||
_variance = None
|
||||
|
||||
return _mean, _median, _mode, _stdev, _variance
|
||||
|
||||
elif method == "row" or method == 2:
|
||||
|
||||
r_data = []
|
||||
|
||||
for i in range(len(data[arg])):
|
||||
r_data.append(float(data[arg][i]))
|
||||
|
||||
_mean = mean(r_data)
|
||||
_median = median(r_data)
|
||||
try:
|
||||
_mode = mode(r_data)
|
||||
except:
|
||||
_mode = None
|
||||
try:
|
||||
_stdev = stdev(r_data)
|
||||
except:
|
||||
_stdev = None
|
||||
try:
|
||||
_variance = variance(r_data)
|
||||
except:
|
||||
_variance = None
|
||||
|
||||
return _mean, _median, _mode, _stdev, _variance
|
||||
|
||||
else:
|
||||
raise error("method error")
|
||||
"""
|
||||
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean) / stdev
|
||||
return score
|
||||
|
||||
# mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
|
||||
def z_normalize(x, y, mode):
|
||||
|
||||
x_norm = np.array().astype(float)
|
||||
y_norm = np.array().astype(float)
|
||||
|
||||
mean = 0
|
||||
stdev = 0
|
||||
|
||||
if mode == 'x':
|
||||
_mean, _median, _mode, _stdev, _variance = basic_stats(x, "1d", 0)
|
||||
|
||||
for i in range(0, len(x), 1):
|
||||
x_norm.append(z_score(x[i], _mean, _stdev))
|
||||
|
||||
return x_norm, y
|
||||
|
||||
if mode == 'y':
|
||||
_mean, _median, _mode, _stdev, _variance = basic_stats(y, "1d", 0)
|
||||
|
||||
for i in range(0, len(y), 1):
|
||||
y_norm.append(z_score(y[i], _mean, _stdev))
|
||||
|
||||
return x, y_norm
|
||||
|
||||
if mode == 'both':
|
||||
_mean, _median, _mode, _stdev, _variance = basic_stats(x, "1d", 0)
|
||||
|
||||
for i in range(0, len(x), 1):
|
||||
x_norm.append(z_score(x[i], _mean, _stdev))
|
||||
|
||||
_mean, _median, _mode, _stdev, _variance = basic_stats(y, "1d", 0)
|
||||
|
||||
for i in range(0, len(y), 1):
|
||||
y_norm.append(z_score(y[i], _mean, _stdev))
|
||||
|
||||
return x_norm, y_norm
|
||||
|
||||
else:
|
||||
|
||||
return error('method error')
|
||||
|
||||
|
||||
# returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
|
||||
|
||||
z_split = np.array().astype(float)
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) *
|
||||
math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
||||
i = i + delta
|
||||
if i > high_bound:
|
||||
break
|
||||
|
||||
return z_split
|
||||
|
||||
|
||||
def histo_analysis(hist_data, delta, low_bound, high_bound):
|
||||
|
||||
if hist_data == 'debug':
|
||||
return ('returns list of predicted values based on historical data; input delta for delta step in z-score and lower and higher bounds in number of standard deviations')
|
||||
|
||||
derivative = []
|
||||
|
||||
for i in range(0, len(hist_data), 1):
|
||||
try:
|
||||
derivative.append(float(hist_data[i - 1]) - float(hist_data[i]))
|
||||
except:
|
||||
pass
|
||||
|
||||
derivative_sorted = sorted(derivative, key=int)
|
||||
mean_derivative = basic_stats(derivative_sorted, "1d", 0)[0]
|
||||
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
|
||||
|
||||
predictions = []
|
||||
pred_change = 0
|
||||
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
if i > high_bound:
|
||||
break
|
||||
|
||||
try:
|
||||
pred_change = mean_derivative + i * stdev_derivative
|
||||
except:
|
||||
pred_change = mean_derivative
|
||||
|
||||
predictions.append(float(hist_data[-1:][0]) + pred_change)
|
||||
|
||||
i = i + delta
|
||||
|
||||
return predictions
|
||||
|
||||
|
||||
def poly_regression(x, y, power):
|
||||
|
||||
if x == "null": # if x is 'null', then x will be filled with integer points between 1 and the size of y
|
||||
x = []
|
||||
|
||||
for i in range(len(y)):
|
||||
print(i)
|
||||
x.append(i + 1)
|
||||
|
||||
reg_eq = scipy.polyfit(x, y, deg=power)
|
||||
eq_str = ""
|
||||
|
||||
for i in range(0, len(reg_eq), 1):
|
||||
if i < len(reg_eq) - 1:
|
||||
eq_str = eq_str + str(reg_eq[i]) + \
|
||||
"*(z**" + str(len(reg_eq) - i - 1) + ")+"
|
||||
else:
|
||||
eq_str = eq_str + str(reg_eq[i]) + \
|
||||
"*(z**" + str(len(reg_eq) - i - 1) + ")"
|
||||
|
||||
vals = []
|
||||
|
||||
for i in range(0, len(x), 1):
|
||||
z = x[i]
|
||||
|
||||
try:
|
||||
exec("vals.append(" + eq_str + ")")
|
||||
except:
|
||||
pass
|
||||
|
||||
_rms = rms(vals, y)
|
||||
r2_d2 = r_squared(vals, y)
|
||||
|
||||
return [eq_str, _rms, r2_d2]
|
||||
|
||||
|
||||
def log_regression(x, y, base):
|
||||
|
||||
x_fit = []
|
||||
|
||||
for i in range(len(x)):
|
||||
try:
|
||||
# change of base for logs
|
||||
x_fit.append(np.log(x[i]) / np.log(base))
|
||||
except:
|
||||
pass
|
||||
|
||||
# y = reg_eq[0] * log(x, base) + reg_eq[1]
|
||||
reg_eq = np.polyfit(x_fit, y, 1)
|
||||
q_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + \
|
||||
str(base) + "))+" + str(reg_eq[1])
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
z = x[i]
|
||||
|
||||
try:
|
||||
exec("vals.append(" + eq_str + ")")
|
||||
except:
|
||||
pass
|
||||
|
||||
_rms = rms(vals, y)
|
||||
r2_d2 = r_squared(vals, y)
|
||||
|
||||
return eq_str, _rms, r2_d2
|
||||
|
||||
|
||||
def exp_regression(x, y, base):
|
||||
|
||||
y_fit = []
|
||||
|
||||
for i in range(len(y)):
|
||||
try:
|
||||
# change of base for logs
|
||||
y_fit.append(np.log(y[i]) / np.log(base))
|
||||
except:
|
||||
pass
|
||||
|
||||
# y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
||||
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit))
|
||||
eq_str = "(" + str(base) + "**(" + \
|
||||
str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
z = x[i]
|
||||
|
||||
try:
|
||||
exec("vals.append(" + eq_str + ")")
|
||||
except:
|
||||
pass
|
||||
|
||||
_rms = rms(vals, y)
|
||||
r2_d2 = r_squared(vals, y)
|
||||
|
||||
return eq_str, _rms, r2_d2
|
||||
|
||||
|
||||
def tanh_regression(x, y):
|
||||
|
||||
def tanh(x, a, b, c, d):
|
||||
|
||||
return a * np.tanh(b * (x - c)) + d
|
||||
|
||||
reg_eq = np.float64(curve_fit(tanh, np.array(x), np.array(y))[0]).tolist()
|
||||
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + \
|
||||
"*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
z = x[i]
|
||||
try:
|
||||
exec("vals.append(" + eq_str + ")")
|
||||
except:
|
||||
pass
|
||||
|
||||
_rms = rms(vals, y)
|
||||
r2_d2 = r_squared(vals, y)
|
||||
|
||||
return eq_str, _rms, r2_d2
|
||||
|
||||
|
||||
def r_squared(predictions, targets): # assumes equal size inputs
|
||||
|
||||
return metrics.r2_score(np.array(targets), np.array(predictions))
|
||||
|
||||
|
||||
def rms(predictions, targets): # assumes equal size inputs
|
||||
|
||||
_sum = 0
|
||||
|
||||
for i in range(0, len(targets), 1):
|
||||
_sum = (targets[i] - predictions[i]) ** 2
|
||||
|
||||
return float(math.sqrt(_sum / len(targets)))
|
||||
|
||||
|
||||
def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
||||
|
||||
# performance overfit = performance(train) - performance(test) where performance is r^2
|
||||
# error overfit = error(train) - error(test) where error is rms; biased towards smaller values
|
||||
|
||||
vals = []
|
||||
|
||||
for i in range(0, len(x_test), 1):
|
||||
|
||||
z = x_test[i]
|
||||
|
||||
exec("vals.append(" + equation + ")")
|
||||
|
||||
r2_test = r_squared(vals, y_test)
|
||||
rms_test = rms(vals, y_test)
|
||||
|
||||
return r2_train - r2_test
|
||||
|
||||
|
||||
def strip_data(data, mode):
|
||||
|
||||
if mode == "adam": # x is the row number, y are the data
|
||||
pass
|
||||
|
||||
if mode == "eve": # x are the data, y is the column number
|
||||
pass
|
||||
|
||||
else:
|
||||
raise error("mode error")
|
||||
|
||||
|
||||
# _range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
|
||||
def optimize_regression(x, y, _range, resolution):
|
||||
# usage not: for demonstration purpose only, performance is shit
|
||||
if type(resolution) != int:
|
||||
raise error("resolution must be int")
|
||||
|
||||
x_train = x
|
||||
y_train = []
|
||||
|
||||
for i in range(len(y)):
|
||||
y_train.append(float(y[i]))
|
||||
|
||||
x_test = []
|
||||
y_test = []
|
||||
|
||||
for i in range(0, math.floor(len(x) * 0.5), 1):
|
||||
index = random.randint(0, len(x) - 1)
|
||||
|
||||
x_test.append(x[index])
|
||||
y_test.append(float(y[index]))
|
||||
|
||||
x_train.pop(index)
|
||||
y_train.pop(index)
|
||||
|
||||
#print(x_train, x_test)
|
||||
#print(y_train, y_test)
|
||||
|
||||
eqs = []
|
||||
rmss = []
|
||||
r2s = []
|
||||
|
||||
for i in range(0, _range + 1, 1):
|
||||
try:
|
||||
x, y, z = poly_regression(x_train, y_train, i)
|
||||
eqs.append(x)
|
||||
rmss.append(y)
|
||||
r2s.append(z)
|
||||
except:
|
||||
pass
|
||||
|
||||
for i in range(1, 100 * resolution + 1):
|
||||
try:
|
||||
x, y, z = exp_regression(x_train, y_train, float(i / resolution))
|
||||
eqs.append(x)
|
||||
rmss.append(y)
|
||||
r2s.append(z)
|
||||
except:
|
||||
pass
|
||||
|
||||
for i in range(1, 100 * resolution + 1):
|
||||
try:
|
||||
x, y, z = log_regression(x_train, y_train, float(i / resolution))
|
||||
eqs.append(x)
|
||||
rmss.append(y)
|
||||
r2s.append(z)
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
x, y, z = tanh_regression(x_train, y_train)
|
||||
|
||||
eqs.append(x)
|
||||
rmss.append(y)
|
||||
r2s.append(z)
|
||||
except:
|
||||
pass
|
||||
|
||||
# marks all equations where r2 = 1 as they 95% of the time overfit the data
|
||||
for i in range(0, len(eqs), 1):
|
||||
if r2s[i] == 1:
|
||||
eqs[i] = ""
|
||||
rmss[i] = ""
|
||||
r2s[i] = ""
|
||||
|
||||
while True: # removes all equations marked for removal
|
||||
try:
|
||||
eqs.remove('')
|
||||
rmss.remove('')
|
||||
r2s.remove('')
|
||||
except:
|
||||
break
|
||||
|
||||
overfit = []
|
||||
|
||||
for i in range(0, len(eqs), 1):
|
||||
|
||||
overfit.append(calc_overfit(eqs[i], rmss[i], r2s[i], x_test, y_test))
|
||||
|
||||
return eqs, rmss, r2s, overfit
|
||||
|
||||
|
||||
def select_best_regression(eqs, rmss, r2s, overfit, selector):
|
||||
|
||||
b_eq = ""
|
||||
b_rms = 0
|
||||
b_r2 = 0
|
||||
b_overfit = 0
|
||||
|
||||
ind = 0
|
||||
|
||||
if selector == "min_overfit":
|
||||
|
||||
ind = np.argmin(overfit)
|
||||
|
||||
b_eq = eqs[ind]
|
||||
b_rms = rmss[ind]
|
||||
b_r2 = r2s[ind]
|
||||
b_overfit = overfit[ind]
|
||||
|
||||
if selector == "max_r2s":
|
||||
|
||||
ind = np.argmax(r2s)
|
||||
b_eq = eqs[ind]
|
||||
b_rms = rmss[ind]
|
||||
b_r2 = r2s[ind]
|
||||
b_overfit = overfit[ind]
|
||||
|
||||
return b_eq, b_rms, b_r2, b_overfit
|
||||
|
||||
|
||||
def p_value(x, y): # takes 2 1d arrays
|
||||
|
||||
return stats.ttest_ind(x, y)[1]
|
||||
|
||||
|
||||
# assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
|
||||
def basic_analysis(data):
|
||||
|
||||
row = len(data)
|
||||
column = []
|
||||
|
||||
for i in range(0, row, 1):
|
||||
column.append(len(data[i]))
|
||||
|
||||
column_max = max(column)
|
||||
row_b_stats = []
|
||||
row_histo = []
|
||||
|
||||
for i in range(0, row, 1):
|
||||
row_b_stats.append(basic_stats(data, "row", i))
|
||||
row_histo.append(histo_analysis(data[i], 0.67449, -0.67449, 0.67449))
|
||||
|
||||
column_b_stats = []
|
||||
|
||||
for i in range(0, column_max, 1):
|
||||
column_b_stats.append(basic_stats(data, "column", i))
|
||||
|
||||
return[row_b_stats, column_b_stats, row_histo]
|
||||
|
||||
|
||||
def benchmark(x, y):
|
||||
|
||||
start_g = time.time()
|
||||
generate_data("data/data.csv", x, y, -10, 10)
|
||||
end_g = time.time()
|
||||
|
||||
start_a = time.time()
|
||||
basic_analysis("data/data.csv")
|
||||
end_a = time.time()
|
||||
|
||||
return [(end_g - start_g), (end_a - start_a)]
|
||||
|
||||
|
||||
def generate_data(filename, x, y, low, high):
|
||||
|
||||
file = open(filename, "w")
|
||||
|
||||
for i in range(0, y, 1):
|
||||
temp = ""
|
||||
|
||||
for j in range(0, x - 1, 1):
|
||||
temp = str(random.uniform(low, high)) + "," + temp
|
||||
|
||||
temp = temp + str(random.uniform(low, high))
|
||||
file.write(temp + "\n")
|
||||
|
||||
def mean(data):
|
||||
|
||||
return np.mean(data)
|
||||
|
||||
def median(data):
|
||||
|
||||
return np.median(data)
|
||||
|
||||
def mode(data):
|
||||
|
||||
return np.argmax(np.bincount(data))
|
||||
|
||||
def stdev(data):
|
||||
|
||||
return np.std(data)
|
||||
|
||||
def variance(data):
|
||||
|
||||
return np.var(data)
|
||||
|
||||
"""
|
||||
|
||||
class StatisticsError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
def _sum(data, start=0):
|
||||
count = 0
|
||||
n, d = _exact_ratio(start)
|
||||
partials = {d: n}
|
||||
partials_get = partials.get
|
||||
T = _coerce(int, type(start))
|
||||
for typ, values in groupby(data, type):
|
||||
T = _coerce(T, typ) # or raise TypeError
|
||||
for n, d in map(_exact_ratio, values):
|
||||
count += 1
|
||||
partials[d] = partials_get(d, 0) + n
|
||||
if None in partials:
|
||||
|
||||
total = partials[None]
|
||||
assert not _isfinite(total)
|
||||
else:
|
||||
|
||||
total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
|
||||
return (T, total, count)
|
||||
|
||||
|
||||
def _isfinite(x):
|
||||
try:
|
||||
return x.is_finite() # Likely a Decimal.
|
||||
except AttributeError:
|
||||
return math.isfinite(x) # Coerces to float first.
|
||||
|
||||
|
||||
def _coerce(T, S):
|
||||
|
||||
assert T is not bool, "initial type T is bool"
|
||||
|
||||
if T is S:
|
||||
return T
|
||||
|
||||
if S is int or S is bool:
|
||||
return T
|
||||
if T is int:
|
||||
return S
|
||||
|
||||
if issubclass(S, T):
|
||||
return S
|
||||
if issubclass(T, S):
|
||||
return T
|
||||
|
||||
if issubclass(T, int):
|
||||
return S
|
||||
if issubclass(S, int):
|
||||
return T
|
||||
|
||||
if issubclass(T, Fraction) and issubclass(S, float):
|
||||
return S
|
||||
if issubclass(T, float) and issubclass(S, Fraction):
|
||||
return T
|
||||
|
||||
msg = "don't know how to coerce %s and %s"
|
||||
raise TypeError(msg % (T.__name__, S.__name__))
|
||||
|
||||
|
||||
def _exact_ratio(x):
|
||||
|
||||
try:
|
||||
|
||||
if type(x) is float or type(x) is Decimal:
|
||||
return x.as_integer_ratio()
|
||||
try:
|
||||
|
||||
return (x.numerator, x.denominator)
|
||||
except AttributeError:
|
||||
try:
|
||||
|
||||
return x.as_integer_ratio()
|
||||
except AttributeError:
|
||||
|
||||
pass
|
||||
except (OverflowError, ValueError):
|
||||
|
||||
assert not _isfinite(x)
|
||||
return (x, None)
|
||||
msg = "can't convert type '{}' to numerator/denominator"
|
||||
raise TypeError(msg.format(type(x).__name__))
|
||||
|
||||
|
||||
def _convert(value, T):
|
||||
|
||||
if type(value) is T:
|
||||
|
||||
return value
|
||||
if issubclass(T, int) and value.denominator != 1:
|
||||
T = float
|
||||
try:
|
||||
|
||||
return T(value)
|
||||
except TypeError:
|
||||
if issubclass(T, Decimal):
|
||||
return T(value.numerator) / T(value.denominator)
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
def _counts(data):
|
||||
|
||||
table = collections.Counter(iter(data)).most_common()
|
||||
if not table:
|
||||
return table
|
||||
|
||||
maxfreq = table[0][1]
|
||||
for i in range(1, len(table)):
|
||||
if table[i][1] != maxfreq:
|
||||
table = table[:i]
|
||||
break
|
||||
return table
|
||||
|
||||
|
||||
def _find_lteq(a, x):
|
||||
|
||||
i = bisect_left(a, x)
|
||||
if i != len(a) and a[i] == x:
|
||||
return i
|
||||
raise ValueError
|
||||
|
||||
|
||||
def _find_rteq(a, l, x):
|
||||
|
||||
i = bisect_right(a, x, lo=l)
|
||||
if i != (len(a) + 1) and a[i - 1] == x:
|
||||
return i - 1
|
||||
raise ValueError
|
||||
|
||||
|
||||
def _fail_neg(values, errmsg='negative value'):
|
||||
|
||||
for x in values:
|
||||
if x < 0:
|
||||
raise StatisticsError(errmsg)
|
||||
yield x
|
||||
def mean(data):
|
||||
|
||||
if iter(data) is data:
|
||||
data = list(data)
|
||||
n = len(data)
|
||||
if n < 1:
|
||||
raise StatisticsError('mean requires at least one data point')
|
||||
T, total, count = _sum(data)
|
||||
assert count == n
|
||||
return _convert(total / n, T)
|
||||
|
||||
|
||||
def median(data):
|
||||
|
||||
data = sorted(data)
|
||||
n = len(data)
|
||||
if n == 0:
|
||||
raise StatisticsError("no median for empty data")
|
||||
if n % 2 == 1:
|
||||
return data[n // 2]
|
||||
else:
|
||||
i = n // 2
|
||||
return (data[i - 1] + data[i]) / 2
|
||||
|
||||
|
||||
def mode(data):
|
||||
|
||||
table = _counts(data)
|
||||
if len(table) == 1:
|
||||
return table[0][0]
|
||||
elif table:
|
||||
raise StatisticsError(
|
||||
'no unique mode; found %d equally common values' % len(table)
|
||||
)
|
||||
else:
|
||||
raise StatisticsError('no mode for empty data')
|
||||
|
||||
|
||||
def _ss(data, c=None):
|
||||
|
||||
if c is None:
|
||||
c = mean(data)
|
||||
T, total, count = _sum((x - c)**2 for x in data)
|
||||
|
||||
U, total2, count2 = _sum((x - c) for x in data)
|
||||
assert T == U and count == count2
|
||||
total -= total2**2 / len(data)
|
||||
assert not total < 0, 'negative sum of square deviations: %f' % total
|
||||
return (T, total)
|
||||
|
||||
|
||||
def variance(data, xbar=None):
|
||||
|
||||
if iter(data) is data:
|
||||
data = list(data)
|
||||
n = len(data)
|
||||
if n < 2:
|
||||
raise StatisticsError('variance requires at least two data points')
|
||||
T, ss = _ss(data, xbar)
|
||||
return _convert(ss / (n - 1), T)
|
||||
|
||||
|
||||
def stdev(data, xbar=None):
|
||||
|
||||
var = variance(data, xbar)
|
||||
try:
|
||||
return var.sqrt()
|
||||
except AttributeError:
|
||||
return math.sqrt(var)
|
||||
"""
|
35536
dep/2019/analysis/analysis.c
Normal file
35536
dep/2019/analysis/analysis.c
Normal file
File diff suppressed because it is too large
Load Diff
BIN
dep/2019/analysis/analysis.cp37-win_amd64.pyd
Normal file
BIN
dep/2019/analysis/analysis.cp37-win_amd64.pyd
Normal file
Binary file not shown.
2
dep/2019/analysis/compile.bat
Normal file
2
dep/2019/analysis/compile.bat
Normal file
@@ -0,0 +1,2 @@
|
||||
python setup.py build_ext --inplace
|
||||
pause
|
1
dep/2019/analysis/compile.sh
Normal file
1
dep/2019/analysis/compile.sh
Normal file
@@ -0,0 +1 @@
|
||||
python setup.py build_ext --inplace
|
5
dep/2019/analysis/setup.py
Normal file
5
dep/2019/analysis/setup.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from distutils.core import setup
|
||||
from Cython.Build import cythonize
|
||||
|
||||
setup(name='analysis',
|
||||
ext_modules=cythonize("analysis.py"))
|
BIN
dep/2019/apps/android/apk/1.0.0.000/app-debug.apk
Normal file
BIN
dep/2019/apps/android/apk/1.0.0.000/app-debug.apk
Normal file
Binary file not shown.
BIN
dep/2019/apps/android/apk/1.0.0.001/app-release.apk
Normal file
BIN
dep/2019/apps/android/apk/1.0.0.001/app-release.apk
Normal file
Binary file not shown.
BIN
dep/2019/apps/android/apk/1.0.0.002/app-debug.apk
Normal file
BIN
dep/2019/apps/android/apk/1.0.0.002/app-debug.apk
Normal file
Binary file not shown.
BIN
dep/2019/apps/android/apk/1.0.0.003/app-debug.apk
Normal file
BIN
dep/2019/apps/android/apk/1.0.0.003/app-debug.apk
Normal file
Binary file not shown.
BIN
dep/2019/apps/android/apk/debug/app-debug.apk
Normal file
BIN
dep/2019/apps/android/apk/debug/app-debug.apk
Normal file
Binary file not shown.
1
dep/2019/apps/android/apk/debug/output.json
Normal file
1
dep/2019/apps/android/apk/debug/output.json
Normal file
@@ -0,0 +1 @@
|
||||
[{"outputType":{"type":"APK"},"apkInfo":{"type":"MAIN","splits":[],"versionCode":1,"versionName":"1.0","enabled":true,"outputFile":"app-debug.apk","fullName":"debug","baseName":"debug"},"path":"app-debug.apk","properties":{}}]
|
13
dep/2019/apps/android/source/.gitignore
vendored
Normal file
13
dep/2019/apps/android/source/.gitignore
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
*.iml
|
||||
.gradle
|
||||
/local.properties
|
||||
/.idea/caches
|
||||
/.idea/libraries
|
||||
/.idea/modules.xml
|
||||
/.idea/workspace.xml
|
||||
/.idea/navEditor.xml
|
||||
/.idea/assetWizardSettings.xml
|
||||
.DS_Store
|
||||
/build
|
||||
/captures
|
||||
.externalNativeBuild
|
29
dep/2019/apps/android/source/.idea/codeStyles/Project.xml
generated
Normal file
29
dep/2019/apps/android/source/.idea/codeStyles/Project.xml
generated
Normal file
@@ -0,0 +1,29 @@
|
||||
<component name="ProjectCodeStyleConfiguration">
|
||||
<code_scheme name="Project" version="173">
|
||||
<Objective-C-extensions>
|
||||
<file>
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Import" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Macro" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Typedef" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Enum" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Constant" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Global" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Struct" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="FunctionPredecl" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Function" />
|
||||
</file>
|
||||
<class>
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Property" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Synthesize" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="InitMethod" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="StaticMethod" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="InstanceMethod" />
|
||||
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="DeallocMethod" />
|
||||
</class>
|
||||
<extensions>
|
||||
<pair source="cpp" header="h" fileNamingConvention="NONE" />
|
||||
<pair source="c" header="h" fileNamingConvention="NONE" />
|
||||
</extensions>
|
||||
</Objective-C-extensions>
|
||||
</code_scheme>
|
||||
</component>
|
18
dep/2019/apps/android/source/.idea/gradle.xml
generated
Normal file
18
dep/2019/apps/android/source/.idea/gradle.xml
generated
Normal file
@@ -0,0 +1,18 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="GradleSettings">
|
||||
<option name="linkedExternalProjectsSettings">
|
||||
<GradleProjectSettings>
|
||||
<option name="distributionType" value="DEFAULT_WRAPPED" />
|
||||
<option name="externalProjectPath" value="$PROJECT_DIR$" />
|
||||
<option name="modules">
|
||||
<set>
|
||||
<option value="$PROJECT_DIR$" />
|
||||
<option value="$PROJECT_DIR$/app" />
|
||||
</set>
|
||||
</option>
|
||||
<option name="resolveModulePerSourceSet" value="false" />
|
||||
</GradleProjectSettings>
|
||||
</option>
|
||||
</component>
|
||||
</project>
|
9
dep/2019/apps/android/source/.idea/misc.xml
generated
Normal file
9
dep/2019/apps/android/source/.idea/misc.xml
generated
Normal file
@@ -0,0 +1,9 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_11" project-jdk-name="11" project-jdk-type="JavaSDK">
|
||||
<output url="file://$PROJECT_DIR$/build/classes" />
|
||||
</component>
|
||||
<component name="ProjectType">
|
||||
<option name="id" value="Android" />
|
||||
</component>
|
||||
</project>
|
12
dep/2019/apps/android/source/.idea/runConfigurations.xml
generated
Normal file
12
dep/2019/apps/android/source/.idea/runConfigurations.xml
generated
Normal file
@@ -0,0 +1,12 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="RunConfigurationProducerService">
|
||||
<option name="ignoredProducers">
|
||||
<set>
|
||||
<option value="org.jetbrains.plugins.gradle.execution.test.runner.AllInPackageGradleConfigurationProducer" />
|
||||
<option value="org.jetbrains.plugins.gradle.execution.test.runner.TestClassGradleConfigurationProducer" />
|
||||
<option value="org.jetbrains.plugins.gradle.execution.test.runner.TestMethodGradleConfigurationProducer" />
|
||||
</set>
|
||||
</option>
|
||||
</component>
|
||||
</project>
|
6
dep/2019/apps/android/source/.idea/vcs.xml
generated
Normal file
6
dep/2019/apps/android/source/.idea/vcs.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$/../../.." vcs="Git" />
|
||||
</component>
|
||||
</project>
|
1
dep/2019/apps/android/source/app/.gitignore
vendored
Normal file
1
dep/2019/apps/android/source/app/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
/build
|
28
dep/2019/apps/android/source/app/build.gradle
Normal file
28
dep/2019/apps/android/source/app/build.gradle
Normal file
@@ -0,0 +1,28 @@
|
||||
apply plugin: 'com.android.application'
|
||||
|
||||
android {
|
||||
compileSdkVersion 28
|
||||
defaultConfig {
|
||||
applicationId "com.example.titanscouting"
|
||||
minSdkVersion 16
|
||||
targetSdkVersion 28
|
||||
versionCode 1
|
||||
versionName "1.0"
|
||||
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
|
||||
}
|
||||
buildTypes {
|
||||
release {
|
||||
minifyEnabled false
|
||||
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation fileTree(dir: 'libs', include: ['*.jar'])
|
||||
implementation 'com.android.support:appcompat-v7:28.0.0'
|
||||
implementation 'com.android.support.constraint:constraint-layout:1.1.3'
|
||||
testImplementation 'junit:junit:4.12'
|
||||
androidTestImplementation 'com.android.support.test:runner:1.0.2'
|
||||
androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
|
||||
}
|
21
dep/2019/apps/android/source/app/proguard-rules.pro
vendored
Normal file
21
dep/2019/apps/android/source/app/proguard-rules.pro
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
# Add project specific ProGuard rules here.
|
||||
# You can control the set of applied configuration files using the
|
||||
# proguardFiles setting in build.gradle.
|
||||
#
|
||||
# For more details, see
|
||||
# http://developer.android.com/guide/developing/tools/proguard.html
|
||||
|
||||
# If your project uses WebView with JS, uncomment the following
|
||||
# and specify the fully qualified class name to the JavaScript interface
|
||||
# class:
|
||||
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
|
||||
# public *;
|
||||
#}
|
||||
|
||||
# Uncomment this to preserve the line number information for
|
||||
# debugging stack traces.
|
||||
#-keepattributes SourceFile,LineNumberTable
|
||||
|
||||
# If you keep the line number information, uncomment this to
|
||||
# hide the original source file name.
|
||||
#-renamesourcefileattribute SourceFile
|
BIN
dep/2019/apps/android/source/app/release/app-release.apk
Normal file
BIN
dep/2019/apps/android/source/app/release/app-release.apk
Normal file
Binary file not shown.
1
dep/2019/apps/android/source/app/release/output.json
Normal file
1
dep/2019/apps/android/source/app/release/output.json
Normal file
@@ -0,0 +1 @@
|
||||
[{"outputType":{"type":"APK"},"apkInfo":{"type":"MAIN","splits":[],"versionCode":1,"versionName":"1.0","enabled":true,"outputFile":"app-release.apk","fullName":"release","baseName":"release"},"path":"app-release.apk","properties":{}}]
|
@@ -0,0 +1,26 @@
|
||||
package com.example.titanscouting;
|
||||
|
||||
import android.content.Context;
|
||||
import android.support.test.InstrumentationRegistry;
|
||||
import android.support.test.runner.AndroidJUnit4;
|
||||
|
||||
import org.junit.Test;
|
||||
import org.junit.runner.RunWith;
|
||||
|
||||
import static org.junit.Assert.*;
|
||||
|
||||
/**
|
||||
* Instrumented test, which will execute on an Android device.
|
||||
*
|
||||
* @see <a href="http://d.android.com/tools/testing">Testing documentation</a>
|
||||
*/
|
||||
@RunWith(AndroidJUnit4.class)
|
||||
public class ExampleInstrumentedTest {
|
||||
@Test
|
||||
public void useAppContext() {
|
||||
// Context of the app under test.
|
||||
Context appContext = InstrumentationRegistry.getTargetContext();
|
||||
|
||||
assertEquals("com.example.titanscouting", appContext.getPackageName());
|
||||
}
|
||||
}
|
@@ -0,0 +1,28 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
package="com.example.titanscouting">
|
||||
|
||||
<uses-permission android:name="android.permission.INTERNET" />
|
||||
|
||||
<application
|
||||
android:allowBackup="true"
|
||||
android:icon="@mipmap/ic_launcher"
|
||||
android:label="@string/app_name"
|
||||
android:roundIcon="@drawable/binoculars_big"
|
||||
android:supportsRtl="true"
|
||||
android:theme="@style/AppTheme"
|
||||
android:usesCleartextTraffic="true">
|
||||
<activity android:name=".tits"></activity>
|
||||
<activity android:name=".launcher">
|
||||
<intent-filter>
|
||||
<action android:name="android.intent.action.MAIN" />
|
||||
|
||||
<category android:name="android.intent.category.LAUNCHER" />
|
||||
</intent-filter>
|
||||
</activity>
|
||||
<activity android:name=".MainActivity">
|
||||
|
||||
</activity>
|
||||
</application>
|
||||
|
||||
</manifest>
|
@@ -0,0 +1,32 @@
|
||||
package com.example.titanscouting;
|
||||
|
||||
import android.support.v7.app.AppCompatActivity;
|
||||
import android.os.Bundle;
|
||||
import android.webkit.WebView;
|
||||
import android.webkit.WebSettings;
|
||||
import android.webkit.WebViewClient;
|
||||
|
||||
public class MainActivity extends AppCompatActivity {
|
||||
|
||||
@Override
|
||||
protected void onCreate(Bundle savedInstanceState) {
|
||||
super.onCreate(savedInstanceState);
|
||||
setContentView(R.layout.activity_main);
|
||||
|
||||
|
||||
|
||||
WebView myWebView = (WebView) findViewById(R.id.webview);
|
||||
|
||||
myWebView.getSettings().setJavaScriptEnabled(true);
|
||||
myWebView.setWebViewClient(new WebViewClient());
|
||||
myWebView.loadUrl("http://titanrobotics.ddns.net:60080/public/");
|
||||
|
||||
myWebView.getSettings().setJavaScriptEnabled(true);
|
||||
myWebView.getSettings().setJavaScriptCanOpenWindowsAutomatically(true);
|
||||
myWebView.getSettings().setDomStorageEnabled(true);
|
||||
myWebView.getSettings().setDomStorageEnabled(true);
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
@@ -0,0 +1,49 @@
|
||||
package com.example.titanscouting;
|
||||
|
||||
import android.support.v7.app.AppCompatActivity;
|
||||
import android.os.Bundle;
|
||||
import android.app.Activity;
|
||||
import android.content.Intent;
|
||||
import android.view.Menu;
|
||||
import android.view.View;
|
||||
import android.view.View.OnClickListener;
|
||||
import android.widget.Button;
|
||||
import android.widget.EditText;
|
||||
public class launcher extends AppCompatActivity {
|
||||
|
||||
Button button;
|
||||
EditText passField;
|
||||
|
||||
@Override
|
||||
protected void onCreate(Bundle savedInstanceState) {
|
||||
super.onCreate(savedInstanceState);
|
||||
setContentView(R.layout.activity_launcher);
|
||||
|
||||
// Locate the button in activity_main.xml
|
||||
button = (Button) findViewById(R.id.launch_button);
|
||||
final EditText passField = (EditText)findViewById(R.id.editText);
|
||||
// Capture button clicks
|
||||
button.setOnClickListener(new OnClickListener() {
|
||||
public void onClick(View arg0) {
|
||||
|
||||
// Start NewActivity.class
|
||||
if(passField.getText().toString().equals("gimmetits")){
|
||||
|
||||
Intent myIntent = new Intent(launcher.this,
|
||||
tits.class);
|
||||
startActivity(myIntent);
|
||||
|
||||
}
|
||||
else {
|
||||
Intent myIntent = new Intent(launcher.this,
|
||||
MainActivity.class);
|
||||
startActivity(myIntent);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
@@ -0,0 +1,30 @@
|
||||
package com.example.titanscouting;
|
||||
|
||||
import android.content.Intent;
|
||||
import android.support.v7.app.AppCompatActivity;
|
||||
import android.os.Bundle;
|
||||
import android.view.View;
|
||||
import android.widget.Button;
|
||||
import android.widget.EditText;
|
||||
|
||||
public class tits extends AppCompatActivity {
|
||||
Button button;
|
||||
@Override
|
||||
protected void onCreate(Bundle savedInstanceState) {
|
||||
super.onCreate(savedInstanceState);
|
||||
setContentView(R.layout.activity_tits);
|
||||
|
||||
button = (Button) findViewById(R.id.button);
|
||||
// Capture button clicks
|
||||
button.setOnClickListener(new View.OnClickListener() {
|
||||
public void onClick(View arg0) {
|
||||
|
||||
|
||||
Intent myIntent = new Intent(tits.this,
|
||||
MainActivity.class);
|
||||
startActivity(myIntent);
|
||||
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
@@ -0,0 +1,34 @@
|
||||
<vector xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:aapt="http://schemas.android.com/aapt"
|
||||
android:width="108dp"
|
||||
android:height="108dp"
|
||||
android:viewportWidth="108"
|
||||
android:viewportHeight="108">
|
||||
<path
|
||||
android:fillType="evenOdd"
|
||||
android:pathData="M32,64C32,64 38.39,52.99 44.13,50.95C51.37,48.37 70.14,49.57 70.14,49.57L108.26,87.69L108,109.01L75.97,107.97L32,64Z"
|
||||
android:strokeWidth="1"
|
||||
android:strokeColor="#00000000">
|
||||
<aapt:attr name="android:fillColor">
|
||||
<gradient
|
||||
android:endX="78.5885"
|
||||
android:endY="90.9159"
|
||||
android:startX="48.7653"
|
||||
android:startY="61.0927"
|
||||
android:type="linear">
|
||||
<item
|
||||
android:color="#44000000"
|
||||
android:offset="0.0" />
|
||||
<item
|
||||
android:color="#00000000"
|
||||
android:offset="1.0" />
|
||||
</gradient>
|
||||
</aapt:attr>
|
||||
</path>
|
||||
<path
|
||||
android:fillColor="#FFFFFF"
|
||||
android:fillType="nonZero"
|
||||
android:pathData="M66.94,46.02L66.94,46.02C72.44,50.07 76,56.61 76,64L32,64C32,56.61 35.56,50.11 40.98,46.06L36.18,41.19C35.45,40.45 35.45,39.3 36.18,38.56C36.91,37.81 38.05,37.81 38.78,38.56L44.25,44.05C47.18,42.57 50.48,41.71 54,41.71C57.48,41.71 60.78,42.57 63.68,44.05L69.11,38.56C69.84,37.81 70.98,37.81 71.71,38.56C72.44,39.3 72.44,40.45 71.71,41.19L66.94,46.02ZM62.94,56.92C64.08,56.92 65,56.01 65,54.88C65,53.76 64.08,52.85 62.94,52.85C61.8,52.85 60.88,53.76 60.88,54.88C60.88,56.01 61.8,56.92 62.94,56.92ZM45.06,56.92C46.2,56.92 47.13,56.01 47.13,54.88C47.13,53.76 46.2,52.85 45.06,52.85C43.92,52.85 43,53.76 43,54.88C43,56.01 43.92,56.92 45.06,56.92Z"
|
||||
android:strokeWidth="1"
|
||||
android:strokeColor="#00000000" />
|
||||
</vector>
|
Binary file not shown.
After Width: | Height: | Size: 6.8 KiB |
Binary file not shown.
After Width: | Height: | Size: 925 B |
Binary file not shown.
After Width: | Height: | Size: 1.6 KiB |
@@ -0,0 +1,170 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<vector xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
android:width="108dp"
|
||||
android:height="108dp"
|
||||
android:viewportWidth="108"
|
||||
android:viewportHeight="108">
|
||||
<path
|
||||
android:fillColor="#008577"
|
||||
android:pathData="M0,0h108v108h-108z" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M9,0L9,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,0L19,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M29,0L29,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M39,0L39,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M49,0L49,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M59,0L59,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M69,0L69,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M79,0L79,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M89,0L89,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M99,0L99,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,9L108,9"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,19L108,19"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,29L108,29"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,39L108,39"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,49L108,49"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,59L108,59"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,69L108,69"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,79L108,79"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,89L108,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,99L108,99"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,29L89,29"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,39L89,39"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,49L89,49"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,59L89,59"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,69L89,69"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,79L89,79"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M29,19L29,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M39,19L39,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M49,19L49,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M59,19L59,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M69,19L69,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M79,19L79,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
</vector>
|
@@ -0,0 +1,42 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:app="http://schemas.android.com/apk/res-auto"
|
||||
xmlns:tools="http://schemas.android.com/tools"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="match_parent"
|
||||
tools:context=".launcher">
|
||||
|
||||
<Button
|
||||
android:id="@+id/launch_button"
|
||||
android:layout_width="253dp"
|
||||
android:layout_height="56dp"
|
||||
android:layout_marginStart="8dp"
|
||||
android:layout_marginLeft="8dp"
|
||||
android:layout_marginTop="8dp"
|
||||
android:layout_marginEnd="8dp"
|
||||
android:layout_marginRight="8dp"
|
||||
android:layout_marginBottom="8dp"
|
||||
android:text="Launch Titan Scouting"
|
||||
app:layout_constraintBottom_toBottomOf="parent"
|
||||
app:layout_constraintEnd_toEndOf="parent"
|
||||
app:layout_constraintStart_toStartOf="parent"
|
||||
app:layout_constraintTop_toTopOf="parent" />
|
||||
|
||||
<EditText
|
||||
android:id="@+id/editText"
|
||||
android:layout_width="wrap_content"
|
||||
android:layout_height="wrap_content"
|
||||
android:layout_marginStart="8dp"
|
||||
android:layout_marginLeft="8dp"
|
||||
android:layout_marginTop="8dp"
|
||||
android:layout_marginEnd="8dp"
|
||||
android:layout_marginRight="8dp"
|
||||
android:layout_marginBottom="8dp"
|
||||
android:ems="10"
|
||||
android:inputType="textPassword"
|
||||
app:layout_constraintBottom_toBottomOf="parent"
|
||||
app:layout_constraintEnd_toEndOf="parent"
|
||||
app:layout_constraintStart_toStartOf="parent"
|
||||
app:layout_constraintTop_toBottomOf="@+id/launch_button"
|
||||
app:layout_constraintVertical_bias="0.0" />
|
||||
</android.support.constraint.ConstraintLayout>
|
@@ -0,0 +1,19 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:app="http://schemas.android.com/apk/res-auto"
|
||||
xmlns:tools="http://schemas.android.com/tools"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="match_parent"
|
||||
tools:context=".MainActivity">
|
||||
|
||||
<WebView
|
||||
android:id="@+id/webview"
|
||||
android:layout_width="0dp"
|
||||
android:layout_height="0dp"
|
||||
app:layout_constraintBottom_toBottomOf="parent"
|
||||
app:layout_constraintEnd_toEndOf="parent"
|
||||
app:layout_constraintStart_toStartOf="parent"
|
||||
app:layout_constraintTop_toTopOf="parent"
|
||||
app:layout_constraintVertical_bias="0.48000002" />
|
||||
|
||||
</android.support.constraint.ConstraintLayout>
|
@@ -0,0 +1,36 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:app="http://schemas.android.com/apk/res-auto"
|
||||
xmlns:tools="http://schemas.android.com/tools"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="match_parent"
|
||||
tools:context=".tits">
|
||||
|
||||
<ImageView
|
||||
android:id="@+id/imageView"
|
||||
android:layout_width="372dp"
|
||||
android:layout_height="487dp"
|
||||
android:layout_marginTop="4dp"
|
||||
android:layout_marginBottom="215dp"
|
||||
app:layout_constraintBottom_toBottomOf="parent"
|
||||
app:layout_constraintEnd_toEndOf="parent"
|
||||
app:layout_constraintStart_toStartOf="parent"
|
||||
app:layout_constraintTop_toTopOf="parent"
|
||||
app:srcCompat="@drawable/uuh" />
|
||||
|
||||
<Button
|
||||
android:id="@+id/button"
|
||||
android:layout_width="198dp"
|
||||
android:layout_height="86dp"
|
||||
android:layout_marginStart="8dp"
|
||||
android:layout_marginLeft="8dp"
|
||||
android:layout_marginTop="8dp"
|
||||
android:layout_marginEnd="8dp"
|
||||
android:layout_marginRight="8dp"
|
||||
android:layout_marginBottom="8dp"
|
||||
android:text="Fuck Get Me Out"
|
||||
app:layout_constraintBottom_toBottomOf="parent"
|
||||
app:layout_constraintEnd_toEndOf="parent"
|
||||
app:layout_constraintStart_toStartOf="parent"
|
||||
app:layout_constraintTop_toBottomOf="@+id/imageView" />
|
||||
</android.support.constraint.ConstraintLayout>
|
@@ -0,0 +1,5 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
<background android:drawable="@drawable/ic_launcher_background" />
|
||||
<foreground android:drawable="@drawable/ic_launcher_foreground" />
|
||||
</adaptive-icon>
|
@@ -0,0 +1,5 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
<background android:drawable="@drawable/ic_launcher_background" />
|
||||
<foreground android:drawable="@drawable/ic_launcher_foreground" />
|
||||
</adaptive-icon>
|
Binary file not shown.
After Width: | Height: | Size: 2.9 KiB |
Binary file not shown.
After Width: | Height: | Size: 4.8 KiB |
Binary file not shown.
After Width: | Height: | Size: 2.0 KiB |
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user