mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 07:05:56 +00:00
analysis.py v 1.1.1.000
This commit is contained in:
parent
91d727b6ad
commit
941dd4838a
@ -7,10 +7,13 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.0.007"
|
||||
__version__ = "1.1.1.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.1.000:
|
||||
- added regression_engine()
|
||||
- added all regressions except polynomial
|
||||
1.1.0.007:
|
||||
- updated _init_device()
|
||||
1.1.0.006:
|
||||
@ -154,6 +157,7 @@ import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import math
|
||||
import regression
|
||||
from sklearn import metrics
|
||||
from sklearn import preprocessing
|
||||
import torch
|
||||
@ -219,7 +223,66 @@ def histo_analysis(hist_data):
|
||||
|
||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||
|
||||
#regressions
|
||||
@jit(forceobj=True)
|
||||
def regression_engine(device, inputs, outputs, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.1, *args):
|
||||
|
||||
regressions = []
|
||||
|
||||
if 'cuda' in device:
|
||||
|
||||
regression.set_device(device)
|
||||
|
||||
if 'linear' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
if 'log' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
if 'exp' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
#if 'poly' in args:
|
||||
|
||||
#TODO because Jacob hasnt fixed regression.py
|
||||
|
||||
if 'sig' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
else:
|
||||
|
||||
regression.set_device(device)
|
||||
|
||||
if 'linear' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
if 'log' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
if 'exp' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
#if 'poly' in args:
|
||||
|
||||
#TODO because Jacob hasnt fixed regression.py
|
||||
|
||||
if 'sig' in args:
|
||||
|
||||
model = regression.SGDTrain(regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||
|
||||
@jit(forceobj=True)
|
||||
def r_squared(predictions, targets): # assumes equal size inputs
|
||||
|
Loading…
Reference in New Issue
Block a user