mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
wait arthur moved this
This commit is contained in:
parent
6f9527c726
commit
d71b45a8e9
@ -1,217 +0,0 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import cudaregress'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.002"
|
||||
|
||||
# changelog should be viewed using print(cudaregress.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-
|
||||
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'factorial',
|
||||
'take_all_pwrs',
|
||||
'num_poly_terms',
|
||||
'set_device',
|
||||
'LinearRegKernel',
|
||||
'SigmoidalRegKernel',
|
||||
'LogRegKernel',
|
||||
'PolyRegKernel',
|
||||
'ExpRegKernel',
|
||||
'SigmoidalRegKernelArthur',
|
||||
'SGDTrain',
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
|
||||
# imports (just one for now):
|
||||
|
||||
import torch
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def factorial(n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*factorial(n-1)
|
||||
def num_poly_terms(num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + nt(num_vars, power-1)
|
||||
|
||||
def take_all_pwrs(vec,pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0])
|
||||
for i in torch.t(combins):
|
||||
out *= i
|
||||
return torch.cat(out,take_all_pwrs(vec, pwr-1))
|
||||
|
||||
def set_device(new_device):
|
||||
global device
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,mtx)+long_bias
|
||||
|
||||
class SigmoidalRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||||
|
||||
class SigmoidalRegKernelArthur():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias==torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class LogRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias==torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class ExpRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias==torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class PolyRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data)
|
||||
ls=loss(pred,ground)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
Loading…
Reference in New Issue
Block a user