mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 07:05:56 +00:00
lotta bug fixes
This commit is contained in:
parent
67393e0e09
commit
ecb6400b06
Binary file not shown.
Binary file not shown.
@ -758,7 +758,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
||||
x_test = []
|
||||
y_test = []
|
||||
|
||||
for i in range (0, math.floor(len(x) * 0.4), 1):
|
||||
for i in range (0, math.floor(len(x) * 0.5), 1):
|
||||
index = random.randint(0, len(x) - 1)
|
||||
|
||||
x_test.append(x[index])
|
||||
|
1
data analysis/data/scores.csv
Normal file
1
data analysis/data/scores.csv
Normal file
@ -0,0 +1 @@
|
||||
2022, 21, 23, 39, 50, 89, 97, 191, 213, 233, 236, 272, 289, 308, 310, 314, 317, 329, 355, 428, 436
2011, 1, 25, 34, 106, 112, 132, 146, 167, 184, 223, 256, 267, 304, 337, 339, 370, 411, 460, 485, 494
1101, 7, 11, 55, 81, 92, 144, 151, 157, 165, 174, 177, 220, 241, 312, 320, 341, 343, 347, 419, 473
821374, 6, 9, 11, 28, 31, 194, 200, 201, 246, 298, 340, 351, 355, 364, 388, 395, 414, 422, 429, 442
5, 33, 73, 102, 103, 137, 183, 200, 212, 218, 242, 249, 264, 294, 302, 310, 378, 400, 408, 457, 473
|
|
@ -41,6 +41,7 @@ import firebase_admin
|
||||
from firebase_admin import credentials
|
||||
from firebase_admin import firestore
|
||||
import analysis
|
||||
import titanlearn
|
||||
import visualization
|
||||
import os
|
||||
import sys
|
||||
@ -59,7 +60,7 @@ def titanservice():
|
||||
file_list = glob.glob(source_dir + '/*.csv') #supposedly sorts by alphabetical order, skips reading teams.csv because of redundancy
|
||||
data = []
|
||||
files = [fn for fn in glob.glob('data/*.csv')
|
||||
if not os.path.basename(fn).startswith('teams')]
|
||||
if not (os.path.basename(fn).startswith('teams'))] #scores will be handled sperately
|
||||
|
||||
for i in files:
|
||||
data.append(analysis.load_csv(i))
|
||||
@ -67,6 +68,7 @@ def titanservice():
|
||||
stats = []
|
||||
measure_stats = []
|
||||
teams = analysis.load_csv("data/teams.csv")
|
||||
scores = analysis.load_csv("data/scores.csv")
|
||||
|
||||
end = time.time()
|
||||
|
||||
@ -111,19 +113,82 @@ def titanservice():
|
||||
r2best_curve.pop(0)
|
||||
|
||||
#print(r2best_curve)
|
||||
|
||||
|
||||
measure_stats.append(teams[i] + ["|"] + list(analysis.basic_stats(line, 0, 0)) + ["|"] + list(analysis.histo_analysis(line, 1, -3, 3)) + ["|"] + ofbest_curve + ["|"] + r2best_curve)
|
||||
measure_stats.append(teams[i] + list(analysis.basic_stats(line, 0, 0)) + list(analysis.histo_analysis(line, 1, -3, 3)) + ofbest_curve + r2best_curve)
|
||||
|
||||
stats.append(list(measure_stats))
|
||||
|
||||
json_out = {}
|
||||
nishant = []
|
||||
for i in range(len(scores)):
|
||||
|
||||
ofbest_curve = [None]
|
||||
r2best_curve = [None]
|
||||
|
||||
line = measure[i]
|
||||
|
||||
#print(line)
|
||||
|
||||
x = list(range(len(line)))
|
||||
eqs, rmss, r2s, overfit = analysis.optimize_regression(x, line, 10, 1)
|
||||
|
||||
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "min_overfit")
|
||||
|
||||
#print(eqs, rmss, r2s, overfit)
|
||||
|
||||
for i in range(len(stats)):
|
||||
json_out[files[i]]=str(stats[i])
|
||||
ofbest_curve.append(beqs)
|
||||
ofbest_curve.append(brmss)
|
||||
ofbest_curve.append(br2s)
|
||||
ofbest_curve.append(boverfit)
|
||||
ofbest_curve.pop(0)
|
||||
|
||||
#print(json_out)
|
||||
#print(ofbest_curve)
|
||||
|
||||
db.collection(u'stats').document(u'stats-noNN').set(json_out)
|
||||
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "max_r2s")
|
||||
|
||||
r2best_curve.append(beqs)
|
||||
r2best_curve.append(brmss)
|
||||
r2best_curve.append(br2s)
|
||||
r2best_curve.append(boverfit)
|
||||
r2best_curve.pop(0)
|
||||
|
||||
#print(r2best_curve)
|
||||
|
||||
z = len(scores[0]) + 1
|
||||
nis_num = []
|
||||
|
||||
nis_num.append(eval(str(ofbest_curve[0])))
|
||||
nis_num.append(eval(str(r2best_curve[0])))
|
||||
|
||||
nis_num.append((eval(ofbest_curve[0]) + eval(r2best_curve[0])) / 2)
|
||||
|
||||
nishant.append(teams[i] + nis_num)
|
||||
|
||||
json_out = {}
|
||||
score_out = {}
|
||||
|
||||
#print(stats)
|
||||
|
||||
for i in range(len(teams)):
|
||||
json_out[str(teams[i][0])] = (stats[0][i])
|
||||
|
||||
for i in range(len(teams)):
|
||||
score_out[str(teams[i][0])] = (nishant[i])
|
||||
|
||||
print(json_out)
|
||||
|
||||
#print(json_out.get('5'))
|
||||
|
||||
location = db.collection(u'stats').document(u'stats-noNN')
|
||||
for i in range(len(teams)):
|
||||
general_general_stats = location.collection(teams[i][0])
|
||||
for j in range(len(files)):
|
||||
general_general_stats.document(files[j]).set({'stats':json_out.get(teams[i][0])})
|
||||
|
||||
for i in range(len(teams)):
|
||||
nnum = location.collection(teams[i][0]).document(u'nishant_number').set({'nishant':score_out.get(teams[i][0])})
|
||||
|
||||
#general_general_stats.collection().document('stats').set()
|
||||
#db.collection(u'stats').document(u'stats-noNN').set(score_out)
|
||||
|
||||
def pulldata():
|
||||
#TODO
|
||||
@ -173,3 +238,4 @@ firebase_admin.initialize_app(cred)
|
||||
db = firestore.client()
|
||||
|
||||
service() #finally we write something that isn't a function definition
|
||||
#titanservice()
|
||||
|
@ -198,4 +198,4 @@ def retyuoipufdyu():
|
||||
model = linear_nn(8, 100, 1, 20, act_fn = "relu")
|
||||
print(model)
|
||||
return train_sgd_simple(model,"regression", data, ground, learnrate=1e-4, iters=1000)
|
||||
retyuoipufdyu()
|
||||
#retyuoipufdyu()
|
||||
|
Loading…
Reference in New Issue
Block a user