mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 07:05:56 +00:00
dumb
This commit is contained in:
parent
00af69a3f5
commit
28b5f9d6a2
Binary file not shown.
@ -134,6 +134,8 @@ def service():
|
||||
|
||||
while True:
|
||||
|
||||
pulldata()
|
||||
|
||||
start = time.time()
|
||||
|
||||
print("[OK] starting calculations")
|
||||
|
@ -35,7 +35,7 @@ import math
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
#linear_nn: creates a fully connected network given params
|
||||
def linear_nn(in_dim, hidden_dim, out_dim, num_hidden, act_fn="tanh", end="softmax"):
|
||||
def linear_nn(in_dim, hidden_dim, out_dim, num_hidden, act_fn="tanh", end="none"):
|
||||
if act_fn.lower()=="tanh":
|
||||
k=OrderedDict([("in", torch.nn.Linear(in_dim,hidden_dim)), ('tanh0', torch.nn.Tanh())])
|
||||
for i in range(num_hidden):
|
||||
@ -72,7 +72,7 @@ def linear_nn(in_dim, hidden_dim, out_dim, num_hidden, act_fn="tanh", end="softm
|
||||
return torch.nn.Sequential(k)
|
||||
|
||||
#train_sgd_simple: trains network using SGD
|
||||
def train_sgd_simple(net, data, ground, dev=None, devg=None, iters=1000, learnrate=1e-4, testevery=1, graphsaveloc=None, modelsaveloc=None, loss="mse"):
|
||||
def train_sgd_simple(net, evalType, data, ground, dev=None, devg=None, iters=1000, learnrate=1e-4, testevery=1, graphsaveloc=None, modelsaveloc=None, loss="mse"):
|
||||
model=net.to(device)
|
||||
data=data.to(device)
|
||||
ground=ground.to(device)
|
||||
@ -81,7 +81,7 @@ def train_sgd_simple(net, data, ground, dev=None, devg=None, iters=1000, learnra
|
||||
losses=[]
|
||||
dev_losses=[]
|
||||
if loss.lower()=="mse":
|
||||
loss_fn = torch.nn.MSELoss(reduction='sum')
|
||||
loss_fn = torch.nn.MSELoss()
|
||||
elif loss.lower()=="cross entropy":
|
||||
loss_fn = torch.nn.CrossEntropyLoss()
|
||||
elif loss.lower()=="nll":
|
||||
@ -96,21 +96,34 @@ def train_sgd_simple(net, data, ground, dev=None, devg=None, iters=1000, learnra
|
||||
if i%testevery==0:
|
||||
with torch.no_grad():
|
||||
output = model(data)
|
||||
ap = metrics.average_precision_score(ground.numpy(), output.numpy())
|
||||
if evalType == "ap":
|
||||
ap = metrics.average_precision_score(ground.cpu().numpy(), output.cpu().numpy())
|
||||
if evalType == "regression":
|
||||
ap = metrics.explained_variance_score(ground.cpu().numpy(), output.cpu().numpy())
|
||||
losses.append(ap)
|
||||
print(str(i)+": "+str(ap))
|
||||
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="train AP")
|
||||
if dev != None:
|
||||
output = model(dev)
|
||||
ap = metrics.average_precision_score(devg.numpy(), output.numpy())
|
||||
dev_losses.append(ap)
|
||||
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="dev AP")
|
||||
print(evalType)
|
||||
if evalType == "ap":
|
||||
|
||||
ap = metrics.average_precision_score(devg.numpy(), output.numpy())
|
||||
dev_losses.append(ap)
|
||||
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="dev AP")
|
||||
elif evalType == "regression":
|
||||
ev = metrics.explained_variance_score(devg.numpy(), output.numpy())
|
||||
dev_losses.append(ev)
|
||||
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="dev EV")
|
||||
|
||||
|
||||
if graphsaveloc != None:
|
||||
plt.savefig(graphsaveloc+".pdf")
|
||||
with torch.enable_grad():
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = loss_fn(output, ground)
|
||||
print(loss.item())
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if modelsaveloc != None:
|
||||
@ -128,7 +141,7 @@ def train_sgd_minibatch(net, data, ground, dev=None, devg=None, epoch=100, batch
|
||||
losses=[]
|
||||
dev_losses=[]
|
||||
if loss.lower()=="mse":
|
||||
loss_fn = torch.nn.MSELoss(reduction='sum')
|
||||
loss_fn = torch.nretyuoipufdyun.MSELoss(reduction='sum')
|
||||
elif loss.lower()=="cross entropy":
|
||||
loss_fn = torch.nn.CrossEntropyLoss()
|
||||
elif loss.lower()=="nll":
|
||||
@ -138,7 +151,7 @@ def train_sgd_minibatch(net, data, ground, dev=None, devg=None, epoch=100, batch
|
||||
else:
|
||||
warnings.warn("Did not specify a valid loss function. Returning nothing.")
|
||||
return None
|
||||
optimizer=torch.optim.SGD(model.parameters(), lr=learnrate)
|
||||
optimizer=torch.optim.LBFGS(model.parameters(), lr=learnrate)
|
||||
itercount=0
|
||||
for i in range(epoch):
|
||||
print("EPOCH "+str(i)+" OF "+str(epoch-1))
|
||||
@ -176,3 +189,14 @@ def train_sgd_minibatch(net, data, ground, dev=None, devg=None, epoch=100, batch
|
||||
torch.save(model, modelsaveloc)
|
||||
plt.show()
|
||||
return model
|
||||
|
||||
def retyuoipufdyu():
|
||||
|
||||
data = torch.tensor([[ 1., 2., 5., 2., 5.],
|
||||
[27., 8., 4., 6., 10.],
|
||||
[12., 12., 12., 5., 6.],
|
||||
[10., 12., 10., 20., 2.],
|
||||
[ 1., 2., 3., 4., 5.]])
|
||||
ground = torch.tensor([15., 55., 47., 54., 15.])
|
||||
model = linear_nn(5, 10, 1, 3, act_fn = "relu")
|
||||
return train_sgd_simple(model,"regression", data, ground, learnrate=1e-2)
|
||||
|
Loading…
Reference in New Issue
Block a user