mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
analysis.py v 1.1.12.002, superscript.py
v 0.0.0.003
This commit is contained in:
parent
20833b29c1
commit
52d79ea25e
Binary file not shown.
@ -7,10 +7,12 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.12.001"
|
||||
__version__ = "1.1.12.002"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.12.002:
|
||||
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
||||
1.1.12.001:
|
||||
- improved readibility of regression outputs by stripping tensor data
|
||||
- used map with lambda to acheive the improved readibility
|
||||
@ -394,35 +396,31 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
||||
return regressions
|
||||
|
||||
@jit(nopython=True)
|
||||
def elo(starting_score, opposing_scores, observed, N, K):
|
||||
def elo(starting_score, opposing_score, observed, N, K):
|
||||
|
||||
expected = 1/(1+10**((np.array(opposing_scores) - starting_score)/N))
|
||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||
|
||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||
|
||||
@jit(forceobj=True)
|
||||
def gliko2(starting_score, starting_rd, starting_vol, opposing_scores, opposing_rd, observations):
|
||||
def gliko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
player = Gliko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||
|
||||
player.update_player([x for x in opposing_scores], [x for x in opposing_rd], observations)
|
||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||
|
||||
return (player.rating, player.rd, player.vol)
|
||||
|
||||
@jit(forceobj=True)
|
||||
def trueskill(teams_data, observations):#teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
|
||||
team_ratings = []
|
||||
|
||||
for team in teams_data:
|
||||
team_temp = []
|
||||
for player in team:
|
||||
if player != None:
|
||||
player = Trueskill.Rating(player[0], player[1])
|
||||
team_temp.append(player)
|
||||
else:
|
||||
player = Trueskill.Rating()
|
||||
team_temp.append(player)
|
||||
player = Trueskill.Rating(player[0], player[1])
|
||||
team_temp.append(player)
|
||||
team_ratings.append(team_temp)
|
||||
|
||||
return Trueskill.rate(teams_data, observations)
|
||||
|
@ -3,10 +3,12 @@
|
||||
# Notes:
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.0.002"
|
||||
__version__ = "0.0.0.003"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.0.0.003:
|
||||
- added metricsloop which is unfinished
|
||||
0.0.0.002:
|
||||
- added simpleloop which is untested until data is provided
|
||||
0.0.0.001:
|
||||
@ -27,6 +29,10 @@ __all__ = [
|
||||
from analysis import analysis as an
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
try:
|
||||
from analysis import trueskill as Trueskill
|
||||
except:
|
||||
import trueskill as Trueskill
|
||||
|
||||
def main():
|
||||
|
||||
@ -54,28 +60,49 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
|
||||
variable_vector.append(an.histo_analysis(variable))
|
||||
|
||||
if(test == "sr.lin" or test == "sregression.lin" or test == 2):
|
||||
if(test == "r.lin" or test == "regression.lin" or test == 2):
|
||||
|
||||
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["lin"]))
|
||||
|
||||
if(test == "sr.log" or test == "sregression.log" or test == 3):
|
||||
if(test == "r.log" or test == "regression.log" or test == 3):
|
||||
|
||||
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["log"]))
|
||||
|
||||
if(test == "sr.exp" or test == "sregression.exp" or test == 4):
|
||||
if(test == "r.exp" or test == "regression.exp" or test == 4):
|
||||
|
||||
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["exp"]))
|
||||
|
||||
if(test == "sr.ply" or test == "sregression.ply" or test == 5):
|
||||
if(test == "r.ply" or test == "regression.ply" or test == 5):
|
||||
|
||||
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["ply"]))
|
||||
|
||||
if(test == "sr.sig" or test == "sregression.sig" or test == 6):
|
||||
if(test == "r.sig" or test == "regression.sig" or test == 6):
|
||||
|
||||
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["sig"]))
|
||||
|
||||
def metricsloop(data):
|
||||
def metricsloop(team_lookup, data, tests): # expects array with [Match] ([Teams], [Win/Loss])
|
||||
|
||||
pass
|
||||
scores = []
|
||||
|
||||
elo_starting_score = 1500
|
||||
N = 1500
|
||||
K = 32
|
||||
|
||||
gl2_starting_score = 1500
|
||||
gl2_starting_rd = 350
|
||||
gl2_starting_vol = 0.06
|
||||
|
||||
for team in team_lookup:
|
||||
|
||||
elo = elo_starting_score
|
||||
gl2 = {"score": gl2_starting_score, "rd": gl2_starting_rd, "vol": gl2_starting_vol}
|
||||
ts = Trueskill.Rating()
|
||||
|
||||
scores[str(team)] = {"elo": elo, "gl2": gl2, "ts": ts} )
|
||||
|
||||
for match in data:
|
||||
|
||||
groups = data[0]
|
||||
observations = data[1]
|
||||
|
||||
main()
|
Loading…
Reference in New Issue
Block a user