mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
doc
This commit is contained in:
parent
9da4322aa9
commit
978a9a9a25
Binary file not shown.
@ -7,10 +7,15 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.12.000"
|
||||
__version__ = "1.1.12.001"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.12.001:
|
||||
- improved readibility of regression outputs by stripping tensor data
|
||||
- used map with lambda to acheive the improved readibility
|
||||
- lost numba jit support with regression, and generated_jit hangs at execution
|
||||
- TODO: reimplement correct numba integration in regression
|
||||
1.1.12.000:
|
||||
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
||||
1.1.11.010:
|
||||
@ -318,28 +323,33 @@ def histo_analysis(hist_data):
|
||||
|
||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||
|
||||
@jit(forceobj=True)
|
||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
||||
|
||||
regressions = []
|
||||
Regression().set_device(ndevice)
|
||||
|
||||
if 'lin' in args:
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
|
||||
if 'log' in args:
|
||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||
|
||||
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
|
||||
if 'exp' in args:
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
|
||||
if 'ply' in args:
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
plys = []
|
||||
limit = len(outputs[0])
|
||||
@ -374,10 +384,12 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
||||
regressions.append(plys)
|
||||
"""
|
||||
|
||||
if 'sig' in args:
|
||||
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
||||
|
||||
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
|
||||
return regressions
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user