mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-28 15:35:54 +00:00
analysis.py v 1.1.12.000
This commit is contained in:
parent
5bdd77ddc6
commit
9da4322aa9
Binary file not shown.
Binary file not shown.
@ -7,10 +7,12 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.11.010"
|
||||
__version__ = "1.1.12.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.12.000:
|
||||
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
||||
1.1.11.010:
|
||||
- alphabeticaly ordered import lists
|
||||
1.1.11.009:
|
||||
@ -317,10 +319,10 @@ def histo_analysis(hist_data):
|
||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||
|
||||
@jit(forceobj=True)
|
||||
def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01, power_limit = None): # inputs, outputs expects N-D array
|
||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
||||
|
||||
regressions = []
|
||||
Regression().set_device(device)
|
||||
Regression().set_device(ndevice)
|
||||
|
||||
if 'lin' in args:
|
||||
|
||||
@ -340,6 +342,25 @@ def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterat
|
||||
if 'ply' in args:
|
||||
|
||||
plys = []
|
||||
limit = len(outputs[0])
|
||||
|
||||
for i in range(2, limit):
|
||||
|
||||
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
|
||||
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
|
||||
model = model.fit(np.rot90(inputs), np.rot90(outputs))
|
||||
|
||||
params = model.steps[1][1].intercept_.tolist()
|
||||
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
|
||||
params.flatten()
|
||||
params = params.tolist()
|
||||
|
||||
plys.append(params)
|
||||
|
||||
regressions.append(plys)
|
||||
|
||||
""" non functional and dep
|
||||
plys = []
|
||||
|
||||
if power_limit == None:
|
||||
|
||||
@ -351,6 +372,7 @@ def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterat
|
||||
plys.append((model[0].parameters, model[1][::-1][0]))
|
||||
|
||||
regressions.append(plys)
|
||||
"""
|
||||
|
||||
if 'sig' in args:
|
||||
|
||||
|
@ -24,4 +24,10 @@ __all__ = [
|
||||
|
||||
from analysis import analysis as an
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import numpy as np
|
||||
|
||||
def main():
|
||||
|
||||
pass
|
||||
|
||||
main()
|
Loading…
Reference in New Issue
Block a user