mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
analysis?py v 1.1.11.002
This commit is contained in:
parent
08ff6aec8e
commit
cf14005b67
@ -11,6 +11,9 @@ __version__ = "1.1.11.001"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.11.002:
|
||||
- consolidated matrics
|
||||
- fixed __all__
|
||||
1.1.11.001:
|
||||
- added test/train split to RandomForestClassifier and RandomForestRegressor
|
||||
1.1.11.000:
|
||||
@ -206,15 +209,17 @@ __all__ = [
|
||||
'elo',
|
||||
'gliko2',
|
||||
'trueskill',
|
||||
'r_squared',
|
||||
'mse',
|
||||
'rms',
|
||||
'RegressionMetrics',
|
||||
'ClassificationMetrics',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
'knn',
|
||||
'knn_classifier',
|
||||
'knn_regressor',
|
||||
'NaiveBayes',
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'Regression',
|
||||
'Gliko2',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
@ -372,19 +377,38 @@ def trueskill(teams_data, observations):#teams_data is array of array of tuples
|
||||
return Trueskill.rate(teams_data, observations)
|
||||
|
||||
@jit(forceobj=True)
|
||||
def r_squared(predictions, targets): # assumes equal size inputs
|
||||
class RegressionMetrics():
|
||||
|
||||
return sklearn.metrics.r2_score(np.array(targets), np.array(predictions))
|
||||
def __new__(self, predictions, targets):
|
||||
|
||||
return r_squared(predictions, targets), mse(predictions, targets), rms(predictions, targets)
|
||||
|
||||
def r_squared(predictions, targets): # assumes equal size inputs
|
||||
|
||||
return sklearn.metrics.r2_score(targets, predictions)
|
||||
|
||||
def mse(predictions, targets):
|
||||
|
||||
return sklearn.metrics.mean_squared_error(targets, predictions)
|
||||
|
||||
def rms(predictions, targets):
|
||||
|
||||
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
||||
|
||||
@jit(forceobj=True)
|
||||
def mse(predictions, targets):
|
||||
class ClassificationMetrics():
|
||||
|
||||
return sklearn.metrics.mean_squared_error(np.array(targets), np.array(predictions))
|
||||
def __new__(self, predictions, targets):
|
||||
|
||||
@jit(forceobj=True)
|
||||
def rms(predictions, targets):
|
||||
return cm(predictions, targets), cr(predictions, targets)
|
||||
|
||||
return math.sqrt(sklearn.metrics.mean_squared_error(np.array(targets), np.array(predictions)))
|
||||
def cm(predictions, targets):
|
||||
|
||||
return sklearn.metrics.confusion_matrix(targets, predictions)
|
||||
|
||||
def cr(predictions, targets):
|
||||
|
||||
return sklearn.metrics.classification_report(targets, predictions)
|
||||
|
||||
@jit(nopython=True)
|
||||
def mean(data):
|
||||
@ -430,22 +454,29 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
|
||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||
model = model.fit(data_train,labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
metrics = ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
return model, cm, cr
|
||||
return model, metrics
|
||||
|
||||
@jit(forceobj=True)
|
||||
def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsClassifier()
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(inputs, outputs, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, RegressionMetrics(predictions, labels_test)
|
||||
|
||||
|
||||
@jit(forceobj=True)
|
||||
class NaiveBayes:
|
||||
@ -456,10 +487,8 @@ class NaiveBayes:
|
||||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||
|
||||
@ -467,10 +496,8 @@ class NaiveBayes:
|
||||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||
|
||||
@ -478,10 +505,8 @@ class NaiveBayes:
|
||||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||
|
||||
@ -489,10 +514,8 @@ class NaiveBayes:
|
||||
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
@jit(forceobj=True)
|
||||
class SVM:
|
||||
@ -542,40 +565,32 @@ class SVM:
|
||||
def eval_classification(self, kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
cm = sklearn.metrics.confusion_matrix(predictions, predictions)
|
||||
cr = sklearn.metrics.classification_report(predictions, predictions)
|
||||
|
||||
return cm, cr
|
||||
return ClassificationMetrics(predictions, test_outputs)
|
||||
|
||||
def eval_regression(self, kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
r_2 = r_squared(predictions, test_outputs)
|
||||
_mse = mse(predictions, test_outputs)
|
||||
_rms = rms(predictions, test_outputs)
|
||||
|
||||
return r_2, _mse, _rms
|
||||
return RegressionMetrics(predictions, test_outputs)
|
||||
|
||||
def RandomForestClassifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||
kernel.fit(data_train, labels_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(predictions, predictions)
|
||||
cr = sklearn.metrics.classification_report(predictions, predictions)
|
||||
return kernel, cm, cr
|
||||
|
||||
def RandomForestRegressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
return kernel, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(inputs, outputs, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||
kernel.fit(data_train, outputs_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
r_2 = r_squared(predictions, outputs_test)
|
||||
_mse = mse(predictions, outputs_test)
|
||||
_rms = rms(predictions, outputs_test)
|
||||
return kernel, r_2, _mse, _rms
|
||||
|
||||
return kernel, RegressionMetrics(predictions, labels_test)
|
||||
|
||||
class Regression:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user