mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
superscript.py v 0.0.3.000
This commit is contained in:
parent
a0e1293361
commit
8ebdb3b89b
4
.gitignore
vendored
4
.gitignore
vendored
@ -16,4 +16,6 @@ data analysis/.ipynb_checkpoints/test-checkpoint.ipynb
|
||||
.vscode
|
||||
data analysis/arthur_pull.ipynb
|
||||
data analysis/keys.txt
|
||||
data analysis/check_for_new_matches.ipynb
|
||||
data analysis/check_for_new_matches.ipynb
|
||||
data analysis/test.ipynb
|
||||
data analysis/visualize_pit.ipynb
|
Binary file not shown.
@ -3,4 +3,11 @@ balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logar
|
||||
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
wheel-mechanism
|
||||
low-balls
|
||||
high-balls
|
||||
wheel-success
|
||||
strategic-focus
|
||||
climb-mechanism
|
||||
attitude
|
|
@ -8,7 +8,7 @@ def pull_new_tba_matches(apikey, competition, cutoff):
|
||||
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
|
||||
out = []
|
||||
for i in x.json():
|
||||
if (i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
|
||||
if (i["actual_time"] != None and i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
|
||||
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
|
||||
return out
|
||||
|
||||
@ -21,6 +21,13 @@ def get_team_match_data(apikey, competition, team_num):
|
||||
out[i['match']] = i['data']
|
||||
return pd.DataFrame(out)
|
||||
|
||||
def get_team_pit_data(apikey, competition, team_num):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.pitdata
|
||||
out = {}
|
||||
return mdata.find_one({"competition" : competition, "team_scouted": team_num})["data"]
|
||||
|
||||
def get_team_metrics_data(apikey, competition, team_num):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_processing
|
||||
@ -38,7 +45,7 @@ def unkeyify_2l(layered_dict):
|
||||
out[i] = list(map(lambda x: x[1], add))
|
||||
return out
|
||||
|
||||
def get_data_formatted(apikey, competition):
|
||||
def get_match_data_formatted(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.teamlist
|
||||
@ -51,6 +58,19 @@ def get_data_formatted(apikey, competition):
|
||||
pass
|
||||
return out
|
||||
|
||||
def get_pit_data_formatted(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.teamlist
|
||||
x=mdata.find_one({"competition":competition})
|
||||
out = {}
|
||||
for i in x:
|
||||
try:
|
||||
out[int(i)] = get_team_pit_data(apikey, competition, int(i))
|
||||
except:
|
||||
pass
|
||||
return out
|
||||
|
||||
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client[dbname]
|
||||
@ -63,6 +83,12 @@ def push_team_metrics_data(apikey, competition, team_num, data, dbname = "data_p
|
||||
mdata = db[colname]
|
||||
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True)
|
||||
|
||||
def push_team_pit_data(apikey, competition, variable, data, dbname = "data_processing", colname = "team_pit"):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client[dbname]
|
||||
mdata = db[colname]
|
||||
mdata.replace_one({"competition" : competition, "variable": variable}, {"competition" : competition, "variable" : variable, "data" : data}, True)
|
||||
|
||||
def get_analysis_flags(apikey, flag):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_processing
|
||||
|
@ -3,10 +3,12 @@
|
||||
# Notes:
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.2.001"
|
||||
__version__ = "0.0.3.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.0.3.00:
|
||||
- added analysis to pit data
|
||||
0.0.2.001:
|
||||
- minor stability patches
|
||||
- implemented db syncing for timestamps
|
||||
@ -69,6 +71,7 @@ __all__ = [
|
||||
|
||||
from analysis import analysis as an
|
||||
import data as d
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
import warnings
|
||||
|
||||
@ -102,7 +105,8 @@ def main():
|
||||
print(" analysis backtimed to: " + str(previous_time))
|
||||
|
||||
print(" loading data")
|
||||
data = d.get_data_formatted(apikey, competition)
|
||||
data = d.get_match_data_formatted(apikey, competition)
|
||||
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
|
||||
print(" loaded data")
|
||||
|
||||
print(" running tests")
|
||||
@ -113,10 +117,14 @@ def main():
|
||||
metrics = metricsloop(tbakey, apikey, competition, previous_time)
|
||||
print(" finished metrics")
|
||||
|
||||
print(" running pit analysis")
|
||||
pit = pitloop(pit_data, config)
|
||||
print(" finished pit analysis")
|
||||
|
||||
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
||||
|
||||
print(" pushing to database")
|
||||
push_to_database(apikey, competition, results, metrics)
|
||||
push_to_database(apikey, competition, results, metrics, pit)
|
||||
print(" pushed to database")
|
||||
|
||||
def load_config(file):
|
||||
@ -168,7 +176,7 @@ def simplestats(data, test):
|
||||
if(test == "regression_sigmoidal"):
|
||||
return an.regression(list(range(len(data))), data, ['sig'])
|
||||
|
||||
def push_to_database(apikey, competition, results, metrics):
|
||||
def push_to_database(apikey, competition, results, metrics, pit):
|
||||
|
||||
for team in results:
|
||||
|
||||
@ -178,6 +186,10 @@ def push_to_database(apikey, competition, results, metrics):
|
||||
|
||||
d.push_team_metrics_data(apikey, competition, team, metrics[team])
|
||||
|
||||
for variable in pit:
|
||||
|
||||
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
||||
|
||||
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
|
||||
|
||||
elo_N = 400
|
||||
@ -327,6 +339,18 @@ def load_metrics(apikey, competition, match, group_name):
|
||||
|
||||
return group
|
||||
|
||||
def pitloop(pit, tests):
|
||||
|
||||
return_vector = {}
|
||||
for team in pit:
|
||||
for variable in pit[team]:
|
||||
if(variable in tests):
|
||||
if(not variable in return_vector):
|
||||
return_vector[variable] = []
|
||||
return_vector[variable].append(pit[team][variable])
|
||||
|
||||
return return_vector
|
||||
|
||||
main()
|
||||
|
||||
"""
|
||||
|
59
data analysis/visualize_pit.py
Normal file
59
data analysis/visualize_pit.py
Normal file
@ -0,0 +1,59 @@
|
||||
# To add a new cell, type '# %%'
|
||||
# To add a new markdown cell, type '# %% [markdown]'
|
||||
# %%
|
||||
import matplotlib.pyplot as plt
|
||||
import data as d
|
||||
import pymongo
|
||||
|
||||
|
||||
# %%
|
||||
def get_pit_variable_data(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_processing
|
||||
mdata = db.team_pit
|
||||
out = {}
|
||||
return mdata.find()
|
||||
|
||||
|
||||
# %%
|
||||
def get_pit_variable_formatted(apikey, competition):
|
||||
temp = get_pit_variable_data(apikey, competition)
|
||||
out = {}
|
||||
for i in temp:
|
||||
out[i["variable"]] = i["data"]
|
||||
return out
|
||||
|
||||
|
||||
# %%
|
||||
pit = get_pit_variable_formatted("mongodb+srv://api-user-new:titanscout2022@2022-scouting-4vfuu.mongodb.net/test?authSource=admin&replicaSet=2022-scouting-shard-0&readPreference=primary&appname=MongoDB%20Compass&ssl=true", "2020ilch")
|
||||
|
||||
|
||||
# %%
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
# %%
|
||||
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(20,10))
|
||||
|
||||
i = 0
|
||||
|
||||
for variable in pit:
|
||||
|
||||
ax[i].hist(pit[variable])
|
||||
ax[i].invert_xaxis()
|
||||
|
||||
ax[i].set_xlabel('')
|
||||
ax[i].set_ylabel('Frequency')
|
||||
ax[i].set_title(variable)
|
||||
|
||||
plt.yticks(np.arange(len(pit[variable])))
|
||||
|
||||
i+=1
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user