mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 07:05:56 +00:00
analysis.py v 1.1.0.004
This commit is contained in:
parent
173f9b3460
commit
43d059b477
Binary file not shown.
@ -7,10 +7,12 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.0.003"
|
||||
__version__ = "1.1.0.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.0.004:
|
||||
- added performance metrics (r^2, mse, rms)
|
||||
1.1.0.003:
|
||||
- resolved nopython mode for mean, median, stdev, variance
|
||||
1.1.0.002:
|
||||
@ -120,8 +122,8 @@ __changelog__ = """changelog:
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>, "
|
||||
"Jacob Levine <jlevine@ttic.edu>,"
|
||||
"Arthur Lu <arthurlu@ttic.edu>",
|
||||
"Jacob Levine <jlevine@ttic.edu>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
@ -131,6 +133,9 @@ __all__ = [
|
||||
'z_score',
|
||||
'z_normalize',
|
||||
'histo_analysis',
|
||||
'r_squared',
|
||||
'mse',
|
||||
'rms',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
@ -142,6 +147,8 @@ import csv
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import math
|
||||
from sklearn import metrics
|
||||
from sklearn import preprocessing
|
||||
|
||||
class error(ValueError):
|
||||
@ -212,10 +219,25 @@ def histo_analysis(hist_data):
|
||||
derivative = t[1] / t[0]
|
||||
|
||||
np.sort(derivative)
|
||||
mean_derivative = basic_stats(derivative)[0]
|
||||
stdev_derivative = basic_stats(derivative)[3]
|
||||
|
||||
return mean_derivative, stdev_derivative
|
||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||
|
||||
#regressions
|
||||
|
||||
@jit(forceobj=True)
|
||||
def r_squared(predictions, targets): # assumes equal size inputs
|
||||
|
||||
return metrics.r2_score(np.array(targets), np.array(predictions))
|
||||
|
||||
@jit(forceobj=True)
|
||||
def mse(predictions, targets):
|
||||
|
||||
return metrics.mean_squared_error(np.array(targets), np.array(predictions))
|
||||
|
||||
@jit(forceobj=True)
|
||||
def rms(predictions, targets):
|
||||
|
||||
return math.sqrt(metrics.mean_squared_error(np.array(targets), np.array(predictions)))
|
||||
|
||||
@jit(nopython=True)
|
||||
def mean(data):
|
||||
|
Loading…
Reference in New Issue
Block a user