Merge pull request #4 from titanscout2022/comp-edits

Comp edits merge
This commit is contained in:
ltcptgeneral 2020-03-06 20:29:50 -06:00 committed by GitHub
commit b6ac05a66e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 100 additions and 539 deletions

0
analysis-master/build.sh Normal file → Executable file
View File

View File

@ -278,7 +278,6 @@ import scipy
from scipy import *
import sklearn
from sklearn import *
import torch
try:
from analysis import trueskill as Trueskill
except:
@ -287,10 +286,6 @@ except:
class error(ValueError):
pass
def _init_device(): # initiates computation device for ANNs
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
return device
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
@ -700,225 +695,6 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
return kernel, RegressionMetrics(predictions, outputs_test)
class Regression:
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.003"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
class Glicko2:
_tau = 0.5
@ -1016,4 +792,4 @@ class Glicko2:
def did_not_compete(self):
self._preRatingRD()
self._preRatingRD()

Binary file not shown.

View File

@ -7,10 +7,18 @@
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.13.001"
__version__ = "1.1.13.005"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.13.005:
- cleaned up package
1.1.13.004:
- small fixes to regression to improve performance
1.1.13.003:
- filtered nans from regression
1.1.13.002:
- removed torch requirement, and moved Regression back to regression.py
1.1.13.001:
- bug fix with linear regression not returning a proper value
- cleaned up regression
@ -239,7 +247,6 @@ __author__ = (
)
__all__ = [
'_init_device',
'load_csv',
'basic_stats',
'z_score',
@ -260,7 +267,6 @@ __all__ = [
'SVM',
'random_forest_classifier',
'random_forest_regressor',
'Regression',
'Glicko2',
# all statistics functions left out due to integration in other functions
]
@ -273,12 +279,10 @@ import csv
import numba
from numba import jit
import numpy as np
import math
import scipy
from scipy import *
import sklearn
from sklearn import *
import torch
try:
from analysis import trueskill as Trueskill
except:
@ -287,10 +291,6 @@ except:
class error(ValueError):
pass
def _init_device(): # initiates computation device for ANNs
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
return device
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
@ -349,15 +349,15 @@ def histo_analysis(hist_data):
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
X = np.array(inputs)
y = np.array(outputs)
regressions = []
if 'lin' in args: # formula: ax + b
try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b):
return a * x + b
@ -374,9 +374,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b, c, d):
return a * np.log(b*(x + c)) + d
@ -391,10 +388,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
try:
X = np.array(inputs)
y = np.array(outputs)
try:
def func(x, a, b, c, d):
@ -410,8 +404,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = [inputs]
outputs = [outputs]
inputs = np.array([inputs])
outputs = np.array([outputs])
plys = []
limit = len(outputs[0])
@ -433,10 +427,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'sig' in args: # formula: a tanh (b(x + c)) + d
try:
X = np.array(inputs)
y = np.array(outputs)
try:
def func(x, a, b, c, d):
@ -700,225 +691,6 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
return kernel, RegressionMetrics(predictions, outputs_test)
class Regression:
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.003"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
class Glicko2:
_tau = 0.5
@ -1016,4 +788,4 @@ class Glicko2:
def did_not_compete(self):
self._preRatingRD()
self._preRatingRD()

View File

@ -1,27 +1,28 @@
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import regression'
# this should be included in the local directory or environment variable
# this module is cuda-optimized and vectorized (except for one small part)
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.002"
__version__ = "1.0.0.003"
# changelog should be viewed using print(regression.__changelog__)
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
@ -39,35 +40,13 @@ __all__ = [
'CustomTrain'
]
# imports (just one for now):
import torch
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def factorial(n):
if n==0:
return 1
else:
return n*factorial(n-1)
def num_poly_terms(num_vars, power):
if power == 0:
return 0
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
def take_all_pwrs(vec,pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0])
for i in torch.t(combins):
out *= i
return torch.cat(out,take_all_pwrs(vec, pwr-1))
def set_device(new_device):
global device
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
@ -154,20 +133,39 @@ class PolyRegKernel():
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=num_poly_terms(num_vars, power)
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(take_all_pwrs(i,self.power))
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
@ -192,7 +190,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
optim.step()
return kernel
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
@ -214,4 +212,4 @@ def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
return kernel

View File

@ -1,9 +1,11 @@
2020ilch
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
wheel-mechanism
low-balls
high-balls

1 2020ilch
2 balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
3 balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
4 balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
5 balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
6 balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
7 balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
8 balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
9 wheel-mechanism
10 low-balls
11 high-balls

View File

@ -3,11 +3,19 @@
# Notes:
# setup:
__version__ = "0.0.3.000"
__version__ = "0.0.4.001"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
0.0.3.00:
0.0.4.001:
- fixed bug where X range for regression was determined before sanitization
- better sanitized data
0.0.4.000:
- fixed spelling issue in __changelog__
- addressed nan bug in regression
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
- fixed errors in metrics computing
0.0.3.000:
- added analysis to pit data
0.0.2.001:
- minor stability patches
@ -71,6 +79,7 @@ __all__ = [
from analysis import analysis as an
import data as d
import numpy as np
import matplotlib.pyplot as plt
import time
import warnings
@ -114,7 +123,7 @@ def main():
print(" finished tests")
print(" running metrics")
metrics = metricsloop(tbakey, apikey, competition, previous_time)
metricsloop(tbakey, apikey, competition, previous_time)
print(" finished metrics")
print(" running pit analysis")
@ -124,7 +133,7 @@ def main():
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
print(" pushing to database")
push_to_database(apikey, competition, results, metrics, pit)
push_to_database(apikey, competition, results, pit)
print(" pushed to database")
def load_config(file):
@ -155,37 +164,37 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
def simplestats(data, test):
data = np.array(data)
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
if(test == "basic_stats"):
return an.basic_stats(data)
if(test == "historical_analysis"):
return an.histo_analysis([list(range(len(data))), data])
return an.histo_analysis([ranges, data])
if(test == "regression_linear"):
return an.regression(list(range(len(data))), data, ['lin'])
return an.regression(ranges, data, ['lin'])
if(test == "regression_logarithmic"):
return an.regression(list(range(len(data))), data, ['log'])
return an.regression(ranges, data, ['log'])
if(test == "regression_exponential"):
return an.regression(list(range(len(data))), data, ['exp'])
return an.regression(ranges, data, ['exp'])
if(test == "regression_polynomial"):
return an.regression(list(range(len(data))), data, ['ply'])
return an.regression(ranges, data, ['ply'])
if(test == "regression_sigmoidal"):
return an.regression(list(range(len(data))), data, ['sig'])
return an.regression(ranges, data, ['sig'])
def push_to_database(apikey, competition, results, metrics, pit):
def push_to_database(apikey, competition, results, pit):
for team in results:
d.push_team_tests_data(apikey, competition, team, results[team])
for team in metrics:
d.push_team_metrics_data(apikey, competition, team, metrics[team])
for variable in pit:
d.push_team_pit_data(apikey, competition, variable, pit[variable])
@ -206,7 +215,7 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
red = load_metrics(apikey, competition, match, "red")
blu = load_metrics(apikey, competition, match, "blue")
elo_red_total = 0
elo_blu_total = 0
@ -279,6 +288,14 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
for team in temp_vector:
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
""" not functional for now
red_trueskill = []
blu_trueskill = []
@ -305,11 +322,6 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
"""
return_vector.update(red)
return_vector.update(blu)
return return_vector
def load_metrics(apikey, competition, match, group_name):
group = {}
@ -324,16 +336,17 @@ def load_metrics(apikey, competition, match, group_name):
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
ts = {"mu": 25, "sigma": 25/3}
d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gliko2":gl2,"trueskill":ts})
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
else:
metrics = db_data["metrics"]
elo = metrics["elo"]
gl2 = metrics["gliko2"]
ts = metrics["trueskill"]
gl2 = metrics["gl2"]
ts = metrics["ts"]
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}

View File

@ -34,7 +34,7 @@ import numpy as np
# %%
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(20,10))
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(80,15))
i = 0