mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
analysis.py v 1.1.8.000
This commit is contained in:
parent
7c957d9ddc
commit
06b0acb9f8
@ -7,10 +7,13 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.7.000"
|
||||
__version__ = "1.1.8.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.8.000:
|
||||
- added NaiveBayes classification engine
|
||||
- note: untested
|
||||
1.1.7.000:
|
||||
- added knn()
|
||||
- added confusion matrix to decisiontree()
|
||||
@ -405,9 +408,9 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
|
||||
model = model.fit(data_train,labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
accuracy = sklearn.metrics.accuracy_score(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, accuracy
|
||||
return model, cm, cr
|
||||
|
||||
def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
@ -420,6 +423,52 @@ def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='m
|
||||
|
||||
return model, cm, cr
|
||||
|
||||
class NaiveBayes:
|
||||
|
||||
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
|
||||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
|
||||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
|
||||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.ComplementNB(aplha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||
|
||||
return model, cm, cr
|
||||
|
||||
class Regression:
|
||||
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
|
Loading…
Reference in New Issue
Block a user