mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
analysis.py v 1.1.2.002
This commit is contained in:
parent
acdcb42e6d
commit
8801a300c4
Binary file not shown.
@ -7,10 +7,13 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.2.001"
|
||||
__version__ = "1.1.2.002"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.2.002L
|
||||
- added elo()
|
||||
- elo() has bugs to be fixed
|
||||
1.1.2.001:
|
||||
- readded regrression import
|
||||
1.1.2.000:
|
||||
@ -295,10 +298,12 @@ def regression_engine(device, inputs, outputs, args, loss = torch.nn.MSELoss(),
|
||||
|
||||
return regressions
|
||||
|
||||
#@jit TODO: determine jit type
|
||||
def elo(starting_score, observed, N, K):
|
||||
@jit(nopython=True)
|
||||
def elo(starting_score, opposing_scores, observed, N, K):
|
||||
|
||||
pass
|
||||
expected = 1/(1+10**((np.array(opposing_scores) - starting_score)/N))
|
||||
|
||||
return starting_score + K*(np.sum(expected) - np.sum(observed))
|
||||
|
||||
@jit(forceobj=True)
|
||||
def r_squared(predictions, targets): # assumes equal size inputs
|
||||
|
Loading…
Reference in New Issue
Block a user