182 Commits

Author SHA1 Message Date
Arthur Lu
5153fc3f82 Merge pull request #81 from titanscouting/fix-publish
removed problematic classifier
2021-04-30 20:54:16 -07:00
Arthur Lu
8bf754f382 removed problematic classifier 2021-05-01 03:47:10 +00:00
Arthur Lu
dde3a448c2 Merge pull request #79 from titanscouting/fix-publish
attempt 2 to fix publish-analysis
2021-04-30 20:36:20 -07:00
Arthur Lu
1e234efcba attempt 2 to fix publish-analysis 2021-04-30 22:59:34 +00:00
Dev Singh
34a834c7bc Merge pull request #78 from titanscouting/fix-publish
Install deps on publish-analysis
2021-04-30 17:43:20 -05:00
Arthur Lu
4910c335f1 install deps on publish-analysis 2021-04-30 22:40:49 +00:00
Arthur Lu
9f71ab3aad tra-analysis v 3.0.0 aggregate PR (#73)
* reflected doc changes to README.md

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* tra_analysis v 2.1.0-alpha.1

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* changed setup.py to use __version__ from source
added Topic and keywords

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* updated Supported Platforms in README.md

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved required files back to parent

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved security back to parent

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved security back to parent
moved contributing back to parent

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* add PR template

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved to parent folder

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved meta files to .github folder

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* Analysis.py v 3.0.1

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* updated test_analysis for submodules, and added missing numpy import in Sort.py

* fixed item one of Issue #58

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* readded cache searching in postCreateCommand

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* added myself as an author

* feat: created kivy gui boilerplate

* added Kivy to requirements.txt

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* feat: gui with placeholders

* fix: changed config.json path

* migrated docker base image to debian

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* style: spaces to tabs

* migrated to ubuntu

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fixed issues

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fix: docker build?

* fix: use ubuntu bionic

* fix: get kivy installed

* @ltcptgeneral can't spell

* optim dockerfile for not installing unused packages

* install basic stuff while building the container

* use prebuilt image for development

* install pylint on base image

* rename and use new kivy

* tests: added tests for Array and CorrelationTest

Both are not working due to errors

* use new thing

* use 20.04 base

* symlink pip3 to pip

* use pip instead of pip3

* equation.Expression.py v 0.0.1-alpha
added corresponding .pyc to .gitignore

* parser.py v 0.0.2-alpha

* added pyparsing to requirements.txt

* parser v 0.0.4-alpha

* Equation v 0.0.1-alpha

* added Equation to tra_analysis imports

* tests: New unit tests for submoduling (#66)

* feat: created kivy gui boilerplate

* migrated docker base image to debian

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* migrated to ubuntu

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fixed issues

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fix: docker build?

* fix: use ubuntu bionic

* fix: get kivy installed

* @ltcptgeneral can't spell

* optim dockerfile for not installing unused packages

* install basic stuff while building the container

* use prebuilt image for development

* install pylint on base image

* rename and use new kivy

* tests: added tests for Array and CorrelationTest

Both are not working due to errors

* fix: Array no longer has *args and CorrelationTest functions no longer have self in the arguments

* use new thing

* use 20.04 base

* symlink pip3 to pip

* use pip instead of pip3

* tra_analysis v 2.1.0-alpha.2
SVM v 1.0.1
added unvalidated SVM unit tests

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fixed version number

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* tests: added tests for ClassificationMetric

* partially fixed and commented out svm unit tests

* fixed some SVM unit tests

* added installing pytest to devcontainer.json

* fix: small fixes to KNN

Namely, removing self from parameters and passing correct arguments to KNeighborsClassifier constructor

* fix, test: Added tests for KNN and NaiveBayes.

Also made some small fixes in KNN, NaiveBayes, and RegressionMetric

* test: finished unit tests except for StatisticalTest

Also made various small fixes and style changes

* StatisticalTest v 1.0.1

* fixed RegressionMetric unit test
temporarily disabled CorrelationTest unit tests

* tra_analysis v 2.1.0-alpha.3

* readded __all__

* fix: floating point issues in unit tests for CorrelationTest

Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: ltcptgeneral <learthurgo@gmail.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: jzpan1 <panzhenyu2014@gmail.com>

* fixed depreciated escape sequences

* ficed tests, indent, import in test_analysis

* changed version to 3.0.0
added backwards compatibility

* ficed pytest install in container

* removed GUI changes

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* incremented version to rc.1 (release candidate 1)

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* fixed NaiveBayes __changelog__

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* fix: __setitem__  == to single =

* Array v 1.0.1

* Revert "Array v 1.0.1"

This reverts commit 59783b79f7.

* Array v 1.0.1

* Array.py v 1.0.2
added more Array unit tests

* cleaned .gitignore
tra_analysis v 3.0.0-rc2

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* added *.pyc to gitignore
finished subdividing test_analysis

* feat: gui layout + basic func

* Froze and removed superscript (data-analysis)

* remove data-analysis deps install for devcontainer

* tukey pairwise comparison and multicomparison but no critical q-values

* quick patch for devcontainer.json

* better fix for devcontainer.json

* fixed some styling in StatisticalTest
removed print statement in StatisticalTest unit tests

* update analysis tests to be more effecient

* don't use loop for test_nativebayes

* removed useless secondary docker files

* tra-analysis v 3.0.0

Co-authored-by: James Pan <panzhenyu2014@gmail.com>
Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: zpan1 <72054510+zpan1@users.noreply.github.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: = <=>
Co-authored-by: Dev Singh <dsingh@imsa.edu>
Co-authored-by: zpan1 <zpan@imsa.edu>
2021-04-28 19:33:50 -05:00
Arthur Lu
764dab01f6 reflected doc changes to README.md (#48)
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-10-05 09:49:39 -05:00
Dev Singh
56f5e5262c deps: remove dnspython (#47)
Signed-off-by: Dev Singh <dev@devksingh.com>

Co-authored-by: Arthur Lu <learthurgo@gmail.com>
2020-09-28 18:53:32 -05:00
Arthur Lu
56a5578f35 Merge pull request #46 from titanscouting/multithread-testing
Implement Multithreading in Superscript
2020-09-28 17:46:29 -05:00
Dev Singh
c48c512cf6 Implement fitting to circle using LSC and HyperFit (#45)
* chore: add pylint to devcontainer

Signed-off-by: Dev Singh <dev@devksingh.com>

* feat: init LSC fitting

cuda and cpu-based LSC fitting using cupy and numpy

Signed-off-by: Dev Singh <dev@devksingh.com>

* docs: add changelog entry and module to class list

Signed-off-by: Dev Singh <dev@devksingh.com>

* docs: fix typo in comment

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: only import cupy if cuda available

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: move to own file, abandon cupy

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: remove numba dep

Signed-off-by: Dev Singh <dev@devksingh.com>

* deps: remove cupy dep

Signed-off-by: Dev Singh <dev@devksingh.com>

* feat: add tests

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: correct indentation

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: variable names

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: add self when refering to coords

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: numpy ordering

Signed-off-by: Dev Singh <dev@devksingh.com>

* docs: remove version bump, nomaintain

add notice that module is not actively maintained, may be removed in future release

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix: remove hyperfit as not being impled

Signed-off-by: Dev Singh <dev@devksingh.com>
2020-09-24 21:06:30 -05:00
Dev Singh
d15aa045de docs: create security reporting guidelines (#44)
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-09-24 13:09:34 -05:00
Arthur Lu
b32083c6da added tra-analysis to data-analysis requirements
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-24 13:14:13 +00:00
Arthur Lu
a999c755a1 Merge branch 'multithread-testing' of https://github.com/titanscouting/red-alliance-analysis into multithread-testing 2020-09-26 20:57:55 +00:00
Arthur Lu
e3241fa34d superscript.py v 0.8.2
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-26 20:57:39 +00:00
Dev Singh
97f3271de3 Merge branch 'master' into multithread-testing 2020-09-26 15:28:14 -05:00
Arthur Lu
2804d03593 superscript.py v 0.8.1
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-21 07:38:18 +00:00
Arthur Lu
adbc749c47 added max-threads key in config
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-21 07:21:59 +00:00
Arthur Lu
ec9bac7830 superscript.py v 0.8.0
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-21 05:59:15 +00:00
Arthur Lu
b9a2e680bc Merge pull request #43 from titanscouting/master-staged
Pull changes from master staged to master for release
2020-09-19 21:06:42 -05:00
Arthur Lu
467444ed9b Merge branch 'master' into master-staged 2020-09-19 20:05:33 -05:00
Arthur Lu
fa7216d4e0 modified setup.py for analysis package v 2.1.0
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-20 00:50:14 +00:00
Arthur Lu
27a86e568b depreciated nonfunctional scripts in data-analysis
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-20 00:47:33 +00:00
Arthur Lu
16502c5259 superscript.py v 0.7.0
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-20 00:45:38 +00:00
Arthur Lu
ff9ad078e5 analysis.py v 2.3.1
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-19 23:14:46 +00:00
Arthur Lu
97334d1f66 edited README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-19 22:40:20 +00:00
Arthur Lu
f566f4ec71 Merge pull request #42 from titanscouting/devksingh4-patch-1
docs: add documentation links
2020-09-19 17:07:57 -05:00
Arthur Lu
cd869c0a8e analysis.py v 2.3.0
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-19 22:04:24 +00:00
Arthur Lu
f1982eb93d analysis.py v 2.2.3
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-18 21:55:59 +00:00
Arthur Lu
3763cb041f analysis.py v 2.2.2
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-17 02:11:44 +00:00
Dev Singh
2a201a61c7 docs: add documentation links 2020-09-16 16:54:49 -05:00
Arthur Lu
73a16b8397 added depreciated config files to gitignore
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-16 21:24:50 +00:00
Arthur Lu
0e7255ab99 changed && to ; in devcontainer.json
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-09-15 23:24:50 +00:00
Arthur Lu
5efaee5176 Merge pull request #41 from titanscouting/master-staged
merge eol fix in master-staged to master
2020-08-13 12:04:54 -05:00
Arthur Lu
1a1be8ee6a fixed eol issue with docker in gitattributes
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-13 17:01:08 +00:00
Arthur Lu
cab05fbc63 Merge commit '4b664acffb5777614043a83ef8e08368e21303ce' into master-staged 2020-08-13 17:00:31 +00:00
Dev Singh
4b664acffb Modernize VSCode extensions in dev env, set correct copyright assignment (#40)
* modernize extensions

Signed-off-by: Dev Singh <dev@devksingh.com>

* copyright assigment should be to titan scouting

Signed-off-by: Dev Singh <dev@devksingh.com>
2020-08-12 21:59:04 -05:00
Arthur Lu
292f9faeef Merge pull request #39 from titanscouting/master-staged
merge README changes from master-staged to master
2020-08-10 20:49:01 -05:00
Arthur Lu
468bd48b07 fixed readme with proper pip installation
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-11 01:36:30 +00:00
Arthur Lu
4c3f16f13b Merge pull request #38 from titanscouting/master
pull master into master-staged
2020-08-10 20:33:28 -05:00
Arthur Lu
8545a0d984 Merge pull request #36 from titanscouting/tra-service
merge changes from tra-service to master
2020-08-10 19:40:28 -05:00
Arthur Lu
6debc07786 modified README
simplified devcontainer.json

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-11 00:29:23 +00:00
Arthur Lu
bc5b07bb8d readded old config files
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-10 23:32:50 +00:00
Arthur Lu
9b73147c4d fixed analysis reference in superscript_old
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-10 23:20:43 +00:00
Arthur Lu
2f84debda7 removed old bins under analysis-master/dist/
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-10 21:37:41 +00:00
Arthur Lu
c803208eb8 analysis.py v 2.2.1
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-10 21:25:25 +00:00
Arthur Lu
135350293c Merge branch 'master' into tra-service 2020-08-10 16:11:38 -05:00
Arthur Lu
9a3181a92b renamed analysis folder to tra_analysis
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-08-10 21:01:50 +00:00
Dev Singh
73da5fa68b docs
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-08-10 14:53:22 -05:00
Dev Singh
7be57f7e7e build v2.0.3
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-08-10 14:52:49 -05:00
Dev Singh
7d64e67ad3 run on publish
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-08-10 14:46:07 -05:00
Dev Singh
def639284f remove bad if statement
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-08-10 14:43:16 -05:00
Dev Singh
18430208ff Merge branch 'master' of https://github.com/titanscout2022/red-alliance-analysis 2020-08-10 14:42:58 -05:00
Dev Singh
ba5fb2d72b build on release only (#35)
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-08-10 14:40:22 -05:00
Dev Singh
f34452d584 build on release only
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-08-10 14:35:38 -05:00
Dev Singh
5fd5e32cb1 Implement CD with building on tags to PyPI (#34)
* Create python-publish.yml

* populated publish-analysis.yml
moved legacy versions of analysis to seperate subfolder

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* attempt to fix issue with publish action

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* another attempt o fix publish-analysis.yml

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* this should work now

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* pypa can't take just one package so i'm trying all

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* this should totally work now

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* trying removing custom dir

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* rename analysis to tra_analysis, bump version to 2.0.0

* remove old packages which are already on github releases

* remove pycache

* removed ipynb_checkpoints

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* build

* do the dir thing

* trying removing custom dir

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
Signed-off-by: Dev Singh <dev@devksingh.com>

* rename analysis to tra_analysis, bump version to 2.0.0

Signed-off-by: Dev Singh <dev@devksingh.com>

* remove old packages which are already on github releases

Signed-off-by: Dev Singh <dev@devksingh.com>

* remove pycache

Signed-off-by: Dev Singh <dev@devksingh.com>

* build

Signed-off-by: Dev Singh <dev@devksingh.com>

* removed ipynb_checkpoints

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
Signed-off-by: Dev Singh <dev@devksingh.com>

* do the dir thing

Signed-off-by: Dev Singh <dev@devksingh.com>

* Revert "do the dir thing"

This reverts commit 2eb7ffca8d.

* correct dir

* set correct yaml positions

Signed-off-by: Dev Singh <dev@devksingh.com>

* attempt to set correct dir

Signed-off-by: Dev Singh <dev@devksingh.com>

* run on tags only

Signed-off-by: Dev Singh <dev@devksingh.com>

* remove all caches from vcs

Signed-off-by: Dev Singh <dev@devksingh.com>

* bump version for testing

Signed-off-by: Dev Singh <dev@devksingh.com>

* remove broke build

Signed-off-by: Dev Singh <dev@devksingh.com>

* dont upload dists to github

Signed-off-by: Dev Singh <dev@devksingh.com>

* bump to 2.0.2 for testing

Signed-off-by: Dev Singh <dev@devksingh.com>

* fix yaml

Signed-off-by: Dev Singh <dev@devksingh.com>

* update docs

Signed-off-by: Dev Singh <dev@devksingh.com>

* add to readme

Signed-off-by: Dev Singh <dev@devksingh.com>

* run only on master

Signed-off-by: Dev Singh <dev@devksingh.com>

Co-authored-by: Arthur Lu <learthurgo@gmail.com>
Co-authored-by: Dev Singh <dsingh@CentaurusRidge.localdomain>
2020-08-10 14:29:51 -05:00
Arthur Lu
3db3dda315 Merge pull request #33 from titanscout2022/Demo-for-Issue#32
Merge Changes Proposed in Issue#32
2020-08-02 17:27:26 -05:00
Arthur Lu
a59e509bc8 made changes described in Issue#32
changed setup.py to also reflect versioning changes

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-07-30 19:05:07 +00:00
Arthur Lu
ad521368bd filled out Contributing section in README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-07-20 19:07:32 -05:00
Dev Singh
edbfa5184a Update MAINTAINERS (#29)
Signed-off-by: Dev Singh <dev@devksingh.com>
2020-07-19 11:52:11 -05:00
Arthur Lu
5e52155fd0 Merge pull request #31 from titanscout2022/master
merge changes from master into tra-service
2020-07-18 23:25:55 -05:00
Arthur Lu
635f736a69 Merge pull request #28 from titanscout2022/master-staged
Merge analysis.py updates to master
2020-07-12 18:26:03 -05:00
Arthur Lu
16fb21001a added negatives to analysis unit tests
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-07-12 13:57:24 -05:00
Arthur Lu
69559e9e4a Merge branch 'master' into master-staged 2020-07-11 17:03:50 -05:00
Arthur Lu
430822cdeb added unit tests for analysis.Sort algorithms
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-07-11 21:53:16 +00:00
Arthur Lu
daa5b48426 readded old superscript.py (v 0.0.5.002)
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-07-11 21:21:56 +00:00
Arthur Lu
648ac945ac analysis v 1.2.2.000
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-07-05 05:30:48 +00:00
Arthur Lu
b2cf594869 readded tra.py as a fallback option
made changes to tra-cli.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 23:15:34 +00:00
Arthur Lu
bcd6c66a08 fixed more bugs with tra-cli.py
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 21:47:54 +00:00
Arthur Lu
b646e22378 fixed bugs with tra-cli.py
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 21:32:43 +00:00
Arthur Lu
51f14de0d2 fixed latest.whl to follow format for wheel files
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 20:56:13 +00:00
Arthur Lu
266caf78c3 started on tra-cli.py
modified tasks.py to work properly

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 20:23:53 +00:00
Arthur Lu
fa478314da added data-analysis requirements to devcontainer build
added auto pip intsall latest analysis.py whl

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 18:25:41 +00:00
Arthur Lu
8a212a21df moved core functions in tasks.py to class Tasker
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 18:19:58 +00:00
Arthur Lu
236c28c3be renamed tra;py to tasks.py
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-06-10 17:46:40 +00:00
Arthur Lu
7c2f058feb added help message to status command
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-26 01:34:47 +00:00
Arthur Lu
e84783ee44 populated tra.py to be a CLI application
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-25 22:17:08 +00:00
Arthur Lu
09b703d2a7 removed extra words
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 17:56:00 +00:00
Arthur Lu
098326584a removed more extra lines
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 17:54:48 +00:00
Arthur Lu
e5c7718f10 fixed extra hline
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 17:52:25 +00:00
Arthur Lu
a3ffdd89d0 fixed line breaks
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 17:51:57 +00:00
Arthur Lu
2fc11285ba fixed Prerequisites in README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 17:35:02 +00:00
Arthur Lu
9dd38fcec8 added OS and python versions supproted
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 17:30:01 +00:00
Arthur Lu
d59d069943 analysis.py v 1.2.1.004 (#27)
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 11:49:04 -05:00
Arthur Lu
90f747f3fc revamped README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-24 16:42:58 +00:00
Arthur Lu
869d7c288b fixed naming in tra.py
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-23 22:51:58 -05:00
Arthur Lu
dc4f5ab40e another bug fix
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-23 22:49:38 -05:00
Arthur Lu
a739007222 quick bug fix to tra.py
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-23 22:48:50 -05:00
Arthur Lu
ba06b9293e added test.py to .gitignore
prepared tra.py for threading implement

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-23 19:43:59 -05:00
Arthur Lu
1d5a67c4f7 analysis.py v 1.2.1.004
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-22 00:37:39 +00:00
Arthur Lu
e4ab0487d0 Merge pull request #26 from titanscout2022/master
Merge master into master-staged
2020-05-21 19:36:56 -05:00
Arthur Lu
4f439d6094 Merge service-dev changes with master (#24)
* added config.json
removed old config files

Signed-off-by: Arthur <learthurgo@gmail.com>

* superscript.py v 0.0.6.000

Signed-off-by: Arthur <learthurgo@gmail.com>

* changed data.py

Signed-off-by: Arthur <learthurgo@gmail.com>

* changes to config.json

Signed-off-by: Arthur <learthurgo@gmail.com>

* removed cells from visualize_pit.py

Signed-off-by: Arthur <learthurgo@gmail.com>

* more changes to visualize_pit.py

Signed-off-by: Arthur <learthurgo@gmail.com>

* added analysis-master/metrics/__pycache__ to git ignore
moved pit configs in config.json to the borrom
superscript.py v 0.0.6.001

Signed-off-by: Arthur <learthurgo@gmail.com>

* removed old database key

Signed-off-by: Arthur <learthurgo@gmail.com>

* adjusted config files

Signed-off-by: Arthur <learthurgo@gmail.com>

* Delete config-pop.json

* fixed .gitignore

Signed-off-by: Arthur <learthurgo@gmail.com>

* analysis.py 1.2.1.003
added team kv pair to config.json

Signed-off-by: Arthur <learthurgo@gmail.com>

* superscript.py v 0.0.6.002

Signed-off-by: Arthur <learthurgo@gmail.com>

* finished app.py API
made minute changes to parentheses use in various packages

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* bug fixes in app.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* bug fixes in app.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* made changes to .gitignore

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* made changes to .gitignore

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* deleted a __pycache__ folder from metrics

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* more changes to .gitignore

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* additions to app.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* renamed app.py to api.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* removed extranneous files

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* renamed api.py to tra.py
removed rest api calls from tra.py

* renamed api.py to tra.py
removed rest api calls from tra.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* removed flask import from tra.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* changes to devcontainer.json

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* fixed unit tests to be correct
removed some tests regressions because of potential function overflow
removed trueskill unit test because of slight deviation chance

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-20 08:52:38 -05:00
Arthur Lu
ae64c7f10e Merge pull request #25 from titanscout2022/master-staged
fixed bug in analysis unit tests
2020-05-19 13:19:47 -05:00
Arthur Lu
d1dfe3b01b Merge branch 'master' into master-staged 2020-05-19 13:19:40 -05:00
Arthur Lu
3dd24dcd30 fixed bug in analysis unit tests
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-19 18:19:02 +00:00
Arthur Lu
2be67b2cc3 Merge pull request #23 from titanscout2022/master-staged
Merge minor .gitignore changes
2020-05-18 16:31:50 -05:00
Arthur Lu
f91159c49c added data-analysis/.pytest_cache/ to .gitignore
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 16:28:42 -05:00
Arthur Lu
df046d4806 Merge pull request #22 from titanscout2022/master
Reflect master to master-staged
2020-05-18 16:28:05 -05:00
Arthur Lu
c838c4fc15 Merge pull request #21 from titanscout2022/CI-tools
CI tools
2020-05-18 16:18:48 -05:00
Arthur Lu
cbf5d18332 i swear its working now
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 16:14:16 -05:00
Arthur Lu
641905e87a finally fixed issues
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 16:12:22 -05:00
Arthur Lu
3daa12a3da changes
superscript testing still refuses to collect any tests

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 16:07:02 -05:00
Arthur Lu
3c4fe7ab46 still not working
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 16:01:02 -05:00
Arthur Lu
4e3f6b4480 readded pytest install
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:59:34 -05:00
Arthur Lu
414ffdf96c removed flake8 import from unit tests
fixed superscript unit tests

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:58:17 -05:00
Arthur Lu
6296f78ff5 removed lint checks because it was the stupid
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:54:15 -05:00
Arthur Lu
7ae64d5dbf lint refused to exclude metrics
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:51:51 -05:00
Arthur Lu
fd2ac12dad excluded imports
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:49:52 -05:00
Arthur Lu
0f2bbd1a16 more fixes
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:44:39 -05:00
Arthur Lu
83bc7fa743 Merge branch 'CI-tools' of https://github.com/titanscout2022/red-alliance-analysis into CI-tools
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:44:20 -05:00
Arthur Lu
83eabce8cd also ignored regression.py
added temporary unit test for superscript.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:43:53 -05:00
Arthur Lu
e2e73986a2 also ignored regression.py
added temporary unit test for superscript.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:43:36 -05:00
Arthur Lu
91ae1c0df6 attempted fixes by excluding titanlearn
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:39:59 -05:00
Arthur Lu
efad5bd71c maybe its a versioning issue?
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:32:24 -05:00
Arthur Lu
3d5e0aac59 Revert "trying python3 and pip3"
This reverts commit 7937fb6ee6.
2020-05-18 15:29:51 -05:00
Arthur Lu
7937fb6ee6 trying python3 and pip3
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:27:56 -05:00
Arthur Lu
871ecb5561 attempt to fix working directory issue
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:25:19 -05:00
Arthur Lu
7d738ca51e another attempt
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:11:24 -05:00
Arthur Lu
eeee957d23 attempt to fix working directory issues
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 15:07:42 -05:00
Arthur Lu
f55f3cb7d1 populated analysis unit test
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-18 14:59:24 -05:00
Arthur Lu
dd11689c8c reverted indentation to github default
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 20:15:43 -05:00
Arthur Lu
1c4b1d1971 more indentation fixes
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 20:12:15 -05:00
Arthur Lu
94a7aae491 changed indentation to spaces
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 20:09:29 -05:00
Arthur Lu
26f4224caa fixed indents
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 20:07:44 -05:00
Arthur Lu
386b7c75ee added items to .gitignore
renamed pythonpackage.yml to ut-analysis.yml
populated ut-analysis.yml
fixed spelling
added ut-superscript.py

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 20:04:31 -05:00
Arthur Lu
27feb0bf93 moved unit-test.py outside the analysis folder
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 19:41:19 -05:00
Arthur Lu
233440f03d removed pythonapp because it is redundant
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 19:40:35 -05:00
Arthur Lu
37c247aa46 created unit-test.py
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-16 19:33:56 -05:00
Arthur Lu
eeb5e46814 Merge pull request #19 from titanscout2022/CI-package
merge
2020-05-16 19:31:25 -05:00
Arthur Lu
4739c439f0 Create pythonpackage.yml 2020-05-16 19:30:52 -05:00
Arthur Lu
2e41326373 Create pythonapp.yml 2020-05-16 19:29:14 -05:00
Arthur Lu
e8ba8e1008 Merge pull request #18 from titanscout2022/master-staged
analysis.py v 1.2.1.003
2020-05-15 16:06:02 -05:00
Arthur Lu
dd49f6724f Merge branch 'master' into master-staged 2020-05-15 16:05:52 -05:00
Arthur Lu
b376f7c0c5 Merge pull request #17 from titanscout2022/equation.py-testing
merge equation.py-testing with master
2020-05-15 16:01:41 -05:00
Arthur Lu
4213386035 Merge branch 'master' into master-staged 2020-05-15 14:54:24 -05:00
Arthur Lu
3fdae646b8 analysis.py v 1.2.1.003
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-15 14:48:26 -05:00
Arthur Lu
8f8fb6c156 analysis.py v 1.2.2.000
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-14 23:36:28 -05:00
Arthur Lu
30b39aafff Merge pull request #16 from titanscout2022/master
pull recent changes into equation.py-testing
2020-05-14 23:22:03 -05:00
ltcptgeneral
77353c87e3 Merge pull request #15 from titanscout2022/master-staged
mirrored .gitignore changes from gui-dev
2020-05-14 19:29:44 -05:00
ltcptgeneral
ca2ebe5f6d Merge branch 'master' into master-staged 2020-05-14 19:18:34 -05:00
Arthur
55c7589c7d mirrored .gitignore changes from gui-dev
Signed-off-by: Arthur <learthurgo@gmail.com>
2020-05-14 19:17:26 -05:00
ltcptgeneral
6cff61cbe4 Merge pull request #13 from titanscout2022/devksingh4-bsd-license
Switch to BSD License
2020-05-13 13:19:10 -05:00
Dev Singh
5474081523 Update LICENSE 2020-05-13 12:04:59 -05:00
Dev Singh
4c25a5ce09 Contributing guideline changes (#11)
* changes

* more changes

* more changes

* contributing.md: sync with other contributor docs

Signed-off-by: Dev Singh <dev@singhk.dev>

* Create MAINTAINERS

Signed-off-by: Dev Singh <dev@singhk.dev>

* arthur's changes

* changes

Signed-off-by: ltcptgeneral <35508619+ltcptgeneral@users.noreply.github.com>

* more changes

Signed-off-by: ltcptgeneral <35508619+ltcptgeneral@users.noreply.github.com>

* more changes

Signed-off-by: ltcptgeneral <35508619+ltcptgeneral@users.noreply.github.com>

* contributing.md: sync with other contributor docs

Signed-off-by: Dev Singh <dev@singhk.dev>
Signed-off-by: ltcptgeneral <35508619+ltcptgeneral@users.noreply.github.com>

* Create MAINTAINERS

Signed-off-by: Dev Singh <dev@singhk.dev>
Signed-off-by: ltcptgeneral <35508619+ltcptgeneral@users.noreply.github.com>

* arthur's changes

Signed-off-by: ltcptgeneral <35508619+ltcptgeneral@users.noreply.github.com>

Co-authored-by: ltcptgeneral <35508619+ltcptgeneral@users.noreply.github.com>
2020-05-13 11:56:52 -05:00
ltcptgeneral
3451bac6f5 Merge pull request #12 from titanscout2022/master-staged
analysis.py v 1.2.1.002
2020-05-13 11:44:25 -05:00
ltcptgeneral
7e37dd72bb analysis.py v 1.2.1.002
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-05-13 11:35:46 -05:00
ltcptgeneral
a9014c5d34 changed data analysis folder to data-analysis
added egg-info and build folders to git ignore
deleted egg-info and build folders
2020-05-12 20:54:19 -05:00
ltcptgeneral
230e98a745 9 2020-05-12 20:48:45 -05:00
ltcptgeneral
1c6ecb149b Merge branch 'equation.py-testing' of https://github.com/titanscout2022/tr2022-strategy into equation.py-testing 2020-05-12 20:46:51 -05:00
ltcptgeneral
6d544a434e readded equation.ipynb 2020-05-12 20:46:42 -05:00
ltcptgeneral
5a1aa780ff readded equation.ipynb 2020-05-12 20:43:31 -05:00
ltcptgeneral
952981cdb9 bug fixes 2020-05-12 20:39:23 -05:00
ltcptgeneral
6fee42f6d2 bug fixes 2020-05-12 20:21:11 -05:00
ltcptgeneral
24f8961500 analysis.py v 1.2.1.001 2020-05-12 20:19:58 -05:00
ltcptgeneral
db8fbbf068 visualization.py v 1.0.0.001 2020-05-05 22:37:32 -05:00
ltcptgeneral
64ae1b7026 analysis.py v 1.2.1.000 2020-05-04 14:50:36 -05:00
ltcptgeneral
4498387ac5 analysis.py v 1.2.0.006 2020-05-04 11:59:25 -05:00
ltcptgeneral
7a362476c9 fixed indent part 2 2020-05-01 23:16:32 -05:00
ltcptgeneral
b79cedae68 fixed indentation 2020-05-01 23:14:19 -05:00
ltcptgeneral
2bcd4236bb moved equation.ipynb to correct folder 2020-05-01 23:06:32 -05:00
ltcptgeneral
0cc35dc02d Merge pull request #10 from titanscout2022/master
merge file changes from master into equation.py-testing
2020-05-01 23:04:33 -05:00
ltcptgeneral
43bb9ef2bb analysis.py v 1.2.0.005 2020-05-01 22:59:54 -05:00
ltcptgeneral
3ab1d0f50a converted space indentation to tab indentation 2020-05-01 16:15:07 -05:00
ltcptgeneral
88e7c52c8b fixes 2020-05-01 16:07:57 -05:00
ltcptgeneral
b345bfb95b reconsolidated arm64 and amd64 versions 2020-05-01 15:52:27 -05:00
ltcptgeneral
aeb4990c81 analysis pkg v 1.0.0.12
analysis.py v 1.2.0.004
2020-04-30 16:03:37 -05:00
ltcptgeneral
0a721ca500 8 2020-04-30 15:22:37 -05:00
ltcptgeneral
37a4a0085e 7 2020-04-29 23:02:02 -05:00
ltcptgeneral
429d3eb42c 6 2020-04-29 22:34:43 -05:00
ltcptgeneral
60ffe7645b 5 2020-04-29 19:01:55 -05:00
ltcptgeneral
adfa6f5cc0 4 2020-04-29 17:24:59 -05:00
ltcptgeneral
f9c25dad09 3 2020-04-29 12:58:44 -05:00
ltcptgeneral
b1d5834ff1 2 2020-04-29 00:35:19 -05:00
ltcptgeneral
357d4977eb 1 2020-04-29 00:34:16 -05:00
ltcptgeneral
4545f5721a analysis.py v 1.2.0.003 2020-04-28 04:00:19 +00:00
ltcptgeneral
8d703b10b3 analysis.py v 1.2.0.002 2020-04-22 03:32:34 +00:00
ltcptgeneral
df305f30f0 analysis.py v 1.2.0.001 2020-04-21 04:08:00 +00:00
ltcptgeneral
a123b71ac9 Merge pull request #9 from titanscout2022/fix
testing release 1.2 of analysis.py
2020-04-20 00:10:24 -05:00
ltcptgeneral
a02668e59c Merge branch 'master' of https://github.com/titanscout2022/tr2022-strategy 2020-04-20 05:07:17 +00:00
ltcptgeneral
4d6372f620 removed depreciated files to seperate repository 2020-04-20 05:07:07 +00:00
ltcptgeneral
9d0b6e68d8 Update README.md 2020-04-20 00:02:35 -05:00
ltcptgeneral
b8d51811e0 testing release 1.2 of analysis.py 2020-04-13 19:58:04 +00:00
294 changed files with 5909 additions and 55514 deletions

View File

@@ -1,2 +1,7 @@
FROM python
WORKDIR ~/
FROM ubuntu:20.04
WORKDIR /
RUN apt-get -y update
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends tzdata
RUN apt-get install -y python3 python3-dev git python3-pip python3-kivy python-is-python3 libgl1-mesa-dev build-essential
RUN ln -s $(which pip3) /usr/bin/pip
RUN pip install pymongo pandas numpy scipy scikit-learn matplotlib pylint kivy

View File

@@ -0,0 +1,2 @@
FROM titanscout2022/tra-analysis-base:latest
WORKDIR /

View File

@@ -1,7 +1,7 @@
{
"name": "TRA Analysis Development Environment",
"build": {
"dockerfile": "Dockerfile",
"dockerfile": "dev-dockerfile",
},
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
@@ -21,6 +21,8 @@
},
"extensions": [
"mhutchie.git-graph",
"ms-python.python",
"waderyan.gitblame"
],
"postCreateCommand": "pip install -r analysis-master/analysis-amd64/requirements.txt"
}
"postCreateCommand": "/usr/bin/pip3 install -r ${containerWorkspaceFolder}/analysis-master/requirements.txt && /usr/bin/pip3 install --no-cache-dir pylint && /usr/bin/pip3 install pytest"
}

4
.gitattributes vendored
View File

@@ -1,2 +1,4 @@
# Auto detect text files and perform LF normalization
* text=auto
* text=auto eol=lf
*.{cmd,[cC][mM][dD]} text eol=crlf
*.{bat,[bB][aA][tT]} text eol=crlf

7
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,7 @@
Fixes #
## Proposed Changes
-
-
-

40
.github/workflows/publish-analysis.yml vendored Normal file
View File

@@ -0,0 +1,40 @@
# This workflows will upload a Python Package using Twine when a release is created
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
name: Upload Analysis Package
on:
release:
types: [published, edited]
jobs:
deploy:
runs-on: ubuntu-latest
env:
working-directory: ./analysis-master/
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.x'
- name: Install dependencies
working-directory: ${{env.working-directory}}
run: |
python -m pip install --upgrade pip
pip install setuptools wheel twine
- name: Install package deps
working-directory: ${{env.working-directory}}
run: |
pip install -r requirements.txt
- name: Build package
working-directory: ${{env.working-directory}}
run: |
python setup.py sdist bdist_wheel
- name: Publish package to PyPI
uses: pypa/gh-action-pypi-publish@master
with:
user: __token__
password: ${{ secrets.PYPI_TOKEN }}
packages_dir: analysis-master/dist/

38
.github/workflows/ut-analysis.yml vendored Normal file
View File

@@ -0,0 +1,38 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Analysis Unit Tests
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.7, 3.8]
env:
working-directory: ./analysis-master/
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
working-directory: ${{ env.working-directory }}
- name: Test with pytest
run: |
pytest
working-directory: ${{ env.working-directory }}

31
.gitignore vendored
View File

@@ -1,24 +1,9 @@
benchmark_data.csv
data analysis/keys/keytemp.json
data analysis/__pycache__/analysis.cpython-37.pyc
apps/android/source/app/src/main/res/drawable-v24/uuh.png
apps/android/source/app/src/main/java/com/example/titanscouting/tits.java
/.vscode/
data analysis/analysis.cp37-win_amd64.pyd
data analysis/analysis/analysis.c
data analysis/analysis/analysis.cp37-win_amd64.pyd
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.cp37-win_amd64.exp
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.cp37-win_amd64.lib
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.obj
data analysis/test.ipynb
data analysis/.ipynb_checkpoints/test-checkpoint.ipynb
.vscode/settings.json
.vscode
data analysis/arthur_pull.ipynb
data analysis/keys.txt
data analysis/check_for_new_matches.ipynb
data analysis/test.ipynb
data analysis/visualize_pit.ipynb
data analysis/config/keys.config
analysis-master/analysis/__pycache__/
data analysis/__pycache__/
**/__pycache__/
**/.pytest_cache/
**/*.pyc
**/build/
**/*.egg-info/
**/dist/

View File

@@ -1 +1,66 @@
These sets of code is more unstable than an antimatter bear taunted with a barrel of fish. Add at your own risk.
# Contributing Guidelines
This project accept contributions via GitHub pull requests.
This document outlines some of the
conventions on development workflow, commit message formatting, contact points,
and other resources to make it easier to get your contribution accepted.
## Certificate of Origin
By contributing to this project, you agree to the [Developer Certificate of
Origin (DCO)](https://developercertificate.org/). This document was created by the Linux Kernel community and is a
simple statement that you, as a contributor, have the legal right to make the
contribution.
In order to show your agreement with the DCO you should include at the end of the commit message,
the following line: `Signed-off-by: John Doe <john.doe@example.com>`, using your real name.
This can be done easily using the [`-s`](https://github.com/git/git/blob/b2c150d3aa82f6583b9aadfecc5f8fa1c74aca09/Documentation/git-commit.txt#L154-L161) flag on the `git commit`.
Visual Studio code also has a flag to enable signoff on commits
If you find yourself pushed a few commits without `Signed-off-by`, you can still add it afterwards. Read this for help: [fix-DCO.md](https://github.com/src-d/guide/blob/master/developer-community/fix-DCO.md).
## Support Channels
The official support channel, for both users and contributors, is:
- GitHub issues: each repository has its own list of issues.
*Before opening a new issue or submitting a new pull request, it's helpful to
search the project - it's likely that another user has already reported the
issue you're facing, or it's a known issue that we're already aware of.
## How to Contribute
In general, please use conventional approaches to development and contribution such as:
* Create branches for additions or deletions, and or side projects
* Do not commit to master!
* Use Pull Requests (PRs) to indicate that an addition is ready to merge.
PRs are the main and exclusive way to contribute code to source{d} projects.
In order for a PR to be accepted it needs to pass this list of requirements:
- The contribution must be correctly explained with natural language and providing a minimum working example that reproduces it.
- All PRs must be written idiomaticly:
- for Node: formatted according to [AirBnB standards](https://github.com/airbnb/javascript), and no warnings from `eslint` using the AirBnB style guide
- for other languages, similar constraints apply.
- They should in general include tests, and those shall pass.
- In any case, all the PRs have to pass the personal evaluation of at least one of the [maintainers](MAINTAINERS) of the project.
### Format of the commit message
Every commit message should describe what was changed, under which context and, if applicable, the issue it relates to (mentioning a GitHub issue number when applicable):
For small changes, or changes to a testing or personal branch, the commit message should be a short changelog entry
For larger changes or for changes on branches that are more widely used, the commit message should simply reference an entry to some other changelog system. It is encouraged to use some sort of versioning system to log changes. Example commit messages:
```
superscript.py v 2.0.5.006
```
The format can be described more formally as follows:
```
<package> v <version number>
```

703
LICENSE
View File

@@ -1,674 +1,29 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.
BSD 3-Clause License
Copyright (c) 2020, Titan Scouting
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3
MAINTAINERS Normal file
View File

@@ -0,0 +1,3 @@
Arthur Lu <learthurgo@gmail.com>
Jacob Levine <jacoblevine18@gmail.com>
Dev Singh <dev@devksingh.com>

View File

@@ -1,3 +1,70 @@
# tr2022-strategy
Titan Robotics 2022 Strategy Team Repository
Use at your own risk
# Red Alliance Analysis &middot; ![GitHub release (latest by date)](https://img.shields.io/github/v/release/titanscout2022/red-alliance-analysis)
Titan Robotics 2022 Strategy Team Repository for Data Analysis Tools. Included with these tools are the backend data analysis engine formatted as a python package, associated binaries for the analysis package, and premade scripts that can be pulled directly from this repository and will integrate with other Red Alliance applications to quickly deploy FRC scouting tools.
---
# `tra-analysis`
`tra-analysis` is a higher level package for data processing and analysis. It is a python library that combines popular data science tools like numpy, scipy, and sklearn along with other tools to create an easy-to-use data analysis engine. tra-analysis includes analysis in all ranges of complexity from basic statistics like mean, median, mode to complex kernel based classifiers and allows user to more quickly deploy these algorithms. The package also includes performance metrics for score based applications including elo, glicko2, and trueskill ranking systems.
At the core of the tra-analysis package is the modularity of each analytical tool. The package encapsulates the setup code for the included data science tools. For example, there are many packages that allow users to generate many different types of regressions. With the tra-analysis package, one function can be called to generate many regressions and sort them by accuracy.
## Prerequisites
---
* Python >= 3.6
* Pip which can be installed by running\
`curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py`\
`python get-pip.py`\
after installing python, or with a package manager on linux. Refer to the [pip installation instructions](https://pip.pypa.io/en/stable/installing/) for more information.
## Installing
---
#### Standard Platforms
For the latest version of tra-analysis, run `pip install tra-analysis` or `pip install tra_analysis`. The requirements for tra-analysis should be automatically installed.
#### Exotic Platforms (Android)
[Termux](https://termux.com/) is recommended for a linux environemnt on Android. Consult the [documentation](https://titanscouting.github.io/analysis/general/installation#exotic-platforms-android) for advice on installing the prerequisites. After installing the prerequisites, the package should be installed normally with `pip install tra-analysis` or `pip install tra_analysis`.
## Use
---
tra-analysis operates like any other python package. Consult the [documentation](https://titanscouting.github.io/analysis/tra_analysis/) for more information.
## Supported Platforms
---
Although any modern 64 bit platform should be supported, the following platforms have been tested to be working:
* AMD64 (Tested on Zen, Zen+, and Zen 2)
* Intel 64/x86_64/x64 (Tested on Kaby Lake, Ice Lake)
* ARM64 (Tested on Broadcom BCM2836 SoC, Broadcom BCM2711 SoC)
The following OSes have been tested to be working:
* Linux Kernel 3.16, 4.4, 4.15, 4.19, 5.4
* Ubuntu 16.04, 18.04, 20.04
* Debian (and Debian derivaives) Jessie, Buster
* Windows 7, 10
The following python versions are supported:
* python 3.6 (not tested)
* python 3.7
* python 3.8
---
# `data-analysis`
Data analysis has been separated into its own [repository](https://github.com/titanscouting/tra-data-analysis).
# Contributing
Read our included contributing guidelines (`CONTRIBUTING.md`) for more information and feel free to reach out to any current maintainer for more information.
# Build Statuses
![Analysis Unit Tests](https://github.com/titanscout2022/red-alliance-analysis/workflows/Analysis%20Unit%20Tests/badge.svg)

6
SECURITY.md Normal file
View File

@@ -0,0 +1,6 @@
# Security Policy
## Reporting a Vulnerability
Please email `titanscout2022@gmail.com` to report a vulnerability.

View File

@@ -1,14 +0,0 @@
Metadata-Version: 2.1
Name: analysis
Version: 1.0.0.11
Summary: analysis package developed by Titan Scouting for The Red Alliance
Home-page: https://github.com/titanscout2022/tr2022-strategy
Author: The Titan Scouting Team
Author-email: titanscout2022@gmail.com
License: GNU General Public License v3.0
Description: UNKNOWN
Platform: UNKNOWN
Classifier: Programming Language :: Python :: 3
Classifier: Operating System :: OS Independent
Requires-Python: >=3.6
Description-Content-Type: text/markdown

View File

@@ -1,13 +0,0 @@
setup.py
analysis/__init__.py
analysis/analysis.py
analysis/glicko2.py
analysis/regression.py
analysis/titanlearn.py
analysis/trueskill.py
analysis/visualization.py
analysis.egg-info/PKG-INFO
analysis.egg-info/SOURCES.txt
analysis.egg-info/dependency_links.txt
analysis.egg-info/requires.txt
analysis.egg-info/top_level.txt

View File

@@ -1,700 +0,0 @@
# Titan Robotics Team 2022: Data Analysis Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import analysis'
# this should be included in the local directory or environment variable
# this module has been optimized for multhreaded computing
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
- fixed bug with trueskill
1.1.13.006:
- cleaned up imports
1.1.13.005:
- cleaned up package
1.1.13.004:
- small fixes to regression to improve performance
1.1.13.003:
- filtered nans from regression
1.1.13.002:
- removed torch requirement, and moved Regression back to regression.py
1.1.13.001:
- bug fix with linear regression not returning a proper value
- cleaned up regression
- fixed bug with polynomial regressions
1.1.13.000:
- fixed all regressions to now properly work
1.1.12.006:
- fixed bg with a division by zero in histo_analysis
1.1.12.005:
- fixed numba issues by removing numba from elo, glicko2 and trueskill
1.1.12.004:
- renamed gliko to glicko
1.1.12.003:
- removed depreciated code
1.1.12.002:
- removed team first time trueskill instantiation in favor of integration in superscript.py
1.1.12.001:
- improved readibility of regression outputs by stripping tensor data
- used map with lambda to acheive the improved readibility
- lost numba jit support with regression, and generated_jit hangs at execution
- TODO: reimplement correct numba integration in regression
1.1.12.000:
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
1.1.11.010:
- alphabeticaly ordered import lists
1.1.11.009:
- bug fixes
1.1.11.008:
- bug fixes
1.1.11.007:
- bug fixes
1.1.11.006:
- tested min and max
- bug fixes
1.1.11.005:
- added min and max in basic_stats
1.1.11.004:
- bug fixes
1.1.11.003:
- bug fixes
1.1.11.002:
- consolidated metrics
- fixed __all__
1.1.11.001:
- added test/train split to RandomForestClassifier and RandomForestRegressor
1.1.11.000:
- added RandomForestClassifier and RandomForestRegressor
- note: untested
1.1.10.000:
- added numba.jit to remaining functions
1.1.9.002:
- kernelized PCA and KNN
1.1.9.001:
- fixed bugs with SVM and NaiveBayes
1.1.9.000:
- added SVM class, subclasses, and functions
- note: untested
1.1.8.000:
- added NaiveBayes classification engine
- note: untested
1.1.7.000:
- added knn()
- added confusion matrix to decisiontree()
1.1.6.002:
- changed layout of __changelog to be vscode friendly
1.1.6.001:
- added additional hyperparameters to decisiontree()
1.1.6.000:
- fixed __version__
- fixed __all__ order
- added decisiontree()
1.1.5.003:
- added pca
1.1.5.002:
- reduced import list
- added kmeans clustering engine
1.1.5.001:
- simplified regression by using .to(device)
1.1.5.000:
- added polynomial regression to regression(); untested
1.1.4.000:
- added trueskill()
1.1.3.002:
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
1.1.3.001:
- changed glicko2() to return tuple instead of array
1.1.3.000:
- added glicko2_engine class and glicko()
- verified glicko2() accuracy
1.1.2.003:
- fixed elo()
1.1.2.002:
- added elo()
- elo() has bugs to be fixed
1.1.2.001:
- readded regrression import
1.1.2.000:
- integrated regression.py as regression class
- removed regression import
- fixed metadata for regression class
- fixed metadata for analysis class
1.1.1.001:
- regression_engine() bug fixes, now actaully regresses
1.1.1.000:
- added regression_engine()
- added all regressions except polynomial
1.1.0.007:
- updated _init_device()
1.1.0.006:
- removed useless try statements
1.1.0.005:
- removed impossible outcomes
1.1.0.004:
- added performance metrics (r^2, mse, rms)
1.1.0.003:
- resolved nopython mode for mean, median, stdev, variance
1.1.0.002:
- snapped (removed) majority of uneeded imports
- forced object mode (bad) on all jit
- TODO: stop numba complaining about not being able to compile in nopython mode
1.1.0.001:
- removed from sklearn import * to resolve uneeded wildcard imports
1.1.0.000:
- removed c_entities,nc_entities,obstacles,objectives from __all__
- applied numba.jit to all functions
- depreciated and removed stdev_z_split
- cleaned up histo_analysis to include numpy and numba.jit optimizations
- depreciated and removed all regression functions in favor of future pytorch optimizer
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
- optimized z_normalize using sklearn.preprocessing.normalize
- TODO: implement kernel/function based pytorch regression optimizer
1.0.9.000:
- refactored
- numpyed everything
- removed stats in favor of numpy functions
1.0.8.005:
- minor fixes
1.0.8.004:
- removed a few unused dependencies
1.0.8.003:
- added p_value function
1.0.8.002:
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
1.0.8.001:
- refactors
- bugfixes
1.0.8.000:
- depreciated histo_analysis_old
- depreciated debug
- altered basic_analysis to take array data instead of filepath
- refactor
- optimization
1.0.7.002:
- bug fixes
1.0.7.001:
- bug fixes
1.0.7.000:
- added tanh_regression (logistical regression)
- bug fixes
1.0.6.005:
- added z_normalize function to normalize dataset
- bug fixes
1.0.6.004:
- bug fixes
1.0.6.003:
- bug fixes
1.0.6.002:
- bug fixes
1.0.6.001:
- corrected __all__ to contain all of the functions
1.0.6.000:
- added calc_overfit, which calculates two measures of overfit, error and performance
- added calculating overfit to optimize_regression
1.0.5.000:
- added optimize_regression function, which is a sample function to find the optimal regressions
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
- planned addition: overfit detection in the optimize_regression function
1.0.4.002:
- added __changelog__
- updated debug function with log and exponential regressions
1.0.4.001:
- added log regressions
- added exponential regressions
- added log_regression and exp_regression to __all__
1.0.3.008:
- added debug function to further consolidate functions
1.0.3.007:
- added builtin benchmark function
- added builtin random (linear) data generation function
- added device initialization (_init_device)
1.0.3.006:
- reorganized the imports list to be in alphabetical order
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
1.0.3.005:
- major bug fixes
- updated historical analysis
- depreciated old historical analysis
1.0.3.004:
- added __version__, __author__, __all__
- added polynomial regression
- added root mean squared function
- added r squared function
1.0.3.003:
- bug fixes
- added c_entities
1.0.3.002:
- bug fixes
- added nc_entities, obstacles, objectives
- consolidated statistics.py to analysis.py
1.0.3.001:
- compiled 1d, column, and row basic stats into basic stats function
1.0.3.000:
- added historical analysis function
1.0.2.xxx:
- added z score test
1.0.1.xxx:
- major bug fixes
1.0.0.xxx:
- added loading csv
- added 1d, column, row basic stats
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@imsa.edu>",
)
__all__ = [
'load_csv',
'basic_stats',
'z_score',
'z_normalize',
'histo_analysis',
'regression',
'elo',
'glicko2',
'trueskill',
'RegressionMetrics',
'ClassificationMetrics',
'kmeans',
'pca',
'decisiontree',
'knn_classifier',
'knn_regressor',
'NaiveBayes',
'SVM',
'random_forest_classifier',
'random_forest_regressor',
# all statistics functions left out due to integration in other functions
]
# now back to your regularly scheduled programming:
# imports (now in alphabetical order! v 1.0.3.006):
import csv
from analysis import glicko2 as Glicko2
import numba
from numba import jit
import numpy as np
import scipy
from scipy import *
import sklearn
from sklearn import *
from analysis import trueskill as Trueskill
class error(ValueError):
pass
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
csvfile.close()
return file_array
# expects 1d array
@jit(forceobj=True)
def basic_stats(data):
data_t = np.array(data).astype(float)
_mean = mean(data_t)
_median = median(data_t)
_stdev = stdev(data_t)
_variance = variance(data_t)
_min = npmin(data_t)
_max = npmax(data_t)
return _mean, _median, _stdev, _variance, _min, _max
# returns z score with inputs of point, mean and standard deviation of spread
@jit(forceobj=True)
def z_score(point, mean, stdev):
score = (point - mean) / stdev
return score
# expects 2d array, normalizes across all axes
@jit(forceobj=True)
def z_normalize(array, *args):
array = np.array(array)
for arg in args:
array = sklearn.preprocessing.normalize(array, axis = arg)
return array
@jit(forceobj=True)
# expects 2d array of [x,y]
def histo_analysis(hist_data):
if(len(hist_data[0]) > 2):
hist_data = np.array(hist_data)
derivative = np.array(len(hist_data) - 1, dtype = float)
t = np.diff(hist_data)
derivative = t[1] / t[0]
np.sort(derivative)
return basic_stats(derivative)[0], basic_stats(derivative)[3]
else:
return None
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
X = np.array(inputs)
y = np.array(outputs)
regressions = []
if 'lin' in args: # formula: ax + b
try:
def func(x, a, b):
return a * x + b
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
if 'log' in args: # formula: a log (b(x + c)) + d
try:
def func(x, a, b, c, d):
return a * np.log(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
try:
def func(x, a, b, c, d):
return a * np.exp(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = np.array([inputs])
outputs = np.array([outputs])
plys = []
limit = len(outputs[0])
for i in range(2, limit):
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
model = model.fit(np.rot90(inputs), np.rot90(outputs))
params = model.steps[1][1].intercept_.tolist()
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
params.flatten()
params = params.tolist()
plys.append(params)
regressions.append(plys)
if 'sig' in args: # formula: a tanh (b(x + c)) + d
try:
def func(x, a, b, c, d):
return a * np.tanh(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
return regressions
class Metrics:
def elo(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
return starting_score + K*(np.sum(observed) - np.sum(expected))
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
return (player.rating, player.rd, player.vol)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
team_ratings = []
for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
class RegressionMetrics():
def __new__(cls, predictions, targets):
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
def r_squared(self, predictions, targets): # assumes equal size inputs
return sklearn.metrics.r2_score(targets, predictions)
def mse(self, predictions, targets):
return sklearn.metrics.mean_squared_error(targets, predictions)
def rms(self, predictions, targets):
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
class ClassificationMetrics():
def __new__(cls, predictions, targets):
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
def cm(self, predictions, targets):
return sklearn.metrics.confusion_matrix(targets, predictions)
def cr(self, predictions, targets):
return sklearn.metrics.classification_report(targets, predictions)
@jit(nopython=True)
def mean(data):
return np.mean(data)
@jit(nopython=True)
def median(data):
return np.median(data)
@jit(nopython=True)
def stdev(data):
return np.std(data)
@jit(nopython=True)
def variance(data):
return np.var(data)
@jit(nopython=True)
def npmin(data):
return np.amin(data)
@jit(nopython=True)
def npmax(data):
return np.amax(data)
@jit(forceobj=True)
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
kernel.fit(data)
predictions = kernel.predict(data)
centers = kernel.cluster_centers_
return centers, predictions
@jit(forceobj=True)
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
return kernel.fit_transform(data)
@jit(forceobj=True)
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
model = model.fit(data_train,labels_train)
predictions = model.predict(data_test)
metrics = ClassificationMetrics(predictions, labels_test)
return model, metrics
class KNN:
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test)
class NaiveBayes:
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
class SVM:
class CustomKernel:
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class StandardKernel:
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class PrebuiltKernel:
class Linear:
def __new__(cls):
return sklearn.svm.SVC(kernel = 'linear')
class Polynomial:
def __new__(cls, power, r_bias):
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
class RBF:
def __new__(cls, gamma):
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
class Sigmoid:
def __new__(cls, r_bias):
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
return kernel.fit(train_data, train_outputs)
def eval_classification(self, kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return ClassificationMetrics(predictions, test_outputs)
def eval_regression(self, kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return RegressionMetrics(predictions, test_outputs)
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
kernel.fit(data_train, labels_train)
predictions = kernel.predict(data_test)
return kernel, ClassificationMetrics(predictions, labels_test)
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test)
return kernel, RegressionMetrics(predictions, outputs_test)

View File

@@ -1,99 +0,0 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -1,220 +0,0 @@
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.004"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.004:
- bug fixes
- fixed changelog
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
import torch
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel

View File

@@ -1,122 +0,0 @@
# Titan Robotics Team 2022: ML Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import titanlearn'
# this should be included in the local directory or environment variable
# this module is optimized for multhreaded computing
# this module learns from its mistakes far faster than 2022's captains
# setup:
__version__ = "2.0.1.001"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
2.0.1.001:
- removed matplotlib import
- removed graphloss()
2.0.1.000:
- added net, dataset, dataloader, and stdtrain template definitions
- added graphloss function
2.0.0.001:
- added clear functions
2.0.0.000:
- complete rewrite planned
- depreciated 1.0.0.xxx versions
- added simple training loop
1.0.0.xxx:
-added generation of ANNS, basic SGD training
"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>,"
"Jacob Levine <jlevine@ttic.edu>,"
)
__all__ = [
'clear',
'net',
'dataset',
'dataloader',
'train',
'stdtrainer',
]
import torch
from os import system, name
import numpy as np
def clear():
if name == 'nt':
_ = system('cls')
else:
_ = system('clear')
class net(torch.nn.Module): #template for standard neural net
def __init__(self):
super(Net, self).__init__()
def forward(self, input):
pass
class dataset(torch.utils.data.Dataset): #template for standard dataset
def __init__(self):
super(torch.utils.data.Dataset).__init__()
def __getitem__(self, index):
pass
def __len__(self):
pass
def dataloader(dataset, batch_size, num_workers, shuffle = True):
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
def train(device, net, epochs, trainloader, optimizer, criterion): #expects standard dataloader, whch returns (inputs, labels)
dataset_len = trainloader.dataset.__len__()
iter_count = 0
running_loss = 0
running_loss_list = []
for epoch in range(epochs): # loop over the dataset multiple times
for i, data in enumerate(trainloader, 0):
inputs = data[0].to(device)
labels = data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels.to(torch.float))
loss.backward()
optimizer.step()
# monitoring steps below
iter_count += 1
running_loss += loss.item()
running_loss_list.append(running_loss)
clear()
print("training on: " + device)
print("iteration: " + str(i) + "/" + str(int(dataset_len / trainloader.batch_size)) + " | " + "epoch: " + str(epoch) + "/" + str(epochs))
print("current batch loss: " + str(loss.item))
print("running loss: " + str(running_loss / iter_count))
return net, running_loss_list
print("finished training")
def stdtrainer(net, criterion, optimizer, dataloader, epochs, batch_size):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = net.to(device)
criterion = criterion.to(device)
optimizer = optimizer.to(device)
trainloader = dataloader
return train(device, net, epochs, trainloader, optimizer, criterion)

View File

@@ -1,907 +0,0 @@
from __future__ import absolute_import
from itertools import chain
import math
from six import iteritems
from six.moves import map, range, zip
from six import iterkeys
import copy
try:
from numbers import Number
except ImportError:
Number = (int, long, float, complex)
inf = float('inf')
class Gaussian(object):
#: Precision, the inverse of the variance.
pi = 0
#: Precision adjusted mean, the precision multiplied by the mean.
tau = 0
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
if mu is not None:
if sigma is None:
raise TypeError('sigma argument is needed')
elif sigma == 0:
raise ValueError('sigma**2 should be greater than 0')
pi = sigma ** -2
tau = pi * mu
self.pi = pi
self.tau = tau
@property
def mu(self):
return self.pi and self.tau / self.pi
@property
def sigma(self):
return math.sqrt(1 / self.pi) if self.pi else inf
def __mul__(self, other):
pi, tau = self.pi + other.pi, self.tau + other.tau
return Gaussian(pi=pi, tau=tau)
def __truediv__(self, other):
pi, tau = self.pi - other.pi, self.tau - other.tau
return Gaussian(pi=pi, tau=tau)
__div__ = __truediv__ # for Python 2
def __eq__(self, other):
return self.pi == other.pi and self.tau == other.tau
def __lt__(self, other):
return self.mu < other.mu
def __le__(self, other):
return self.mu <= other.mu
def __gt__(self, other):
return self.mu > other.mu
def __ge__(self, other):
return self.mu >= other.mu
def __repr__(self):
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
def _repr_latex_(self):
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
return '$%s$' % latex
class Matrix(list):
def __init__(self, src, height=None, width=None):
if callable(src):
f, src = src, {}
size = [height, width]
if not height:
def set_height(height):
size[0] = height
size[0] = set_height
if not width:
def set_width(width):
size[1] = width
size[1] = set_width
try:
for (r, c), val in f(*size):
src[r, c] = val
except TypeError:
raise TypeError('A callable src must return an interable '
'which generates a tuple containing '
'coordinate and value')
height, width = tuple(size)
if height is None or width is None:
raise TypeError('A callable src must call set_height and '
'set_width if the size is non-deterministic')
if isinstance(src, list):
is_number = lambda x: isinstance(x, Number)
unique_col_sizes = set(map(len, src))
everything_are_number = filter(is_number, sum(src, []))
if len(unique_col_sizes) != 1 or not everything_are_number:
raise ValueError('src must be a rectangular array of numbers')
two_dimensional_array = src
elif isinstance(src, dict):
if not height or not width:
w = h = 0
for r, c in iterkeys(src):
if not height:
h = max(h, r + 1)
if not width:
w = max(w, c + 1)
if not height:
height = h
if not width:
width = w
two_dimensional_array = []
for r in range(height):
row = []
two_dimensional_array.append(row)
for c in range(width):
row.append(src.get((r, c), 0))
else:
raise TypeError('src must be a list or dict or callable')
super(Matrix, self).__init__(two_dimensional_array)
@property
def height(self):
return len(self)
@property
def width(self):
return len(self[0])
def transpose(self):
height, width = self.height, self.width
src = {}
for c in range(width):
for r in range(height):
src[c, r] = self[r][c]
return type(self)(src, height=width, width=height)
def minor(self, row_n, col_n):
height, width = self.height, self.width
if not (0 <= row_n < height):
raise ValueError('row_n should be between 0 and %d' % height)
elif not (0 <= col_n < width):
raise ValueError('col_n should be between 0 and %d' % width)
two_dimensional_array = []
for r in range(height):
if r == row_n:
continue
row = []
two_dimensional_array.append(row)
for c in range(width):
if c == col_n:
continue
row.append(self[r][c])
return type(self)(two_dimensional_array)
def determinant(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can calculate a determinant')
tmp, rv = copy.deepcopy(self), 1.
for c in range(width - 1, 0, -1):
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
pivot = tmp[r][c]
if not pivot:
return 0.
tmp[r], tmp[c] = tmp[c], tmp[r]
if r != c:
rv = -rv
rv *= pivot
fact = -1. / pivot
for r in range(c):
f = fact * tmp[r][c]
for x in range(c):
tmp[r][x] += f * tmp[c][x]
return rv * tmp[0][0]
def adjugate(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can be adjugated')
if height == 2:
a, b = self[0][0], self[0][1]
c, d = self[1][0], self[1][1]
return type(self)([[d, -b], [-c, a]])
src = {}
for r in range(height):
for c in range(width):
sign = -1 if (r + c) % 2 else 1
src[r, c] = self.minor(r, c).determinant() * sign
return type(self)(src, height, width)
def inverse(self):
if self.height == self.width == 1:
return type(self)([[1. / self[0][0]]])
return (1. / self.determinant()) * self.adjugate()
def __add__(self, other):
height, width = self.height, self.width
if (height, width) != (other.height, other.width):
raise ValueError('Must be same size')
src = {}
for r in range(height):
for c in range(width):
src[r, c] = self[r][c] + other[r][c]
return type(self)(src, height, width)
def __mul__(self, other):
if self.width != other.height:
raise ValueError('Bad size')
height, width = self.height, other.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = sum(self[r][x] * other[x][c]
for x in range(self.width))
return type(self)(src, height, width)
def __rmul__(self, other):
if not isinstance(other, Number):
raise TypeError('The operand should be a number')
height, width = self.height, self.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = other * self[r][c]
return type(self)(src, height, width)
def __repr__(self):
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
def _repr_latex_(self):
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
return '$%s$' % latex
def _gen_erfcinv(erfc, math=math):
def erfcinv(y):
"""The inverse function of erfc."""
if y >= 2:
return -100.
elif y <= 0:
return 100.
zero_point = y < 1
if not zero_point:
y = 2 - y
t = math.sqrt(-2 * math.log(y / 2.))
x = -0.70711 * \
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
for i in range(2):
err = erfc(x) - y
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
return x if zero_point else -x
return erfcinv
def _gen_ppf(erfc, math=math):
erfcinv = _gen_erfcinv(erfc, math)
def ppf(x, mu=0, sigma=1):
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
return ppf
def erfc(x):
z = abs(x)
t = 1. / (1. + z / 2.)
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
-0.82215223 + t * 0.17087277
)))
)))
)))
return 2. - r if x < 0 else r
def cdf(x, mu=0, sigma=1):
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
def pdf(x, mu=0, sigma=1):
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
ppf = _gen_ppf(erfc)
def choose_backend(backend):
if backend is None: # fallback
return cdf, pdf, ppf
elif backend == 'mpmath':
try:
import mpmath
except ImportError:
raise ImportError('Install "mpmath" to use this backend')
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
elif backend == 'scipy':
try:
from scipy.stats import norm
except ImportError:
raise ImportError('Install "scipy" to use this backend')
return norm.cdf, norm.pdf, norm.ppf
raise ValueError('%r backend is not defined' % backend)
def available_backends():
backends = [None]
for backend in ['mpmath', 'scipy']:
try:
__import__(backend)
except ImportError:
continue
backends.append(backend)
return backends
class Node(object):
pass
class Variable(Node, Gaussian):
def __init__(self):
self.messages = {}
super(Variable, self).__init__()
def set(self, val):
delta = self.delta(val)
self.pi, self.tau = val.pi, val.tau
return delta
def delta(self, other):
pi_delta = abs(self.pi - other.pi)
if pi_delta == inf:
return 0.
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
def update_message(self, factor, pi=0, tau=0, message=None):
message = message or Gaussian(pi=pi, tau=tau)
old_message, self[factor] = self[factor], message
return self.set(self / old_message * message)
def update_value(self, factor, pi=0, tau=0, value=None):
value = value or Gaussian(pi=pi, tau=tau)
old_message = self[factor]
self[factor] = value * old_message / self
return self.set(value)
def __getitem__(self, factor):
return self.messages[factor]
def __setitem__(self, factor, message):
self.messages[factor] = message
def __repr__(self):
args = (type(self).__name__, super(Variable, self).__repr__(),
len(self.messages), '' if len(self.messages) == 1 else 's')
return '<%s %s with %d connection%s>' % args
class Factor(Node):
def __init__(self, variables):
self.vars = variables
for var in variables:
var[self] = Gaussian()
def down(self):
return 0
def up(self):
return 0
@property
def var(self):
assert len(self.vars) == 1
return self.vars[0]
def __repr__(self):
args = (type(self).__name__, len(self.vars),
'' if len(self.vars) == 1 else 's')
return '<%s with %d connection%s>' % args
class PriorFactor(Factor):
def __init__(self, var, val, dynamic=0):
super(PriorFactor, self).__init__([var])
self.val = val
self.dynamic = dynamic
def down(self):
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
value = Gaussian(self.val.mu, sigma)
return self.var.update_value(self, value=value)
class LikelihoodFactor(Factor):
def __init__(self, mean_var, value_var, variance):
super(LikelihoodFactor, self).__init__([mean_var, value_var])
self.mean = mean_var
self.value = value_var
self.variance = variance
def calc_a(self, var):
return 1. / (1. + self.variance * var.pi)
def down(self):
# update value.
msg = self.mean / self.mean[self]
a = self.calc_a(msg)
return self.value.update_message(self, a * msg.pi, a * msg.tau)
def up(self):
# update mean.
msg = self.value / self.value[self]
a = self.calc_a(msg)
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
class SumFactor(Factor):
def __init__(self, sum_var, term_vars, coeffs):
super(SumFactor, self).__init__([sum_var] + term_vars)
self.sum = sum_var
self.terms = term_vars
self.coeffs = coeffs
def down(self):
vals = self.terms
msgs = [var[self] for var in vals]
return self.update(self.sum, vals, msgs, self.coeffs)
def up(self, index=0):
coeff = self.coeffs[index]
coeffs = []
for x, c in enumerate(self.coeffs):
try:
if x == index:
coeffs.append(1. / coeff)
else:
coeffs.append(-c / coeff)
except ZeroDivisionError:
coeffs.append(0.)
vals = self.terms[:]
vals[index] = self.sum
msgs = [var[self] for var in vals]
return self.update(self.terms[index], vals, msgs, coeffs)
def update(self, var, vals, msgs, coeffs):
pi_inv = 0
mu = 0
for val, msg, coeff in zip(vals, msgs, coeffs):
div = val / msg
mu += coeff * div.mu
if pi_inv == inf:
continue
try:
# numpy.float64 handles floating-point error by different way.
# For example, it can just warn RuntimeWarning on n/0 problem
# instead of throwing ZeroDivisionError. So div.pi, the
# denominator has to be a built-in float.
pi_inv += coeff ** 2 / float(div.pi)
except ZeroDivisionError:
pi_inv = inf
pi = 1. / pi_inv
tau = pi * mu
return var.update_message(self, pi, tau)
class TruncateFactor(Factor):
def __init__(self, var, v_func, w_func, draw_margin):
super(TruncateFactor, self).__init__([var])
self.v_func = v_func
self.w_func = w_func
self.draw_margin = draw_margin
def up(self):
val = self.var
msg = self.var[self]
div = val / msg
sqrt_pi = math.sqrt(div.pi)
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
v = self.v_func(*args)
w = self.w_func(*args)
denom = (1. - w)
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
return val.update_value(self, pi, tau)
#: Default initial mean of ratings.
MU = 25.
#: Default initial standard deviation of ratings.
SIGMA = MU / 3
#: Default distance that guarantees about 76% chance of winning.
BETA = SIGMA / 2
#: Default dynamic factor.
TAU = SIGMA / 100
#: Default draw probability of the game.
DRAW_PROBABILITY = .10
#: A basis to check reliability of the result.
DELTA = 0.0001
def calc_draw_probability(draw_margin, size, env=None):
if env is None:
env = global_env()
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
def calc_draw_margin(draw_probability, size, env=None):
if env is None:
env = global_env()
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
def _team_sizes(rating_groups):
team_sizes = [0]
for group in rating_groups:
team_sizes.append(len(group) + team_sizes[-1])
del team_sizes[0]
return team_sizes
def _floating_point_error(env):
if env.backend == 'mpmath':
msg = 'Set "mpmath.mp.dps" to higher'
else:
msg = 'Cannot calculate correctly, set backend to "mpmath"'
return FloatingPointError(msg)
class Rating(Gaussian):
def __init__(self, mu=None, sigma=None):
if isinstance(mu, tuple):
mu, sigma = mu
elif isinstance(mu, Gaussian):
mu, sigma = mu.mu, mu.sigma
if mu is None:
mu = global_env().mu
if sigma is None:
sigma = global_env().sigma
super(Rating, self).__init__(mu, sigma)
def __int__(self):
return int(self.mu)
def __long__(self):
return long(self.mu)
def __float__(self):
return float(self.mu)
def __iter__(self):
return iter((self.mu, self.sigma))
def __repr__(self):
c = type(self)
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
return '%s(mu=%.3f, sigma=%.3f)' % args
class TrueSkill(object):
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None):
self.mu = mu
self.sigma = sigma
self.beta = beta
self.tau = tau
self.draw_probability = draw_probability
self.backend = backend
if isinstance(backend, tuple):
self.cdf, self.pdf, self.ppf = backend
else:
self.cdf, self.pdf, self.ppf = choose_backend(backend)
def create_rating(self, mu=None, sigma=None):
if mu is None:
mu = self.mu
if sigma is None:
sigma = self.sigma
return Rating(mu, sigma)
def v_win(self, diff, draw_margin):
x = diff - draw_margin
denom = self.cdf(x)
return (self.pdf(x) / denom) if denom else -x
def v_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
numer = self.pdf(b) - self.pdf(a)
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
def w_win(self, diff, draw_margin):
x = diff - draw_margin
v = self.v_win(diff, draw_margin)
w = v * (v + x)
if 0 < w < 1:
return w
raise _floating_point_error(self)
def w_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
if not denom:
raise _floating_point_error(self)
v = self.v_draw(abs_diff, draw_margin)
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
def validate_rating_groups(self, rating_groups):
# check group sizes
if len(rating_groups) < 2:
raise ValueError('Need multiple rating groups')
elif not all(rating_groups):
raise ValueError('Each group must contain multiple ratings')
# check group types
group_types = set(map(type, rating_groups))
if len(group_types) != 1:
raise TypeError('All groups should be same type')
elif group_types.pop() is Rating:
raise TypeError('Rating cannot be a rating group')
# normalize rating_groups
if isinstance(rating_groups[0], dict):
dict_rating_groups = rating_groups
rating_groups = []
keys = []
for dict_rating_group in dict_rating_groups:
rating_group, key_group = [], []
for key, rating in iteritems(dict_rating_group):
rating_group.append(rating)
key_group.append(key)
rating_groups.append(tuple(rating_group))
keys.append(tuple(key_group))
else:
rating_groups = list(rating_groups)
keys = None
return rating_groups, keys
def validate_weights(self, weights, rating_groups, keys=None):
if weights is None:
weights = [(1,) * len(g) for g in rating_groups]
elif isinstance(weights, dict):
weights_dict, weights = weights, []
for x, group in enumerate(rating_groups):
w = []
weights.append(w)
for y, rating in enumerate(group):
if keys is not None:
y = keys[x][y]
w.append(weights_dict.get((x, y), 1))
return weights
def factor_graph_builders(self, rating_groups, ranks, weights):
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
size = len(flatten_ratings)
group_size = len(rating_groups)
# create variables
rating_vars = [Variable() for x in range(size)]
perf_vars = [Variable() for x in range(size)]
team_perf_vars = [Variable() for x in range(group_size)]
team_diff_vars = [Variable() for x in range(group_size - 1)]
team_sizes = _team_sizes(rating_groups)
# layer builders
def build_rating_layer():
for rating_var, rating in zip(rating_vars, flatten_ratings):
yield PriorFactor(rating_var, rating, self.tau)
def build_perf_layer():
for rating_var, perf_var in zip(rating_vars, perf_vars):
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
def build_team_perf_layer():
for team, team_perf_var in enumerate(team_perf_vars):
if team > 0:
start = team_sizes[team - 1]
else:
start = 0
end = team_sizes[team]
child_perf_vars = perf_vars[start:end]
coeffs = flatten_weights[start:end]
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
def build_team_diff_layer():
for team, team_diff_var in enumerate(team_diff_vars):
yield SumFactor(team_diff_var,
team_perf_vars[team:team + 2], [+1, -1])
def build_trunc_layer():
for x, team_diff_var in enumerate(team_diff_vars):
if callable(self.draw_probability):
# dynamic draw probability
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
args = (Rating(team_perf1), Rating(team_perf2), self)
draw_probability = self.draw_probability(*args)
else:
# static draw probability
draw_probability = self.draw_probability
size = sum(map(len, rating_groups[x:x + 2]))
draw_margin = calc_draw_margin(draw_probability, size, self)
if ranks[x] == ranks[x + 1]: # is a tie?
v_func, w_func = self.v_draw, self.w_draw
else:
v_func, w_func = self.v_win, self.w_win
yield TruncateFactor(team_diff_var,
v_func, w_func, draw_margin)
# build layers
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
build_team_diff_layer, build_trunc_layer)
def run_schedule(self, build_rating_layer, build_perf_layer,
build_team_perf_layer, build_team_diff_layer,
build_trunc_layer, min_delta=DELTA):
if min_delta <= 0:
raise ValueError('min_delta must be greater than 0')
layers = []
def build(builders):
layers_built = [list(build()) for build in builders]
layers.extend(layers_built)
return layers_built
# gray arrows
layers_built = build([build_rating_layer,
build_perf_layer,
build_team_perf_layer])
rating_layer, perf_layer, team_perf_layer = layers_built
for f in chain(*layers_built):
f.down()
# arrow #1, #2, #3
team_diff_layer, trunc_layer = build([build_team_diff_layer,
build_trunc_layer])
team_diff_len = len(team_diff_layer)
for x in range(10):
if team_diff_len == 1:
# only two teams
team_diff_layer[0].down()
delta = trunc_layer[0].up()
else:
# multiple teams
delta = 0
for x in range(team_diff_len - 1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(1) # up to right variable
for x in range(team_diff_len - 1, 0, -1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(0) # up to left variable
# repeat until to small update
if delta <= min_delta:
break
# up both ends
team_diff_layer[0].up(0)
team_diff_layer[team_diff_len - 1].up(1)
# up the remainder of the black arrows
for f in team_perf_layer:
for x in range(len(f.vars) - 1):
f.up(x)
for f in perf_layer:
f.up()
return layers
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
group_size = len(rating_groups)
if ranks is None:
ranks = range(group_size)
elif len(ranks) != group_size:
raise ValueError('Wrong ranks')
# sort rating groups by rank
by_rank = lambda x: x[1][1]
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
key=by_rank)
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
for x, (g, r, w) in sorting:
sorted_rating_groups.append(g)
sorted_ranks.append(r)
# make weights to be greater than 0
sorted_weights.append(max(min_delta, w_) for w_ in w)
# build factor graph
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
builders = self.factor_graph_builders(*args)
args = builders + (min_delta,)
layers = self.run_schedule(*args)
# make result
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
transformed_groups = []
for start, end in zip([0] + team_sizes[:-1], team_sizes):
group = []
for f in rating_layer[start:end]:
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
transformed_groups.append(tuple(group))
by_hint = lambda x: x[0]
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
key=by_hint)
if keys is None:
return [g for x, g in unsorting]
# restore the structure with input dictionary keys
return [dict(zip(keys[x], g)) for x, g in unsorting]
def quality(self, rating_groups, weights=None):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
length = len(flatten_ratings)
# a vector of all of the skill means
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
# a matrix whose diagonal values are the variances (sigma ** 2) of each
# of the players.
def variance_matrix(height, width):
variances = (r.sigma ** 2 for r in flatten_ratings)
for x, variance in enumerate(variances):
yield (x, x), variance
variance_matrix = Matrix(variance_matrix, length, length)
# the player-team assignment and comparison matrix
def rotated_a_matrix(set_height, set_width):
t = 0
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
rating_groups[1:])):
for x in range(t, t + len(cur)):
yield (r, x), flatten_weights[x]
t += 1
x += 1
for x in range(x, x + len(_next)):
yield (r, x), -flatten_weights[x]
set_height(r + 1)
set_width(x + 1)
rotated_a_matrix = Matrix(rotated_a_matrix)
a_matrix = rotated_a_matrix.transpose()
# match quality further derivation
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
_atsa = rotated_a_matrix * variance_matrix * a_matrix
start = mean_matrix.transpose() * a_matrix
middle = _ata + _atsa
end = rotated_a_matrix * mean_matrix
# make result
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
s_arg = _ata.determinant() / middle.determinant()
return math.exp(e_arg) * math.sqrt(s_arg)
def expose(self, rating):
k = self.mu / self.sigma
return rating.mu - k * rating.sigma
def make_as_global(self):
return setup(env=self)
def __repr__(self):
c = type(self)
if callable(self.draw_probability):
f = self.draw_probability
draw_probability = '.'.join([f.__module__, f.__name__])
else:
draw_probability = '%.1f%%' % (self.draw_probability * 100)
if self.backend is None:
backend = ''
elif isinstance(self.backend, tuple):
backend = ', backend=...'
else:
backend = ', backend=%r' % self.backend
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
self.beta, self.tau, draw_probability, backend)
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
'draw_probability=%s%s)' % args)
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
if env is None:
env = global_env()
ranks = [0, 0 if drawn else 1]
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
return teams[0][0], teams[1][0]
def quality_1vs1(rating1, rating2, env=None):
if env is None:
env = global_env()
return env.quality([(rating1,), (rating2,)])
def global_env():
try:
global_env.__trueskill__
except AttributeError:
# setup the default environment
setup()
return global_env.__trueskill__
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
if env is None:
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
global_env.__trueskill__ = env
return env
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
return global_env().rate(rating_groups, ranks, weights, min_delta)
def quality(rating_groups, weights=None):
return global_env().quality(rating_groups, weights)
def expose(rating):
return global_env().expose(rating)

View File

@@ -1,34 +0,0 @@
# Titan Robotics Team 2022: Visualization Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import visualization'
# this should be included in the local directory or environment variable
# fancy
# setup:
__version__ = "1.0.0.000"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.0.0.000:
- created visualization.py
- added graphloss()
- added imports
"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>,"
"Jacob Levine <jlevine@ttic.edu>,"
)
__all__ = [
'graphloss',
]
import matplotlib.pyplot as plt
def graphloss(losses):
x = range(0, len(losses))
plt.plot(x, losses)
plt.show()

View File

@@ -1,700 +0,0 @@
# Titan Robotics Team 2022: Data Analysis Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import analysis'
# this should be included in the local directory or environment variable
# this module has been optimized for multhreaded computing
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
- fixed bug with trueskill
1.1.13.006:
- cleaned up imports
1.1.13.005:
- cleaned up package
1.1.13.004:
- small fixes to regression to improve performance
1.1.13.003:
- filtered nans from regression
1.1.13.002:
- removed torch requirement, and moved Regression back to regression.py
1.1.13.001:
- bug fix with linear regression not returning a proper value
- cleaned up regression
- fixed bug with polynomial regressions
1.1.13.000:
- fixed all regressions to now properly work
1.1.12.006:
- fixed bg with a division by zero in histo_analysis
1.1.12.005:
- fixed numba issues by removing numba from elo, glicko2 and trueskill
1.1.12.004:
- renamed gliko to glicko
1.1.12.003:
- removed depreciated code
1.1.12.002:
- removed team first time trueskill instantiation in favor of integration in superscript.py
1.1.12.001:
- improved readibility of regression outputs by stripping tensor data
- used map with lambda to acheive the improved readibility
- lost numba jit support with regression, and generated_jit hangs at execution
- TODO: reimplement correct numba integration in regression
1.1.12.000:
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
1.1.11.010:
- alphabeticaly ordered import lists
1.1.11.009:
- bug fixes
1.1.11.008:
- bug fixes
1.1.11.007:
- bug fixes
1.1.11.006:
- tested min and max
- bug fixes
1.1.11.005:
- added min and max in basic_stats
1.1.11.004:
- bug fixes
1.1.11.003:
- bug fixes
1.1.11.002:
- consolidated metrics
- fixed __all__
1.1.11.001:
- added test/train split to RandomForestClassifier and RandomForestRegressor
1.1.11.000:
- added RandomForestClassifier and RandomForestRegressor
- note: untested
1.1.10.000:
- added numba.jit to remaining functions
1.1.9.002:
- kernelized PCA and KNN
1.1.9.001:
- fixed bugs with SVM and NaiveBayes
1.1.9.000:
- added SVM class, subclasses, and functions
- note: untested
1.1.8.000:
- added NaiveBayes classification engine
- note: untested
1.1.7.000:
- added knn()
- added confusion matrix to decisiontree()
1.1.6.002:
- changed layout of __changelog to be vscode friendly
1.1.6.001:
- added additional hyperparameters to decisiontree()
1.1.6.000:
- fixed __version__
- fixed __all__ order
- added decisiontree()
1.1.5.003:
- added pca
1.1.5.002:
- reduced import list
- added kmeans clustering engine
1.1.5.001:
- simplified regression by using .to(device)
1.1.5.000:
- added polynomial regression to regression(); untested
1.1.4.000:
- added trueskill()
1.1.3.002:
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
1.1.3.001:
- changed glicko2() to return tuple instead of array
1.1.3.000:
- added glicko2_engine class and glicko()
- verified glicko2() accuracy
1.1.2.003:
- fixed elo()
1.1.2.002:
- added elo()
- elo() has bugs to be fixed
1.1.2.001:
- readded regrression import
1.1.2.000:
- integrated regression.py as regression class
- removed regression import
- fixed metadata for regression class
- fixed metadata for analysis class
1.1.1.001:
- regression_engine() bug fixes, now actaully regresses
1.1.1.000:
- added regression_engine()
- added all regressions except polynomial
1.1.0.007:
- updated _init_device()
1.1.0.006:
- removed useless try statements
1.1.0.005:
- removed impossible outcomes
1.1.0.004:
- added performance metrics (r^2, mse, rms)
1.1.0.003:
- resolved nopython mode for mean, median, stdev, variance
1.1.0.002:
- snapped (removed) majority of uneeded imports
- forced object mode (bad) on all jit
- TODO: stop numba complaining about not being able to compile in nopython mode
1.1.0.001:
- removed from sklearn import * to resolve uneeded wildcard imports
1.1.0.000:
- removed c_entities,nc_entities,obstacles,objectives from __all__
- applied numba.jit to all functions
- depreciated and removed stdev_z_split
- cleaned up histo_analysis to include numpy and numba.jit optimizations
- depreciated and removed all regression functions in favor of future pytorch optimizer
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
- optimized z_normalize using sklearn.preprocessing.normalize
- TODO: implement kernel/function based pytorch regression optimizer
1.0.9.000:
- refactored
- numpyed everything
- removed stats in favor of numpy functions
1.0.8.005:
- minor fixes
1.0.8.004:
- removed a few unused dependencies
1.0.8.003:
- added p_value function
1.0.8.002:
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
1.0.8.001:
- refactors
- bugfixes
1.0.8.000:
- depreciated histo_analysis_old
- depreciated debug
- altered basic_analysis to take array data instead of filepath
- refactor
- optimization
1.0.7.002:
- bug fixes
1.0.7.001:
- bug fixes
1.0.7.000:
- added tanh_regression (logistical regression)
- bug fixes
1.0.6.005:
- added z_normalize function to normalize dataset
- bug fixes
1.0.6.004:
- bug fixes
1.0.6.003:
- bug fixes
1.0.6.002:
- bug fixes
1.0.6.001:
- corrected __all__ to contain all of the functions
1.0.6.000:
- added calc_overfit, which calculates two measures of overfit, error and performance
- added calculating overfit to optimize_regression
1.0.5.000:
- added optimize_regression function, which is a sample function to find the optimal regressions
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
- planned addition: overfit detection in the optimize_regression function
1.0.4.002:
- added __changelog__
- updated debug function with log and exponential regressions
1.0.4.001:
- added log regressions
- added exponential regressions
- added log_regression and exp_regression to __all__
1.0.3.008:
- added debug function to further consolidate functions
1.0.3.007:
- added builtin benchmark function
- added builtin random (linear) data generation function
- added device initialization (_init_device)
1.0.3.006:
- reorganized the imports list to be in alphabetical order
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
1.0.3.005:
- major bug fixes
- updated historical analysis
- depreciated old historical analysis
1.0.3.004:
- added __version__, __author__, __all__
- added polynomial regression
- added root mean squared function
- added r squared function
1.0.3.003:
- bug fixes
- added c_entities
1.0.3.002:
- bug fixes
- added nc_entities, obstacles, objectives
- consolidated statistics.py to analysis.py
1.0.3.001:
- compiled 1d, column, and row basic stats into basic stats function
1.0.3.000:
- added historical analysis function
1.0.2.xxx:
- added z score test
1.0.1.xxx:
- major bug fixes
1.0.0.xxx:
- added loading csv
- added 1d, column, row basic stats
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@imsa.edu>",
)
__all__ = [
'load_csv',
'basic_stats',
'z_score',
'z_normalize',
'histo_analysis',
'regression',
'elo',
'glicko2',
'trueskill',
'RegressionMetrics',
'ClassificationMetrics',
'kmeans',
'pca',
'decisiontree',
'knn_classifier',
'knn_regressor',
'NaiveBayes',
'SVM',
'random_forest_classifier',
'random_forest_regressor',
# all statistics functions left out due to integration in other functions
]
# now back to your regularly scheduled programming:
# imports (now in alphabetical order! v 1.0.3.006):
import csv
from analysis import glicko2 as Glicko2
import numba
from numba import jit
import numpy as np
import scipy
from scipy import *
import sklearn
from sklearn import *
from analysis import trueskill as Trueskill
class error(ValueError):
pass
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
csvfile.close()
return file_array
# expects 1d array
@jit(forceobj=True)
def basic_stats(data):
data_t = np.array(data).astype(float)
_mean = mean(data_t)
_median = median(data_t)
_stdev = stdev(data_t)
_variance = variance(data_t)
_min = npmin(data_t)
_max = npmax(data_t)
return _mean, _median, _stdev, _variance, _min, _max
# returns z score with inputs of point, mean and standard deviation of spread
@jit(forceobj=True)
def z_score(point, mean, stdev):
score = (point - mean) / stdev
return score
# expects 2d array, normalizes across all axes
@jit(forceobj=True)
def z_normalize(array, *args):
array = np.array(array)
for arg in args:
array = sklearn.preprocessing.normalize(array, axis = arg)
return array
@jit(forceobj=True)
# expects 2d array of [x,y]
def histo_analysis(hist_data):
if(len(hist_data[0]) > 2):
hist_data = np.array(hist_data)
derivative = np.array(len(hist_data) - 1, dtype = float)
t = np.diff(hist_data)
derivative = t[1] / t[0]
np.sort(derivative)
return basic_stats(derivative)[0], basic_stats(derivative)[3]
else:
return None
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
X = np.array(inputs)
y = np.array(outputs)
regressions = []
if 'lin' in args: # formula: ax + b
try:
def func(x, a, b):
return a * x + b
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
if 'log' in args: # formula: a log (b(x + c)) + d
try:
def func(x, a, b, c, d):
return a * np.log(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
try:
def func(x, a, b, c, d):
return a * np.exp(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = np.array([inputs])
outputs = np.array([outputs])
plys = []
limit = len(outputs[0])
for i in range(2, limit):
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
model = model.fit(np.rot90(inputs), np.rot90(outputs))
params = model.steps[1][1].intercept_.tolist()
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
params.flatten()
params = params.tolist()
plys.append(params)
regressions.append(plys)
if 'sig' in args: # formula: a tanh (b(x + c)) + d
try:
def func(x, a, b, c, d):
return a * np.tanh(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(func, X, y)
regressions.append((popt.flatten().tolist(), None))
except Exception as e:
pass
return regressions
class Metrics:
def elo(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
return starting_score + K*(np.sum(observed) - np.sum(expected))
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
return (player.rating, player.rd, player.vol)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
team_ratings = []
for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
class RegressionMetrics():
def __new__(cls, predictions, targets):
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
def r_squared(self, predictions, targets): # assumes equal size inputs
return sklearn.metrics.r2_score(targets, predictions)
def mse(self, predictions, targets):
return sklearn.metrics.mean_squared_error(targets, predictions)
def rms(self, predictions, targets):
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
class ClassificationMetrics():
def __new__(cls, predictions, targets):
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
def cm(self, predictions, targets):
return sklearn.metrics.confusion_matrix(targets, predictions)
def cr(self, predictions, targets):
return sklearn.metrics.classification_report(targets, predictions)
@jit(nopython=True)
def mean(data):
return np.mean(data)
@jit(nopython=True)
def median(data):
return np.median(data)
@jit(nopython=True)
def stdev(data):
return np.std(data)
@jit(nopython=True)
def variance(data):
return np.var(data)
@jit(nopython=True)
def npmin(data):
return np.amin(data)
@jit(nopython=True)
def npmax(data):
return np.amax(data)
@jit(forceobj=True)
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
kernel.fit(data)
predictions = kernel.predict(data)
centers = kernel.cluster_centers_
return centers, predictions
@jit(forceobj=True)
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
return kernel.fit_transform(data)
@jit(forceobj=True)
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
model = model.fit(data_train,labels_train)
predictions = model.predict(data_test)
metrics = ClassificationMetrics(predictions, labels_test)
return model, metrics
class KNN:
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test)
class NaiveBayes:
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test)
class SVM:
class CustomKernel:
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class StandardKernel:
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class PrebuiltKernel:
class Linear:
def __new__(cls):
return sklearn.svm.SVC(kernel = 'linear')
class Polynomial:
def __new__(cls, power, r_bias):
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
class RBF:
def __new__(cls, gamma):
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
class Sigmoid:
def __new__(cls, r_bias):
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
return kernel.fit(train_data, train_outputs)
def eval_classification(self, kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return ClassificationMetrics(predictions, test_outputs)
def eval_regression(self, kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return RegressionMetrics(predictions, test_outputs)
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
kernel.fit(data_train, labels_train)
predictions = kernel.predict(data_test)
return kernel, ClassificationMetrics(predictions, labels_test)
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test)
return kernel, RegressionMetrics(predictions, outputs_test)

View File

@@ -1,99 +0,0 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -1,220 +0,0 @@
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.004"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.004:
- bug fixes
- fixed changelog
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
import torch
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel

View File

@@ -1,122 +0,0 @@
# Titan Robotics Team 2022: ML Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import titanlearn'
# this should be included in the local directory or environment variable
# this module is optimized for multhreaded computing
# this module learns from its mistakes far faster than 2022's captains
# setup:
__version__ = "2.0.1.001"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
2.0.1.001:
- removed matplotlib import
- removed graphloss()
2.0.1.000:
- added net, dataset, dataloader, and stdtrain template definitions
- added graphloss function
2.0.0.001:
- added clear functions
2.0.0.000:
- complete rewrite planned
- depreciated 1.0.0.xxx versions
- added simple training loop
1.0.0.xxx:
-added generation of ANNS, basic SGD training
"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>,"
"Jacob Levine <jlevine@ttic.edu>,"
)
__all__ = [
'clear',
'net',
'dataset',
'dataloader',
'train',
'stdtrainer',
]
import torch
from os import system, name
import numpy as np
def clear():
if name == 'nt':
_ = system('cls')
else:
_ = system('clear')
class net(torch.nn.Module): #template for standard neural net
def __init__(self):
super(Net, self).__init__()
def forward(self, input):
pass
class dataset(torch.utils.data.Dataset): #template for standard dataset
def __init__(self):
super(torch.utils.data.Dataset).__init__()
def __getitem__(self, index):
pass
def __len__(self):
pass
def dataloader(dataset, batch_size, num_workers, shuffle = True):
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
def train(device, net, epochs, trainloader, optimizer, criterion): #expects standard dataloader, whch returns (inputs, labels)
dataset_len = trainloader.dataset.__len__()
iter_count = 0
running_loss = 0
running_loss_list = []
for epoch in range(epochs): # loop over the dataset multiple times
for i, data in enumerate(trainloader, 0):
inputs = data[0].to(device)
labels = data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels.to(torch.float))
loss.backward()
optimizer.step()
# monitoring steps below
iter_count += 1
running_loss += loss.item()
running_loss_list.append(running_loss)
clear()
print("training on: " + device)
print("iteration: " + str(i) + "/" + str(int(dataset_len / trainloader.batch_size)) + " | " + "epoch: " + str(epoch) + "/" + str(epochs))
print("current batch loss: " + str(loss.item))
print("running loss: " + str(running_loss / iter_count))
return net, running_loss_list
print("finished training")
def stdtrainer(net, criterion, optimizer, dataloader, epochs, batch_size):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = net.to(device)
criterion = criterion.to(device)
optimizer = optimizer.to(device)
trainloader = dataloader
return train(device, net, epochs, trainloader, optimizer, criterion)

View File

@@ -1,907 +0,0 @@
from __future__ import absolute_import
from itertools import chain
import math
from six import iteritems
from six.moves import map, range, zip
from six import iterkeys
import copy
try:
from numbers import Number
except ImportError:
Number = (int, long, float, complex)
inf = float('inf')
class Gaussian(object):
#: Precision, the inverse of the variance.
pi = 0
#: Precision adjusted mean, the precision multiplied by the mean.
tau = 0
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
if mu is not None:
if sigma is None:
raise TypeError('sigma argument is needed')
elif sigma == 0:
raise ValueError('sigma**2 should be greater than 0')
pi = sigma ** -2
tau = pi * mu
self.pi = pi
self.tau = tau
@property
def mu(self):
return self.pi and self.tau / self.pi
@property
def sigma(self):
return math.sqrt(1 / self.pi) if self.pi else inf
def __mul__(self, other):
pi, tau = self.pi + other.pi, self.tau + other.tau
return Gaussian(pi=pi, tau=tau)
def __truediv__(self, other):
pi, tau = self.pi - other.pi, self.tau - other.tau
return Gaussian(pi=pi, tau=tau)
__div__ = __truediv__ # for Python 2
def __eq__(self, other):
return self.pi == other.pi and self.tau == other.tau
def __lt__(self, other):
return self.mu < other.mu
def __le__(self, other):
return self.mu <= other.mu
def __gt__(self, other):
return self.mu > other.mu
def __ge__(self, other):
return self.mu >= other.mu
def __repr__(self):
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
def _repr_latex_(self):
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
return '$%s$' % latex
class Matrix(list):
def __init__(self, src, height=None, width=None):
if callable(src):
f, src = src, {}
size = [height, width]
if not height:
def set_height(height):
size[0] = height
size[0] = set_height
if not width:
def set_width(width):
size[1] = width
size[1] = set_width
try:
for (r, c), val in f(*size):
src[r, c] = val
except TypeError:
raise TypeError('A callable src must return an interable '
'which generates a tuple containing '
'coordinate and value')
height, width = tuple(size)
if height is None or width is None:
raise TypeError('A callable src must call set_height and '
'set_width if the size is non-deterministic')
if isinstance(src, list):
is_number = lambda x: isinstance(x, Number)
unique_col_sizes = set(map(len, src))
everything_are_number = filter(is_number, sum(src, []))
if len(unique_col_sizes) != 1 or not everything_are_number:
raise ValueError('src must be a rectangular array of numbers')
two_dimensional_array = src
elif isinstance(src, dict):
if not height or not width:
w = h = 0
for r, c in iterkeys(src):
if not height:
h = max(h, r + 1)
if not width:
w = max(w, c + 1)
if not height:
height = h
if not width:
width = w
two_dimensional_array = []
for r in range(height):
row = []
two_dimensional_array.append(row)
for c in range(width):
row.append(src.get((r, c), 0))
else:
raise TypeError('src must be a list or dict or callable')
super(Matrix, self).__init__(two_dimensional_array)
@property
def height(self):
return len(self)
@property
def width(self):
return len(self[0])
def transpose(self):
height, width = self.height, self.width
src = {}
for c in range(width):
for r in range(height):
src[c, r] = self[r][c]
return type(self)(src, height=width, width=height)
def minor(self, row_n, col_n):
height, width = self.height, self.width
if not (0 <= row_n < height):
raise ValueError('row_n should be between 0 and %d' % height)
elif not (0 <= col_n < width):
raise ValueError('col_n should be between 0 and %d' % width)
two_dimensional_array = []
for r in range(height):
if r == row_n:
continue
row = []
two_dimensional_array.append(row)
for c in range(width):
if c == col_n:
continue
row.append(self[r][c])
return type(self)(two_dimensional_array)
def determinant(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can calculate a determinant')
tmp, rv = copy.deepcopy(self), 1.
for c in range(width - 1, 0, -1):
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
pivot = tmp[r][c]
if not pivot:
return 0.
tmp[r], tmp[c] = tmp[c], tmp[r]
if r != c:
rv = -rv
rv *= pivot
fact = -1. / pivot
for r in range(c):
f = fact * tmp[r][c]
for x in range(c):
tmp[r][x] += f * tmp[c][x]
return rv * tmp[0][0]
def adjugate(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can be adjugated')
if height == 2:
a, b = self[0][0], self[0][1]
c, d = self[1][0], self[1][1]
return type(self)([[d, -b], [-c, a]])
src = {}
for r in range(height):
for c in range(width):
sign = -1 if (r + c) % 2 else 1
src[r, c] = self.minor(r, c).determinant() * sign
return type(self)(src, height, width)
def inverse(self):
if self.height == self.width == 1:
return type(self)([[1. / self[0][0]]])
return (1. / self.determinant()) * self.adjugate()
def __add__(self, other):
height, width = self.height, self.width
if (height, width) != (other.height, other.width):
raise ValueError('Must be same size')
src = {}
for r in range(height):
for c in range(width):
src[r, c] = self[r][c] + other[r][c]
return type(self)(src, height, width)
def __mul__(self, other):
if self.width != other.height:
raise ValueError('Bad size')
height, width = self.height, other.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = sum(self[r][x] * other[x][c]
for x in range(self.width))
return type(self)(src, height, width)
def __rmul__(self, other):
if not isinstance(other, Number):
raise TypeError('The operand should be a number')
height, width = self.height, self.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = other * self[r][c]
return type(self)(src, height, width)
def __repr__(self):
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
def _repr_latex_(self):
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
return '$%s$' % latex
def _gen_erfcinv(erfc, math=math):
def erfcinv(y):
"""The inverse function of erfc."""
if y >= 2:
return -100.
elif y <= 0:
return 100.
zero_point = y < 1
if not zero_point:
y = 2 - y
t = math.sqrt(-2 * math.log(y / 2.))
x = -0.70711 * \
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
for i in range(2):
err = erfc(x) - y
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
return x if zero_point else -x
return erfcinv
def _gen_ppf(erfc, math=math):
erfcinv = _gen_erfcinv(erfc, math)
def ppf(x, mu=0, sigma=1):
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
return ppf
def erfc(x):
z = abs(x)
t = 1. / (1. + z / 2.)
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
-0.82215223 + t * 0.17087277
)))
)))
)))
return 2. - r if x < 0 else r
def cdf(x, mu=0, sigma=1):
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
def pdf(x, mu=0, sigma=1):
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
ppf = _gen_ppf(erfc)
def choose_backend(backend):
if backend is None: # fallback
return cdf, pdf, ppf
elif backend == 'mpmath':
try:
import mpmath
except ImportError:
raise ImportError('Install "mpmath" to use this backend')
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
elif backend == 'scipy':
try:
from scipy.stats import norm
except ImportError:
raise ImportError('Install "scipy" to use this backend')
return norm.cdf, norm.pdf, norm.ppf
raise ValueError('%r backend is not defined' % backend)
def available_backends():
backends = [None]
for backend in ['mpmath', 'scipy']:
try:
__import__(backend)
except ImportError:
continue
backends.append(backend)
return backends
class Node(object):
pass
class Variable(Node, Gaussian):
def __init__(self):
self.messages = {}
super(Variable, self).__init__()
def set(self, val):
delta = self.delta(val)
self.pi, self.tau = val.pi, val.tau
return delta
def delta(self, other):
pi_delta = abs(self.pi - other.pi)
if pi_delta == inf:
return 0.
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
def update_message(self, factor, pi=0, tau=0, message=None):
message = message or Gaussian(pi=pi, tau=tau)
old_message, self[factor] = self[factor], message
return self.set(self / old_message * message)
def update_value(self, factor, pi=0, tau=0, value=None):
value = value or Gaussian(pi=pi, tau=tau)
old_message = self[factor]
self[factor] = value * old_message / self
return self.set(value)
def __getitem__(self, factor):
return self.messages[factor]
def __setitem__(self, factor, message):
self.messages[factor] = message
def __repr__(self):
args = (type(self).__name__, super(Variable, self).__repr__(),
len(self.messages), '' if len(self.messages) == 1 else 's')
return '<%s %s with %d connection%s>' % args
class Factor(Node):
def __init__(self, variables):
self.vars = variables
for var in variables:
var[self] = Gaussian()
def down(self):
return 0
def up(self):
return 0
@property
def var(self):
assert len(self.vars) == 1
return self.vars[0]
def __repr__(self):
args = (type(self).__name__, len(self.vars),
'' if len(self.vars) == 1 else 's')
return '<%s with %d connection%s>' % args
class PriorFactor(Factor):
def __init__(self, var, val, dynamic=0):
super(PriorFactor, self).__init__([var])
self.val = val
self.dynamic = dynamic
def down(self):
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
value = Gaussian(self.val.mu, sigma)
return self.var.update_value(self, value=value)
class LikelihoodFactor(Factor):
def __init__(self, mean_var, value_var, variance):
super(LikelihoodFactor, self).__init__([mean_var, value_var])
self.mean = mean_var
self.value = value_var
self.variance = variance
def calc_a(self, var):
return 1. / (1. + self.variance * var.pi)
def down(self):
# update value.
msg = self.mean / self.mean[self]
a = self.calc_a(msg)
return self.value.update_message(self, a * msg.pi, a * msg.tau)
def up(self):
# update mean.
msg = self.value / self.value[self]
a = self.calc_a(msg)
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
class SumFactor(Factor):
def __init__(self, sum_var, term_vars, coeffs):
super(SumFactor, self).__init__([sum_var] + term_vars)
self.sum = sum_var
self.terms = term_vars
self.coeffs = coeffs
def down(self):
vals = self.terms
msgs = [var[self] for var in vals]
return self.update(self.sum, vals, msgs, self.coeffs)
def up(self, index=0):
coeff = self.coeffs[index]
coeffs = []
for x, c in enumerate(self.coeffs):
try:
if x == index:
coeffs.append(1. / coeff)
else:
coeffs.append(-c / coeff)
except ZeroDivisionError:
coeffs.append(0.)
vals = self.terms[:]
vals[index] = self.sum
msgs = [var[self] for var in vals]
return self.update(self.terms[index], vals, msgs, coeffs)
def update(self, var, vals, msgs, coeffs):
pi_inv = 0
mu = 0
for val, msg, coeff in zip(vals, msgs, coeffs):
div = val / msg
mu += coeff * div.mu
if pi_inv == inf:
continue
try:
# numpy.float64 handles floating-point error by different way.
# For example, it can just warn RuntimeWarning on n/0 problem
# instead of throwing ZeroDivisionError. So div.pi, the
# denominator has to be a built-in float.
pi_inv += coeff ** 2 / float(div.pi)
except ZeroDivisionError:
pi_inv = inf
pi = 1. / pi_inv
tau = pi * mu
return var.update_message(self, pi, tau)
class TruncateFactor(Factor):
def __init__(self, var, v_func, w_func, draw_margin):
super(TruncateFactor, self).__init__([var])
self.v_func = v_func
self.w_func = w_func
self.draw_margin = draw_margin
def up(self):
val = self.var
msg = self.var[self]
div = val / msg
sqrt_pi = math.sqrt(div.pi)
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
v = self.v_func(*args)
w = self.w_func(*args)
denom = (1. - w)
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
return val.update_value(self, pi, tau)
#: Default initial mean of ratings.
MU = 25.
#: Default initial standard deviation of ratings.
SIGMA = MU / 3
#: Default distance that guarantees about 76% chance of winning.
BETA = SIGMA / 2
#: Default dynamic factor.
TAU = SIGMA / 100
#: Default draw probability of the game.
DRAW_PROBABILITY = .10
#: A basis to check reliability of the result.
DELTA = 0.0001
def calc_draw_probability(draw_margin, size, env=None):
if env is None:
env = global_env()
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
def calc_draw_margin(draw_probability, size, env=None):
if env is None:
env = global_env()
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
def _team_sizes(rating_groups):
team_sizes = [0]
for group in rating_groups:
team_sizes.append(len(group) + team_sizes[-1])
del team_sizes[0]
return team_sizes
def _floating_point_error(env):
if env.backend == 'mpmath':
msg = 'Set "mpmath.mp.dps" to higher'
else:
msg = 'Cannot calculate correctly, set backend to "mpmath"'
return FloatingPointError(msg)
class Rating(Gaussian):
def __init__(self, mu=None, sigma=None):
if isinstance(mu, tuple):
mu, sigma = mu
elif isinstance(mu, Gaussian):
mu, sigma = mu.mu, mu.sigma
if mu is None:
mu = global_env().mu
if sigma is None:
sigma = global_env().sigma
super(Rating, self).__init__(mu, sigma)
def __int__(self):
return int(self.mu)
def __long__(self):
return long(self.mu)
def __float__(self):
return float(self.mu)
def __iter__(self):
return iter((self.mu, self.sigma))
def __repr__(self):
c = type(self)
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
return '%s(mu=%.3f, sigma=%.3f)' % args
class TrueSkill(object):
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None):
self.mu = mu
self.sigma = sigma
self.beta = beta
self.tau = tau
self.draw_probability = draw_probability
self.backend = backend
if isinstance(backend, tuple):
self.cdf, self.pdf, self.ppf = backend
else:
self.cdf, self.pdf, self.ppf = choose_backend(backend)
def create_rating(self, mu=None, sigma=None):
if mu is None:
mu = self.mu
if sigma is None:
sigma = self.sigma
return Rating(mu, sigma)
def v_win(self, diff, draw_margin):
x = diff - draw_margin
denom = self.cdf(x)
return (self.pdf(x) / denom) if denom else -x
def v_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
numer = self.pdf(b) - self.pdf(a)
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
def w_win(self, diff, draw_margin):
x = diff - draw_margin
v = self.v_win(diff, draw_margin)
w = v * (v + x)
if 0 < w < 1:
return w
raise _floating_point_error(self)
def w_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
if not denom:
raise _floating_point_error(self)
v = self.v_draw(abs_diff, draw_margin)
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
def validate_rating_groups(self, rating_groups):
# check group sizes
if len(rating_groups) < 2:
raise ValueError('Need multiple rating groups')
elif not all(rating_groups):
raise ValueError('Each group must contain multiple ratings')
# check group types
group_types = set(map(type, rating_groups))
if len(group_types) != 1:
raise TypeError('All groups should be same type')
elif group_types.pop() is Rating:
raise TypeError('Rating cannot be a rating group')
# normalize rating_groups
if isinstance(rating_groups[0], dict):
dict_rating_groups = rating_groups
rating_groups = []
keys = []
for dict_rating_group in dict_rating_groups:
rating_group, key_group = [], []
for key, rating in iteritems(dict_rating_group):
rating_group.append(rating)
key_group.append(key)
rating_groups.append(tuple(rating_group))
keys.append(tuple(key_group))
else:
rating_groups = list(rating_groups)
keys = None
return rating_groups, keys
def validate_weights(self, weights, rating_groups, keys=None):
if weights is None:
weights = [(1,) * len(g) for g in rating_groups]
elif isinstance(weights, dict):
weights_dict, weights = weights, []
for x, group in enumerate(rating_groups):
w = []
weights.append(w)
for y, rating in enumerate(group):
if keys is not None:
y = keys[x][y]
w.append(weights_dict.get((x, y), 1))
return weights
def factor_graph_builders(self, rating_groups, ranks, weights):
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
size = len(flatten_ratings)
group_size = len(rating_groups)
# create variables
rating_vars = [Variable() for x in range(size)]
perf_vars = [Variable() for x in range(size)]
team_perf_vars = [Variable() for x in range(group_size)]
team_diff_vars = [Variable() for x in range(group_size - 1)]
team_sizes = _team_sizes(rating_groups)
# layer builders
def build_rating_layer():
for rating_var, rating in zip(rating_vars, flatten_ratings):
yield PriorFactor(rating_var, rating, self.tau)
def build_perf_layer():
for rating_var, perf_var in zip(rating_vars, perf_vars):
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
def build_team_perf_layer():
for team, team_perf_var in enumerate(team_perf_vars):
if team > 0:
start = team_sizes[team - 1]
else:
start = 0
end = team_sizes[team]
child_perf_vars = perf_vars[start:end]
coeffs = flatten_weights[start:end]
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
def build_team_diff_layer():
for team, team_diff_var in enumerate(team_diff_vars):
yield SumFactor(team_diff_var,
team_perf_vars[team:team + 2], [+1, -1])
def build_trunc_layer():
for x, team_diff_var in enumerate(team_diff_vars):
if callable(self.draw_probability):
# dynamic draw probability
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
args = (Rating(team_perf1), Rating(team_perf2), self)
draw_probability = self.draw_probability(*args)
else:
# static draw probability
draw_probability = self.draw_probability
size = sum(map(len, rating_groups[x:x + 2]))
draw_margin = calc_draw_margin(draw_probability, size, self)
if ranks[x] == ranks[x + 1]: # is a tie?
v_func, w_func = self.v_draw, self.w_draw
else:
v_func, w_func = self.v_win, self.w_win
yield TruncateFactor(team_diff_var,
v_func, w_func, draw_margin)
# build layers
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
build_team_diff_layer, build_trunc_layer)
def run_schedule(self, build_rating_layer, build_perf_layer,
build_team_perf_layer, build_team_diff_layer,
build_trunc_layer, min_delta=DELTA):
if min_delta <= 0:
raise ValueError('min_delta must be greater than 0')
layers = []
def build(builders):
layers_built = [list(build()) for build in builders]
layers.extend(layers_built)
return layers_built
# gray arrows
layers_built = build([build_rating_layer,
build_perf_layer,
build_team_perf_layer])
rating_layer, perf_layer, team_perf_layer = layers_built
for f in chain(*layers_built):
f.down()
# arrow #1, #2, #3
team_diff_layer, trunc_layer = build([build_team_diff_layer,
build_trunc_layer])
team_diff_len = len(team_diff_layer)
for x in range(10):
if team_diff_len == 1:
# only two teams
team_diff_layer[0].down()
delta = trunc_layer[0].up()
else:
# multiple teams
delta = 0
for x in range(team_diff_len - 1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(1) # up to right variable
for x in range(team_diff_len - 1, 0, -1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(0) # up to left variable
# repeat until to small update
if delta <= min_delta:
break
# up both ends
team_diff_layer[0].up(0)
team_diff_layer[team_diff_len - 1].up(1)
# up the remainder of the black arrows
for f in team_perf_layer:
for x in range(len(f.vars) - 1):
f.up(x)
for f in perf_layer:
f.up()
return layers
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
group_size = len(rating_groups)
if ranks is None:
ranks = range(group_size)
elif len(ranks) != group_size:
raise ValueError('Wrong ranks')
# sort rating groups by rank
by_rank = lambda x: x[1][1]
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
key=by_rank)
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
for x, (g, r, w) in sorting:
sorted_rating_groups.append(g)
sorted_ranks.append(r)
# make weights to be greater than 0
sorted_weights.append(max(min_delta, w_) for w_ in w)
# build factor graph
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
builders = self.factor_graph_builders(*args)
args = builders + (min_delta,)
layers = self.run_schedule(*args)
# make result
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
transformed_groups = []
for start, end in zip([0] + team_sizes[:-1], team_sizes):
group = []
for f in rating_layer[start:end]:
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
transformed_groups.append(tuple(group))
by_hint = lambda x: x[0]
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
key=by_hint)
if keys is None:
return [g for x, g in unsorting]
# restore the structure with input dictionary keys
return [dict(zip(keys[x], g)) for x, g in unsorting]
def quality(self, rating_groups, weights=None):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
length = len(flatten_ratings)
# a vector of all of the skill means
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
# a matrix whose diagonal values are the variances (sigma ** 2) of each
# of the players.
def variance_matrix(height, width):
variances = (r.sigma ** 2 for r in flatten_ratings)
for x, variance in enumerate(variances):
yield (x, x), variance
variance_matrix = Matrix(variance_matrix, length, length)
# the player-team assignment and comparison matrix
def rotated_a_matrix(set_height, set_width):
t = 0
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
rating_groups[1:])):
for x in range(t, t + len(cur)):
yield (r, x), flatten_weights[x]
t += 1
x += 1
for x in range(x, x + len(_next)):
yield (r, x), -flatten_weights[x]
set_height(r + 1)
set_width(x + 1)
rotated_a_matrix = Matrix(rotated_a_matrix)
a_matrix = rotated_a_matrix.transpose()
# match quality further derivation
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
_atsa = rotated_a_matrix * variance_matrix * a_matrix
start = mean_matrix.transpose() * a_matrix
middle = _ata + _atsa
end = rotated_a_matrix * mean_matrix
# make result
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
s_arg = _ata.determinant() / middle.determinant()
return math.exp(e_arg) * math.sqrt(s_arg)
def expose(self, rating):
k = self.mu / self.sigma
return rating.mu - k * rating.sigma
def make_as_global(self):
return setup(env=self)
def __repr__(self):
c = type(self)
if callable(self.draw_probability):
f = self.draw_probability
draw_probability = '.'.join([f.__module__, f.__name__])
else:
draw_probability = '%.1f%%' % (self.draw_probability * 100)
if self.backend is None:
backend = ''
elif isinstance(self.backend, tuple):
backend = ', backend=...'
else:
backend = ', backend=%r' % self.backend
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
self.beta, self.tau, draw_probability, backend)
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
'draw_probability=%s%s)' % args)
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
if env is None:
env = global_env()
ranks = [0, 0 if drawn else 1]
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
return teams[0][0], teams[1][0]
def quality_1vs1(rating1, rating2, env=None):
if env is None:
env = global_env()
return env.quality([(rating1,), (rating2,)])
def global_env():
try:
global_env.__trueskill__
except AttributeError:
# setup the default environment
setup()
return global_env.__trueskill__
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
if env is None:
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
global_env.__trueskill__ = env
return env
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
return global_env().rate(rating_groups, ranks, weights, min_delta)
def quality(rating_groups, weights=None):
return global_env().quality(rating_groups, weights)
def expose(rating):
return global_env().expose(rating)

View File

@@ -1,34 +0,0 @@
# Titan Robotics Team 2022: Visualization Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import visualization'
# this should be included in the local directory or environment variable
# fancy
# setup:
__version__ = "1.0.0.000"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.0.0.000:
- created visualization.py
- added graphloss()
- added imports
"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>,"
"Jacob Levine <jlevine@ttic.edu>,"
)
__all__ = [
'graphloss',
]
import matplotlib.pyplot as plt
def graphloss(losses):
x = range(0, len(losses))
plt.plot(x, losses)
plt.show()

View File

@@ -1,5 +0,0 @@
FROM python
WORKDIR ~/
COPY ./ ./
RUN pip install -r requirements.txt
CMD ["bash"]

View File

@@ -1,3 +0,0 @@
cd ..
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
docker run -it tra-analysis-amd64-dev

View File

@@ -1,6 +0,0 @@
numba
numpy
scipy
scikit-learn
six
matplotlib

View File

@@ -1,26 +0,0 @@
import setuptools
requirements = []
with open("requirements.txt", 'r') as file:
for line in file:
requirements.append(line)
setuptools.setup(
name="analysis",
version="1.0.0.011",
author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com",
description="analysis package developed by Titan Scouting for The Red Alliance",
long_description="",
long_description_content_type="text/markdown",
url="https://github.com/titanscout2022/tr2022-strategy",
packages=setuptools.find_packages(),
install_requires=requirements,
license = "GNU General Public License v3.0",
classifiers=[
"Programming Language :: Python :: 3",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
)

View File

@@ -1,3 +0,0 @@
cd ..
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
docker run -it tra-analysis-amd64-dev

View File

View File

@@ -1,6 +1,6 @@
numba
numpy
scipy
scikit-learn
six
matplotlib
pyparsing

28
analysis-master/setup.py Normal file
View File

@@ -0,0 +1,28 @@
import setuptools
import tra_analysis
requirements = []
with open("requirements.txt", 'r') as file:
for line in file:
requirements.append(line)
setuptools.setup(
name="tra_analysis",
version=tra_analysis.__version__,
author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com",
description="Analysis package developed by Titan Scouting for The Red Alliance",
long_description="../README.md",
long_description_content_type="text/markdown",
url="https://github.com/titanscout2022/tr2022-strategy",
packages=setuptools.find_packages(),
install_requires=requirements,
license = "BSD 3-Clause License",
classifiers=[
"Programming Language :: Python :: 3",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
keywords="data analysis tools"
)

View File

@@ -0,0 +1,233 @@
import numpy as np
import sklearn
from sklearn import metrics
from tra_analysis import Analysis as an
from tra_analysis import Array
from tra_analysis import ClassificationMetric
from tra_analysis import CorrelationTest
from tra_analysis import Fit
from tra_analysis import KNN
from tra_analysis import NaiveBayes
from tra_analysis import RandomForest
from tra_analysis import RegressionMetric
from tra_analysis import Sort
from tra_analysis import StatisticalTest
from tra_analysis import SVM
from tra_analysis.equation.parser import BNF
test_data_linear = [1, 3, 6, 7, 9]
test_data_linear2 = [2, 2, 5, 7, 13]
test_data_linear3 = [2, 5, 8, 6, 14]
test_data_array = Array(test_data_linear)
x_data_circular = []
y_data_circular = []
y_data_ccu = [1, 3, 7, 14, 21]
y_data_ccd = [1, 5, 7, 8.5, 8.66]
test_data_scrambled = [-32, 34, 19, 72, -65, -11, -43, 6, 85, -17, -98, -26, 12, 20, 9, -92, -40, 98, -78, 17, -20, 49, 93, -27, -24, -66, 40, 84, 1, -64, -68, -25, -42, -46, -76, 43, -3, 30, -14, -34, -55, -13, 41, -30, 0, -61, 48, 23, 60, 87, 80, 77, 53, 73, 79, 24, -52, 82, 8, -44, 65, 47, -77, 94, 7, 37, -79, 36, -94, 91, 59, 10, 97, -38, -67, 83, 54, 31, -95, -63, 16, -45, 21, -12, 66, -48, -18, -96, -90, -21, -83, -74, 39, 64, 69, -97, 13, 55, 27, -39]
test_data_sorted = [-98, -97, -96, -95, -94, -92, -90, -83, -79, -78, -77, -76, -74, -68, -67, -66, -65, -64, -63, -61, -55, -52, -48, -46, -45, -44, -43, -42, -40, -39, -38, -34, -32, -30, -27, -26, -25, -24, -21, -20, -18, -17, -14, -13, -12, -11, -3, 0, 1, 6, 7, 8, 9, 10, 12, 13, 16, 17, 19, 20, 21, 23, 24, 27, 30, 31, 34, 36, 37, 39, 40, 41, 43, 47, 48, 49, 53, 54, 55, 59, 60, 64, 65, 66, 69, 72, 73, 77, 79, 80, 82, 83, 84, 85, 87, 91, 93, 94, 97, 98]
test_data_2D_pairs = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
test_data_2D_positive = np.array([[23, 51], [21, 32], [15, 25], [17, 31]])
test_output = np.array([1, 3, 4, 5])
test_labels_2D_pairs = np.array([1, 1, 2, 2])
validation_data_2D_pairs = np.array([[-0.8, -1], [0.8, 1.2]])
validation_labels_2D_pairs = np.array([1, 2])
def test_basicstats():
assert an.basic_stats(test_data_linear) == {"mean": 5.2, "median": 6.0, "standard-deviation": 2.85657137141714, "variance": 8.16, "minimum": 1.0, "maximum": 9.0}
assert an.z_score(3.2, 6, 1.5) == -1.8666666666666665
assert an.z_normalize([test_data_linear], 1).tolist() == [[0.07537783614444091, 0.22613350843332272, 0.45226701686664544, 0.5276448530110863, 0.6784005252999682]]
def test_regression():
assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["lin"])) == True
#assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccd, ["log"])) == True
#assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["exp"])) == True
#assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["ply"])) == True
#assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccd, ["sig"])) == True
def test_metrics():
assert an.Metric().elo(1500, 1500, [1, 0], 400, 24) == 1512.0
assert an.Metric().glicko2(1500, 250, 0.06, [1500, 1400], [250, 240], [1, 0]) == (1478.864307445517, 195.99122679202452, 0.05999602937563585)
#assert an.Metric().trueskill([[(25, 8.33), (24, 8.25), (32, 7.5)], [(25, 8.33), (25, 8.33), (21, 6.5)]], [1, 0]) == [(metrics.trueskill.Rating(mu=21.346, sigma=7.875), metrics.trueskill.Rating(mu=20.415, sigma=7.808), metrics.trueskill.Rating(mu=29.037, sigma=7.170)), (metrics.trueskill.Rating(mu=28.654, sigma=7.875), metrics.trueskill.Rating(mu=28.654, sigma=7.875), metrics.trueskill.Rating(mu=23.225, sigma=6.287))]
def test_array():
assert test_data_array.elementwise_mean() == 5.2
assert test_data_array.elementwise_median() == 6.0
assert test_data_array.elementwise_stdev() == 2.85657137141714
assert test_data_array.elementwise_variance() == 8.16
assert test_data_array.elementwise_npmin() == 1
assert test_data_array.elementwise_npmax() == 9
assert test_data_array.elementwise_stats() == (5.2, 6.0, 2.85657137141714, 8.16, 1, 9)
for i in range(len(test_data_array)):
assert test_data_array[i] == test_data_linear[i]
test_data_array[0] = 100
expected = [100, 3, 6, 7, 9]
for i in range(len(test_data_array)):
assert test_data_array[i] == expected[i]
def test_classifmetric():
classif_metric = ClassificationMetric(test_data_linear2, test_data_linear)
assert classif_metric[0].all() == metrics.confusion_matrix(test_data_linear, test_data_linear2).all()
assert classif_metric[1] == metrics.classification_report(test_data_linear, test_data_linear2)
def test_correlationtest():
assert all(np.isclose(list(CorrelationTest.anova_oneway(test_data_linear, test_data_linear2).values()), [0.05825242718446602, 0.8153507906592907], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.pearson(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.spearman(test_data_linear, test_data_linear2).values()), [0.9746794344808964, 0.004818230468198537], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.point_biserial(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.kendall(test_data_linear, test_data_linear2).values()), [0.9486832980505137, 0.022977401503206086], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.kendall_weighted(test_data_linear, test_data_linear2).values()), [0.9750538072369643, np.nan], rtol=1e-10, equal_nan=True))
def test_fit():
assert Fit.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0)
def test_knn():
model, metric = KNN.knn_classifier(test_data_2D_pairs, test_labels_2D_pairs, 2)
assert isinstance(model, sklearn.neighbors.KNeighborsClassifier)
assert np.array([[0,0], [2,0]]).all() == metric[0].all()
assert ' precision recall f1-score support\n\n 1 0.00 0.00 0.00 0.0\n 2 0.00 0.00 0.00 2.0\n\n accuracy 0.00 2.0\n macro avg 0.00 0.00 0.00 2.0\nweighted avg 0.00 0.00 0.00 2.0\n' == metric[1]
model, metric = KNN.knn_regressor(test_data_2D_pairs, test_output, 2)
assert isinstance(model, sklearn.neighbors.KNeighborsRegressor)
assert (-25.0, 6.5, 2.5495097567963922) == metric
def test_naivebayes():
model, metric = NaiveBayes.gaussian(test_data_2D_pairs, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.GaussianNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = NaiveBayes.multinomial(test_data_2D_positive, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.MultinomialNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = NaiveBayes.bernoulli(test_data_2D_pairs, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.BernoulliNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = NaiveBayes.complement(test_data_2D_positive, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.ComplementNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
def test_randomforest():
model, metric = RandomForest.random_forest_classifier(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2)
assert isinstance(model, sklearn.ensemble.RandomForestClassifier)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = RandomForest.random_forest_regressor(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2)
assert isinstance(model, sklearn.ensemble.RandomForestRegressor)
assert metric == (0.0, 1.0, 1.0)
def test_regressionmetric():
assert RegressionMetric(test_data_linear, test_data_linear2)== (0.7705314009661837, 3.8, 1.9493588689617927)
def test_sort():
sorts = [Sort.quicksort, Sort.mergesort, Sort.heapsort, Sort.introsort, Sort.insertionsort, Sort.timsort, Sort.selectionsort, Sort.shellsort, Sort.bubblesort, Sort.cyclesort, Sort.cocktailsort]
for sort in sorts:
assert all(a == b for a, b in zip(sort(test_data_scrambled), test_data_sorted))
def test_statisticaltest():
#print(StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]))
assert StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]) == \
{'group 1 and group 2': [0.32571517201527916, False], 'group 1 and group 3': [0.977145516045838, False], 'group 2 and group 3': [0.6514303440305589, False]}
#assert all(np.isclose([i[0] for i in list(StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]).values],
# [0.32571517201527916, 0.977145516045838, 0.6514303440305589]))
#assert [i[1] for i in StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]).values] == \
# [False, False, False]
def test_svm():
data = test_data_2D_pairs
labels = test_labels_2D_pairs
test_data = validation_data_2D_pairs
test_labels = validation_labels_2D_pairs
lin_kernel = SVM.PrebuiltKernel.Linear()
#ply_kernel = SVM.PrebuiltKernel.Polynomial(3, 0)
rbf_kernel = SVM.PrebuiltKernel.RBF('scale')
sig_kernel = SVM.PrebuiltKernel.Sigmoid(0)
lin_kernel = SVM.fit(lin_kernel, data, labels)
#ply_kernel = SVM.fit(ply_kernel, data, labels)
rbf_kernel = SVM.fit(rbf_kernel, data, labels)
sig_kernel = SVM.fit(sig_kernel, data, labels)
for i in range(len(test_data)):
assert lin_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
#for i in range(len(test_data)):
# assert ply_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
for i in range(len(test_data)):
assert rbf_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
for i in range(len(test_data)):
assert sig_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
def test_equation():
parser = BNF()
correctParse = {
"9": 9.0,
"-9": -9.0,
"--9": 9.0,
"-E": -2.718281828459045,
"9 + 3 + 6": 18.0,
"9 + 3 / 11": 9.272727272727273,
"(9 + 3)": 12.0,
"(9+3) / 11": 1.0909090909090908,
"9 - 12 - 6": -9.0,
"9 - (12 - 6)": 3.0,
"2*3.14159": 6.28318,
"3.1415926535*3.1415926535 / 10": 0.9869604400525172,
"PI * PI / 10": 0.9869604401089358,
"PI*PI/10": 0.9869604401089358,
"PI^2": 9.869604401089358,
"round(PI^2)": 10,
"6.02E23 * 8.048": 4.844896e+24,
"e / 3": 0.9060939428196817,
"sin(PI/2)": 1.0,
"10+sin(PI/4)^2": 10.5,
"trunc(E)": 2,
"trunc(-E)": -2,
"round(E)": 3,
"round(-E)": -3,
"E^PI": 23.140692632779263,
"exp(0)": 1.0,
"exp(1)": 2.718281828459045,
"2^3^2": 512.0,
"(2^3)^2": 64.0,
"2^3+2": 10.0,
"2^3+5": 13.0,
"2^9": 512.0,
"sgn(-2)": -1,
"sgn(0)": 0,
"sgn(0.1)": 1,
"sgn(cos(PI/4))": 1,
"sgn(cos(PI/2))": 0,
"sgn(cos(PI*3/4))": -1,
"+(sgn(cos(PI/4)))": 1,
"-(sgn(cos(PI/4)))": -1,
}
for key in list(correctParse.keys()):
assert parser.eval(key) == correctParse[key]

View File

@@ -0,0 +1,628 @@
# Titan Robotics Team 2022: Analysis Module
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import Analysis'
# this should be included in the local directory or environment variable
# this module has been optimized for multhreaded computing
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "3.0.2"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
3.0.2:
- fixed __all__
3.0.1:
- removed numba dependency and calls
3.0.0:
- exported several submodules to their own files while preserving backwards compatibility:
- Array
- ClassificationMetric
- CorrelationTest
- KNN
- NaiveBayes
- RandomForest
- RegressionMetric
- Sort
- StatisticalTest
- SVM
- note: above listed submodules will not be supported in the future
- future changes to all submodules will be held in their respective changelogs
- future changes altering the parent package will be held in the __changelog__ of the parent package (in __init__.py)
- changed reference to module name to Analysis
2.3.1:
- fixed bugs in Array class
2.3.0:
- overhauled Array class
2.2.3:
- fixed spelling of RandomForest
- made n_neighbors required for KNN
- made n_classifiers required for SVM
2.2.2:
- fixed 2.2.1 changelog entry
- changed regression to return dictionary
2.2.1:
- changed all references to parent package analysis to tra_analysis
2.2.0:
- added Sort class
- added several array sorting functions to Sort class including:
- quick sort
- merge sort
- intro(spective) sort
- heap sort
- insertion sort
- tim sort
- selection sort
- bubble sort
- cycle sort
- cocktail sort
- tested all sorting algorithms with both lists and numpy arrays
- depreciated sort function from Array class
- added warnings as an import
2.1.4:
- added sort and search functions to Array class
2.1.3:
- changed output of basic_stats and histo_analysis to libraries
- fixed __all__
2.1.2:
- renamed ArrayTest class to Array
2.1.1:
- added add, mul, neg, and inv functions to ArrayTest class
- added normalize function to ArrayTest class
- added dot and cross functions to ArrayTest class
2.1.0:
- added ArrayTest class
- added elementwise mean, median, standard deviation, variance, min, max functions to ArrayTest class
- added elementwise_stats to ArrayTest which encapsulates elementwise statistics
- appended to __all__ to reflect changes
2.0.6:
- renamed func functions in regression to lin, log, exp, and sig
2.0.5:
- moved random_forrest_regressor and random_forrest_classifier to RandomForrest class
- renamed Metrics to Metric
- renamed RegressionMetrics to RegressionMetric
- renamed ClassificationMetrics to ClassificationMetric
- renamed CorrelationTests to CorrelationTest
- renamed StatisticalTests to StatisticalTest
- reflected rafactoring to all mentions of above classes/functions
2.0.4:
- fixed __all__ to reflected the correct functions and classes
- fixed CorrelationTests and StatisticalTests class functions to require self invocation
- added missing math import
- fixed KNN class functions to require self invocation
- fixed Metrics class functions to require self invocation
- various spelling fixes in CorrelationTests and StatisticalTests
2.0.3:
- bug fixes with CorrelationTests and StatisticalTests
- moved glicko2 and trueskill to the metrics subpackage
- moved elo to a new metrics subpackage
2.0.2:
- fixed docs
2.0.1:
- fixed docs
2.0.0:
- cleaned up wild card imports with scipy and sklearn
- added CorrelationTests class
- added StatisticalTests class
- added several correlation tests to CorrelationTests
- added several statistical tests to StatisticalTests
1.13.9:
- moved elo, glicko2, trueskill functions under class Metrics
1.13.8:
- moved Glicko2 to a seperate package
1.13.7:
- fixed bug with trueskill
1.13.6:
- cleaned up imports
1.13.5:
- cleaned up package
1.13.4:
- small fixes to regression to improve performance
1.13.3:
- filtered nans from regression
1.13.2:
- removed torch requirement, and moved Regression back to regression.py
1.13.1:
- bug fix with linear regression not returning a proper value
- cleaned up regression
- fixed bug with polynomial regressions
1.13.0:
- fixed all regressions to now properly work
1.12.6:
- fixed bg with a division by zero in histo_analysis
1.12.5:
- fixed numba issues by removing numba from elo, glicko2 and trueskill
1.12.4:
- renamed gliko to glicko
1.12.3:
- removed depreciated code
1.12.2:
- removed team first time trueskill instantiation in favor of integration in superscript.py
1.12.1:
- improved readibility of regression outputs by stripping tensor data
- used map with lambda to acheive the improved readibility
- lost numba jit support with regression, and generated_jit hangs at execution
- TODO: reimplement correct numba integration in regression
1.12.0:
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
1.11.010:
- alphabeticaly ordered import lists
1.11.9:
- bug fixes
1.11.8:
- bug fixes
1.11.7:
- bug fixes
1.11.6:
- tested min and max
- bug fixes
1.11.5:
- added min and max in basic_stats
1.11.4:
- bug fixes
1.11.3:
- bug fixes
1.11.2:
- consolidated metrics
- fixed __all__
1.11.1:
- added test/train split to RandomForestClassifier and RandomForestRegressor
1.11.0:
- added RandomForestClassifier and RandomForestRegressor
- note: untested
1.10.0:
- added numba.jit to remaining functions
1.9.2:
- kernelized PCA and KNN
1.9.1:
- fixed bugs with SVM and NaiveBayes
1.9.0:
- added SVM class, subclasses, and functions
- note: untested
1.8.0:
- added NaiveBayes classification engine
- note: untested
1.7.0:
- added knn()
- added confusion matrix to decisiontree()
1.6.2:
- changed layout of __changelog to be vscode friendly
1.6.1:
- added additional hyperparameters to decisiontree()
1.6.0:
- fixed __version__
- fixed __all__ order
- added decisiontree()
1.5.3:
- added pca
1.5.2:
- reduced import list
- added kmeans clustering engine
1.5.1:
- simplified regression by using .to(device)
1.5.0:
- added polynomial regression to regression(); untested
1.4.0:
- added trueskill()
1.3.2:
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
1.3.1:
- changed glicko2() to return tuple instead of array
1.3.0:
- added glicko2_engine class and glicko()
- verified glicko2() accuracy
1.2.3:
- fixed elo()
1.2.2:
- added elo()
- elo() has bugs to be fixed
1.2.1:
- readded regrression import
1.2.0:
- integrated regression.py as regression class
- removed regression import
- fixed metadata for regression class
- fixed metadata for analysis class
1.1.1:
- regression_engine() bug fixes, now actaully regresses
1.1.0:
- added regression_engine()
- added all regressions except polynomial
1.0.7:
- updated _init_device()
1.0.6:
- removed useless try statements
1.0.5:
- removed impossible outcomes
1.0.4:
- added performance metrics (r^2, mse, rms)
1.0.3:
- resolved nopython mode for mean, median, stdev, variance
1.0.2:
- snapped (removed) majority of uneeded imports
- forced object mode (bad) on all jit
- TODO: stop numba complaining about not being able to compile in nopython mode
1.0.1:
- removed from sklearn import * to resolve uneeded wildcard imports
1.0.0:
- removed c_entities,nc_entities,obstacles,objectives from __all__
- applied numba.jit to all functions
- depreciated and removed stdev_z_split
- cleaned up histo_analysis to include numpy and numba.jit optimizations
- depreciated and removed all regression functions in favor of future pytorch optimizer
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
- optimized z_normalize using sklearn.preprocessing.normalize
- TODO: implement kernel/function based pytorch regression optimizer
0.9.0:
- refactored
- numpyed everything
- removed stats in favor of numpy functions
0.8.5:
- minor fixes
0.8.4:
- removed a few unused dependencies
0.8.3:
- added p_value function
0.8.2:
- updated __all__ correctly to contain changes made in v 0.8.0 and v 0.8.1
0.8.1:
- refactors
- bugfixes
0.8.0:
- depreciated histo_analysis_old
- depreciated debug
- altered basic_analysis to take array data instead of filepath
- refactor
- optimization
0.7.2:
- bug fixes
0.7.1:
- bug fixes
0.7.0:
- added tanh_regression (logistical regression)
- bug fixes
0.6.5:
- added z_normalize function to normalize dataset
- bug fixes
0.6.4:
- bug fixes
0.6.3:
- bug fixes
0.6.2:
- bug fixes
0.6.1:
- corrected __all__ to contain all of the functions
0.6.0:
- added calc_overfit, which calculates two measures of overfit, error and performance
- added calculating overfit to optimize_regression
0.5.0:
- added optimize_regression function, which is a sample function to find the optimal regressions
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
- planned addition: overfit detection in the optimize_regression function
0.4.2:
- added __changelog__
- updated debug function with log and exponential regressions
0.4.1:
- added log regressions
- added exponential regressions
- added log_regression and exp_regression to __all__
0.3.8:
- added debug function to further consolidate functions
0.3.7:
- added builtin benchmark function
- added builtin random (linear) data generation function
- added device initialization (_init_device)
0.3.6:
- reorganized the imports list to be in alphabetical order
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
0.3.5:
- major bug fixes
- updated historical analysis
- depreciated old historical analysis
0.3.4:
- added __version__, __author__, __all__
- added polynomial regression
- added root mean squared function
- added r squared function
0.3.3:
- bug fixes
- added c_entities
0.3.2:
- bug fixes
- added nc_entities, obstacles, objectives
- consolidated statistics.py to analysis.py
0.3.1:
- compiled 1d, column, and row basic stats into basic stats function
0.3.0:
- added historical analysis function
0.2.x:
- added z score test
0.1.x:
- major bug fixes
0.0.x:
- added loading csv
- added 1d, column, row basic stats
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'load_csv',
'basic_stats',
'z_score',
'z_normalize',
'histo_analysis',
'regression',
'Metric',
'kmeans',
'pca',
'decisiontree',
# all statistics functions left out due to integration in other functions
]
# now back to your regularly scheduled programming:
# imports (now in alphabetical order! v 0.3.006):
import csv
from tra_analysis.metrics import elo as Elo
from tra_analysis.metrics import glicko2 as Glicko2
import math
import numpy as np
import scipy
from scipy import optimize, stats
import sklearn
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
from tra_analysis.metrics import trueskill as Trueskill
import warnings
# import submodules
from .Array import Array
from .ClassificationMetric import ClassificationMetric
from .CorrelationTest_obj import CorrelationTest
from .KNN_obj import KNN
from .NaiveBayes_obj import NaiveBayes
from .RandomForest_obj import RandomForest
from .RegressionMetric import RegressionMetric
from .Sort_obj import Sort
from .StatisticalTest_obj import StatisticalTest
from . import SVM
class error(ValueError):
pass
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
csvfile.close()
return file_array
# expects 1d array
def basic_stats(data):
data_t = np.array(data).astype(float)
_mean = mean(data_t)
_median = median(data_t)
_stdev = stdev(data_t)
_variance = variance(data_t)
_min = npmin(data_t)
_max = npmax(data_t)
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
# returns z score with inputs of point, mean and standard deviation of spread
def z_score(point, mean, stdev):
score = (point - mean) / stdev
return score
# expects 2d array, normalizes across all axes
def z_normalize(array, *args):
array = np.array(array)
for arg in args:
array = sklearn.preprocessing.normalize(array, axis = arg)
return array
# expects 2d array of [x,y]
def histo_analysis(hist_data):
if len(hist_data[0]) > 2:
hist_data = np.array(hist_data)
derivative = np.array(len(hist_data) - 1, dtype = float)
t = np.diff(hist_data)
derivative = t[1] / t[0]
np.sort(derivative)
return {"mean": basic_stats(derivative)["mean"], "deviation": basic_stats(derivative)["standard-deviation"]}
else:
return None
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
X = np.array(inputs)
y = np.array(outputs)
regressions = {}
if 'lin' in args: # formula: ax + b
try:
def lin(x, a, b):
return a * x + b
popt, pcov = scipy.optimize.curve_fit(lin, X, y)
coeffs = popt.flatten().tolist()
regressions["lin"] = (str(coeffs[0]) + "*x+" + str(coeffs[1]))
except Exception as e:
pass
if 'log' in args: # formula: a log (b(x + c)) + d
try:
def log(x, a, b, c, d):
return a * np.log(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(log, X, y)
coeffs = popt.flatten().tolist()
regressions["log"] = (str(coeffs[0]) + "*log(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
except Exception as e:
pass
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
try:
def exp(x, a, b, c, d):
return a * np.exp(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(exp, X, y)
coeffs = popt.flatten().tolist()
regressions["exp"] = (str(coeffs[0]) + "*e^(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
except Exception as e:
pass
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = np.array([inputs])
outputs = np.array([outputs])
plys = {}
limit = len(outputs[0])
for i in range(2, limit):
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
model = model.fit(np.rot90(inputs), np.rot90(outputs))
params = model.steps[1][1].intercept_.tolist()
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
params = params.flatten().tolist()
temp = ""
counter = 0
for param in params:
temp += "(" + str(param) + "*x^" + str(counter) + ")"
counter += 1
plys["x^" + str(i)] = (temp)
regressions["ply"] = (plys)
if 'sig' in args: # formula: a tanh (b(x + c)) + d
try:
def sig(x, a, b, c, d):
return a * np.tanh(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(sig, X, y)
coeffs = popt.flatten().tolist()
regressions["sig"] = (str(coeffs[0]) + "*tanh(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
except Exception as e:
pass
return regressions
class Metric:
def elo(self, starting_score, opposing_score, observed, N, K):
return Elo.calculate(starting_score, opposing_score, observed, N, K)
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
return (player.rating, player.rd, player.vol)
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
team_ratings = []
for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
def mean(data):
return np.mean(data)
def median(data):
return np.median(data)
def stdev(data):
return np.std(data)
def variance(data):
return np.var(data)
def npmin(data):
return np.amin(data)
def npmax(data):
return np.amax(data)
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
kernel.fit(data)
predictions = kernel.predict(data)
centers = kernel.cluster_centers_
return centers, predictions
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
return kernel.fit_transform(data)
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
model = model.fit(data_train,labels_train)
predictions = model.predict(data_test)
metrics = ClassificationMetric(predictions, labels_test)
return model, metrics

View File

@@ -0,0 +1,164 @@
# Titan Robotics Team 2022: Array submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import Array'
# setup:
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- fixed __all__
1.0.2:
- fixed several implementation bugs with magic methods
1.0.1:
- removed search and __search functions
1.0.0:
- ported analysis.Array() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"Array",
]
import numpy as np
import warnings
class Array(): # tests on nd arrays independent of basic_stats
def __init__(self, narray):
self.array = np.array(narray)
def __str__(self):
return str(self.array)
def __repr__(self):
return str(self.array)
def elementwise_mean(self, axis = 0): # expects arrays that are size normalized
return np.mean(self.array, axis = axis)
def elementwise_median(self, axis = 0):
return np.median(self.array, axis = axis)
def elementwise_stdev(self, axis = 0):
return np.std(self.array, axis = axis)
def elementwise_variance(self, axis = 0):
return np.var(self.array, axis = axis)
def elementwise_npmin(self, axis = 0):
return np.amin(self.array, axis = axis)
def elementwise_npmax(self, axis = 0):
return np.amax(self.array, axis = axis)
def elementwise_stats(self, axis = 0):
_mean = self.elementwise_mean(axis = axis)
_median = self.elementwise_median(axis = axis)
_stdev = self.elementwise_stdev(axis = axis)
_variance = self.elementwise_variance(axis = axis)
_min = self.elementwise_npmin(axis = axis)
_max = self.elementwise_npmax(axis = axis)
return _mean, _median, _stdev, _variance, _min, _max
def __getitem__(self, key):
return self.array[key]
def __setitem__(self, key, value):
self.array[key] = value
def __len__(self):
return len(self.array)
def normalize(self):
a = np.atleast_1d(np.linalg.norm(self.array))
a[a==0] = 1
return Array(self.array / np.expand_dims(a, -1))
def __add__(self, other):
return Array(self.array + other.array)
def __sub__(self, other):
return Array(self.array - other.array)
def __neg__(self):
return Array(-self.array)
def __abs__(self):
return Array(abs(self.array))
def __invert__(self):
return Array(1/self.array)
def __mul__(self, other):
if(isinstance(other, Array)):
return Array(self.array.dot(other.array))
elif(isinstance(other, int)):
return Array(other * self.array)
else:
raise Exception("unsupported multiplication between Array and " + str(type(other)))
def __rmul__(self, other):
return self.__mul__(other)
def cross(self, other):
return np.cross(self.array, other.array)
def transpose(self):
return Array(np.transpose(self.array))
def sort(self, array): # depreciated
warnings.warn("Array.sort has been depreciated in favor of Sort")
array_length = len(array)
if array_length <= 1:
return array
middle_index = int(array_length / 2)
left = array[0:middle_index]
right = array[middle_index:]
left = self.sort(left)
right = self.sort(right)
return self.__merge(left, right)
def __merge(self, left, right):
sorted_list = []
left = left[:]
right = right[:]
while len(left) > 0 or len(right) > 0:
if len(left) > 0 and len(right) > 0:
if left[0] <= right[0]:
sorted_list.append(left.pop(0))
else:
sorted_list.append(right.pop(0))
elif len(left) > 0:
sorted_list.append(left.pop(0))
elif len(right) > 0:
sorted_list.append(right.pop(0))
return sorted_list

View File

@@ -0,0 +1,39 @@
# Titan Robotics Team 2022: ClassificationMetric submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
# setup:
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.ClassificationMetric() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"ClassificationMetric",
]
import sklearn
from sklearn import metrics
class ClassificationMetric():
def __new__(cls, predictions, targets):
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
def cm(self, predictions, targets):
return sklearn.metrics.confusion_matrix(targets, predictions)
def cr(self, predictions, targets):
return sklearn.metrics.classification_report(targets, predictions)

View File

@@ -0,0 +1,67 @@
# Titan Robotics Team 2022: CorrelationTest submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
# setup:
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.CorrelationTest() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"anova_oneway",
"pearson",
"spearman",
"point_biserial",
"kendall",
"kendall_weighted",
"mgc",
]
import scipy
from scipy import stats
def anova_oneway(*args): #expects arrays of samples
results = scipy.stats.f_oneway(*args)
return {"f-value": results[0], "p-value": results[1]}
def pearson(x, y):
results = scipy.stats.pearsonr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def spearman(a, b = None, axis = 0, nan_policy = 'propagate'):
results = scipy.stats.spearmanr(a, b = b, axis = axis, nan_policy = nan_policy)
return {"r-value": results[0], "p-value": results[1]}
def point_biserial(x, y):
results = scipy.stats.pointbiserialr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def kendall(x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
results = scipy.stats.kendalltau(x, y, initial_lexsort = initial_lexsort, nan_policy = nan_policy, method = method)
return {"tau": results[0], "p-value": results[1]}
def kendall_weighted(x, y, rank = True, weigher = None, additive = True):
results = scipy.stats.weightedtau(x, y, rank = rank, weigher = weigher, additive = additive)
return {"tau": results[0], "p-value": results[1]}
def mgc(x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value

View File

@@ -0,0 +1,41 @@
# Only included for backwards compatibility! Do not update, CorrelationTest is preferred and supported.
import scipy
from scipy import stats
class CorrelationTest:
def anova_oneway(self, *args): #expects arrays of samples
results = scipy.stats.f_oneway(*args)
return {"f-value": results[0], "p-value": results[1]}
def pearson(self, x, y):
results = scipy.stats.pearsonr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def spearman(self, a, b = None, axis = 0, nan_policy = 'propagate'):
results = scipy.stats.spearmanr(a, b = b, axis = axis, nan_policy = nan_policy)
return {"r-value": results[0], "p-value": results[1]}
def point_biserial(self, x,y):
results = scipy.stats.pointbiserialr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def kendall(self, x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
results = scipy.stats.kendalltau(x, y, initial_lexsort = initial_lexsort, nan_policy = nan_policy, method = method)
return {"tau": results[0], "p-value": results[1]}
def kendall_weighted(self, x, y, rank = True, weigher = None, additive = True):
results = scipy.stats.weightedtau(x, y, rank = rank, weigher = weigher, additive = additive)
return {"tau": results[0], "p-value": results[1]}
def mgc(self, x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value

View File

@@ -0,0 +1,87 @@
# Titan Robotics Team 2022: CPU fitting models
# Written by Dev Singh
# Notes:
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
# setup:
__version__ = "0.0.2"
# changelog should be viewed using print(analysis.fits.__changelog__)
__changelog__ = """changelog:
0.0.2:
- renamed module to Fit
0.0.1:
- initial release, add circle fitting with LSC
"""
__author__ = (
"Dev Singh <dev@devksingh.com>"
)
__all__ = [
'CircleFit'
]
import numpy as np
class CircleFit:
"""Class to fit data to a circle using the Least Square Circle (LSC) method"""
# For more information on the LSC method, see:
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
def __init__(self, x, y, xy=None):
self.ournp = np #todo: implement cupy correctly
if type(x) == list:
x = np.array(x)
if type(y) == list:
y = np.array(y)
if type(xy) == list:
xy = np.array(xy)
if xy != None:
self.coords = xy
else:
# following block combines x and y into one array if not already done
self.coords = self.ournp.vstack(([x.T], [y.T])).T
def calc_R(x, y, xc, yc):
"""Returns distance between center and point"""
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
def f(c, x, y):
"""Returns distance between point and circle at c"""
Ri = calc_R(x, y, *c)
return Ri - Ri.mean()
def LSC(self):
"""Fits given data to a circle and returns the center, radius, and variance"""
x = self.coords[:, 0]
y = self.coords[:, 1]
# guessing at a center
x_m = self.ournp.mean(x)
y_m = self.ournp.mean(y)
# calculation of the reduced coordinates
u = x - x_m
v = y - y_m
# linear system defining the center (uc, vc) in reduced coordinates:
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
Suv = self.ournp.sum(u*v)
Suu = self.ournp.sum(u**2)
Svv = self.ournp.sum(v**2)
Suuv = self.ournp.sum(u**2 * v)
Suvv = self.ournp.sum(u * v**2)
Suuu = self.ournp.sum(u**3)
Svvv = self.ournp.sum(v**3)
# Solving the linear system
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
uc, vc = self.ournp.linalg.solve(A, B)
xc_1 = x_m + uc
yc_1 = y_m + vc
# Calculate the distances from center (xc_1, yc_1)
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
R_1 = self.ournp.mean(Ri_1)
# calculate residual error
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
return (xc_1, yc_1, R_1, residu_1)

View File

@@ -0,0 +1,45 @@
# Titan Robotics Team 2022: KNN submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import KNN'
# setup:
__version__ = "1.0.0"
__changelog__ = """changelog:
1.0.0:
- ported analysis.KNN() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>"
)
__all__ = [
'knn_classifier',
'knn_regressor'
]
import sklearn
from sklearn import model_selection, neighbors
from . import ClassificationMetric, RegressionMetric
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def knn_regressor(data, outputs, n_neighbors = 5, test_size = 0.3, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetric.RegressionMetric(predictions, outputs_test)

View File

@@ -0,0 +1,25 @@
# Only included for backwards compatibility! Do not update, NaiveBayes is preferred and supported.
import sklearn
from sklearn import model_selection, neighbors
from . import ClassificationMetric, RegressionMetric
class KNN:
def knn_classifier(self, data, labels, n_neighbors, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def knn_regressor(self, data, outputs, n_neighbors, test_size = 0.3, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetric(predictions, outputs_test)

View File

@@ -0,0 +1,64 @@
# Titan Robotics Team 2022: NaiveBayes submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
# setup:
__version__ = "1.0.0"
__changelog__ = """changelog:
1.0.0:
- ported analysis.NaiveBayes() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'gaussian',
'multinomial'
'bernoulli',
'complement'
]
import sklearn
from sklearn import model_selection, naive_bayes
from . import ClassificationMetric, RegressionMetric
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def multinomial(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def bernoulli(data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def complement(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)

View File

@@ -0,0 +1,43 @@
# Only included for backwards compatibility! Do not update, NaiveBayes is preferred and supported.
import sklearn
from sklearn import model_selection, naive_bayes
from . import ClassificationMetric, RegressionMetric
class NaiveBayes:
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)

View File

@@ -0,0 +1,46 @@
# Titan Robotics Team 2022: RandomForest submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import RandomForest'
# setup:
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.RandomFores() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"random_forest_classifier",
"random_forest_regressor",
]
import sklearn
from sklearn import ensemble, model_selection
from . import ClassificationMetric, RegressionMetric
def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
kernel.fit(data_train, labels_train)
predictions = kernel.predict(data_test)
return kernel, ClassificationMetric(predictions, labels_test)
def random_forest_regressor(data, outputs, test_size, n_estimators, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test)
return kernel, RegressionMetric.RegressionMetric(predictions, outputs_test)

View File

@@ -0,0 +1,25 @@
# Only included for backwards compatibility! Do not update, RandomForest is preferred and supported.
import sklearn
from sklearn import ensemble, model_selection
from . import ClassificationMetric, RegressionMetric
class RandomForest:
def random_forest_classifier(self, data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
kernel.fit(data_train, labels_train)
predictions = kernel.predict(data_test)
return kernel, ClassificationMetric(predictions, labels_test)
def random_forest_regressor(self, data, outputs, test_size, n_estimators, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test)
return kernel, RegressionMetric(predictions, outputs_test)

View File

@@ -0,0 +1,42 @@
# Titan Robotics Team 2022: RegressionMetric submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
# setup:
__version__ = "1.0.0"
__changelog__ = """changelog:
1.0.0:
- ported analysis.RegressionMetric() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'RegressionMetric'
]
import numpy as np
import sklearn
from sklearn import metrics
class RegressionMetric():
def __new__(cls, predictions, targets):
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
def r_squared(self, predictions, targets): # assumes equal size inputs
return sklearn.metrics.r2_score(targets, predictions)
def mse(self, predictions, targets):
return sklearn.metrics.mean_squared_error(targets, predictions)
def rms(self, predictions, targets):
return np.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))

View File

@@ -0,0 +1,88 @@
# Titan Robotics Team 2022: SVM submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import SVM'
# setup:
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- fixed __all__
1.0.1:
- removed unessasary self calls
- removed classness
1.0.0:
- ported analysis.SVM() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"CustomKernel",
"StandardKernel",
"PrebuiltKernel",
"fit",
"eval_classification",
"eval_regression",
]
import sklearn
from sklearn import svm
from . import ClassificationMetric, RegressionMetric
class CustomKernel:
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class StandardKernel:
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class PrebuiltKernel:
class Linear:
def __new__(cls):
return sklearn.svm.SVC(kernel = 'linear')
class Polynomial:
def __new__(cls, power, r_bias):
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
class RBF:
def __new__(cls, gamma):
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
class Sigmoid:
def __new__(cls, r_bias):
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
def fit(kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
return kernel.fit(train_data, train_outputs)
def eval_classification(kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return ClassificationMetric(predictions, test_outputs)
def eval_regression(kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return RegressionMetric(predictions, test_outputs)

View File

@@ -0,0 +1,424 @@
# Titan Robotics Team 2022: Sort submodule
# Written by Arthur Lu and James Pan
# Notes:
# this should be imported as a python module using 'from tra_analysis import Sort'
# setup:
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.Sort() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>"
)
__all__ = [
"quicksort",
"mergesort",
"introsort",
"heapsort",
"insertionsort",
"timsort",
"selectionsort",
"shellsort",
"bubblesort",
"cyclesort",
"cocktailsort",
]
import numpy as np
def quicksort(a):
def sort(array):
less = []
equal = []
greater = []
if len(array) > 1:
pivot = array[0]
for x in array:
if x < pivot:
less.append(x)
elif x == pivot:
equal.append(x)
elif x > pivot:
greater.append(x)
return sort(less)+equal+sort(greater)
else:
return array
return np.array(sort(a))
def mergesort(a):
def sort(array):
array = array
if len(array) >1:
middle = len(array) // 2
L = array[:middle]
R = array[middle:]
sort(L)
sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
array[k] = L[i]
i+= 1
else:
array[k] = R[j]
j+= 1
k+= 1
while i < len(L):
array[k] = L[i]
i+= 1
k+= 1
while j < len(R):
array[k] = R[j]
j+= 1
k+= 1
return array
return sort(a)
def introsort(a):
def sort(array, start, end, maxdepth):
array = array
if end - start <= 1:
return
elif maxdepth == 0:
heapsort(array, start, end)
else:
p = partition(array, start, end)
sort(array, start, p + 1, maxdepth - 1)
sort(array, p + 1, end, maxdepth - 1)
return array
def partition(array, start, end):
pivot = array[start]
i = start - 1
j = end
while True:
i = i + 1
while array[i] < pivot:
i = i + 1
j = j - 1
while array[j] > pivot:
j = j - 1
if i >= j:
return j
swap(array, i, j)
def swap(array, i, j):
array[i], array[j] = array[j], array[i]
def heapsort(array, start, end):
build_max_heap(array, start, end)
for i in range(end - 1, start, -1):
swap(array, start, i)
max_heapify(array, index=0, start=start, end=i)
def build_max_heap(array, start, end):
def parent(i):
return (i - 1)//2
length = end - start
index = parent(length - 1)
while index >= 0:
max_heapify(array, index, start, end)
index = index - 1
def max_heapify(array, index, start, end):
def left(i):
return 2*i + 1
def right(i):
return 2*i + 2
size = end - start
l = left(index)
r = right(index)
if (l < size and array[start + l] > array[start + index]):
largest = l
else:
largest = index
if (r < size and array[start + r] > array[start + largest]):
largest = r
if largest != index:
swap(array, start + largest, start + index)
max_heapify(array, largest, start, end)
maxdepth = (len(a).bit_length() - 1)*2
return sort(a, 0, len(a), maxdepth)
def heapsort(a):
def sort(array):
array = array
n = len(array)
for i in range(n//2 - 1, -1, -1):
heapify(array, n, i)
for i in range(n-1, 0, -1):
array[i], array[0] = array[0], array[i]
heapify(array, i, 0)
return array
def heapify(array, n, i):
array = array
largest = i
l = 2 * i + 1
r = 2 * i + 2
if l < n and array[i] < array[l]:
largest = l
if r < n and array[largest] < array[r]:
largest = r
if largest != i:
array[i],array[largest] = array[largest],array[i]
heapify(array, n, largest)
return array
return sort(a)
def insertionsort(a):
def sort(array):
array = array
for i in range(1, len(array)):
key = array[i]
j = i-1
while j >=0 and key < array[j] :
array[j+1] = array[j]
j -= 1
array[j+1] = key
return array
return sort(a)
def timsort(a, block = 32):
BLOCK = block
def sort(array, n):
array = array
for i in range(0, n, BLOCK):
insertionsort(array, i, min((i+31), (n-1)))
size = BLOCK
while size < n:
for left in range(0, n, 2*size):
mid = left + size - 1
right = min((left + 2*size - 1), (n-1))
merge(array, left, mid, right)
size = 2*size
return array
def insertionsort(array, left, right):
array = array
for i in range(left + 1, right+1):
temp = array[i]
j = i - 1
while j >= left and array[j] > temp :
array[j+1] = array[j]
j -= 1
array[j+1] = temp
return array
def merge(array, l, m, r):
len1, len2 = m - l + 1, r - m
left, right = [], []
for i in range(0, len1):
left.append(array[l + i])
for i in range(0, len2):
right.append(array[m + 1 + i])
i, j, k = 0, 0, l
while i < len1 and j < len2:
if left[i] <= right[j]:
array[k] = left[i]
i += 1
else:
array[k] = right[j]
j += 1
k += 1
while i < len1:
array[k] = left[i]
k += 1
i += 1
while j < len2:
array[k] = right[j]
k += 1
j += 1
return sort(a, len(a))
def selectionsort(a):
array = a
for i in range(len(array)):
min_idx = i
for j in range(i+1, len(array)):
if array[min_idx] > array[j]:
min_idx = j
array[i], array[min_idx] = array[min_idx], array[i]
return array
def shellsort(a):
array = a
n = len(array)
gap = n//2
while gap > 0:
for i in range(gap,n):
temp = array[i]
j = i
while j >= gap and array[j-gap] >temp:
array[j] = array[j-gap]
j -= gap
array[j] = temp
gap //= 2
return array
def bubblesort(a):
def sort(array):
for i, num in enumerate(array):
try:
if array[i+1] < num:
array[i] = array[i+1]
array[i+1] = num
sort(array)
except IndexError:
pass
return array
return sort(a)
def cyclesort(a):
def sort(array):
array = array
writes = 0
for cycleStart in range(0, len(array) - 1):
item = array[cycleStart]
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
if pos == cycleStart:
continue
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
writes += 1
while pos != cycleStart:
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
writes += 1
return array
return sort(a)
def cocktailsort(a):
def sort(array):
array = array
n = len(array)
swapped = True
start = 0
end = n-1
while (swapped == True):
swapped = False
for i in range (start, end):
if (array[i] > array[i + 1]) :
array[i], array[i + 1]= array[i + 1], array[i]
swapped = True
if (swapped == False):
break
swapped = False
end = end-1
for i in range(end-1, start-1, -1):
if (array[i] > array[i + 1]):
array[i], array[i + 1] = array[i + 1], array[i]
swapped = True
start = start + 1
return array
return sort(a)

View File

@@ -0,0 +1,391 @@
# Only included for backwards compatibility! Do not update, Sort is preferred and supported.
class Sort: # if you haven't used a sort, then you've never lived
def quicksort(self, a):
def sort(array):
less = []
equal = []
greater = []
if len(array) > 1:
pivot = array[0]
for x in array:
if x < pivot:
less.append(x)
elif x == pivot:
equal.append(x)
elif x > pivot:
greater.append(x)
return sort(less)+equal+sort(greater)
else:
return array
return np.array(sort(a))
def mergesort(self, a):
def sort(array):
array = array
if len(array) >1:
middle = len(array) // 2
L = array[:middle]
R = array[middle:]
sort(L)
sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
array[k] = L[i]
i+= 1
else:
array[k] = R[j]
j+= 1
k+= 1
while i < len(L):
array[k] = L[i]
i+= 1
k+= 1
while j < len(R):
array[k] = R[j]
j+= 1
k+= 1
return array
return sort(a)
def introsort(self, a):
def sort(array, start, end, maxdepth):
array = array
if end - start <= 1:
return
elif maxdepth == 0:
heapsort(array, start, end)
else:
p = partition(array, start, end)
sort(array, start, p + 1, maxdepth - 1)
sort(array, p + 1, end, maxdepth - 1)
return array
def partition(array, start, end):
pivot = array[start]
i = start - 1
j = end
while True:
i = i + 1
while array[i] < pivot:
i = i + 1
j = j - 1
while array[j] > pivot:
j = j - 1
if i >= j:
return j
swap(array, i, j)
def swap(array, i, j):
array[i], array[j] = array[j], array[i]
def heapsort(array, start, end):
build_max_heap(array, start, end)
for i in range(end - 1, start, -1):
swap(array, start, i)
max_heapify(array, index=0, start=start, end=i)
def build_max_heap(array, start, end):
def parent(i):
return (i - 1)//2
length = end - start
index = parent(length - 1)
while index >= 0:
max_heapify(array, index, start, end)
index = index - 1
def max_heapify(array, index, start, end):
def left(i):
return 2*i + 1
def right(i):
return 2*i + 2
size = end - start
l = left(index)
r = right(index)
if (l < size and array[start + l] > array[start + index]):
largest = l
else:
largest = index
if (r < size and array[start + r] > array[start + largest]):
largest = r
if largest != index:
swap(array, start + largest, start + index)
max_heapify(array, largest, start, end)
maxdepth = (len(a).bit_length() - 1)*2
return sort(a, 0, len(a), maxdepth)
def heapsort(self, a):
def sort(array):
array = array
n = len(array)
for i in range(n//2 - 1, -1, -1):
heapify(array, n, i)
for i in range(n-1, 0, -1):
array[i], array[0] = array[0], array[i]
heapify(array, i, 0)
return array
def heapify(array, n, i):
array = array
largest = i
l = 2 * i + 1
r = 2 * i + 2
if l < n and array[i] < array[l]:
largest = l
if r < n and array[largest] < array[r]:
largest = r
if largest != i:
array[i],array[largest] = array[largest],array[i]
heapify(array, n, largest)
return array
return sort(a)
def insertionsort(self, a):
def sort(array):
array = array
for i in range(1, len(array)):
key = array[i]
j = i-1
while j >=0 and key < array[j] :
array[j+1] = array[j]
j -= 1
array[j+1] = key
return array
return sort(a)
def timsort(self, a, block = 32):
BLOCK = block
def sort(array, n):
array = array
for i in range(0, n, BLOCK):
insertionsort(array, i, min((i+31), (n-1)))
size = BLOCK
while size < n:
for left in range(0, n, 2*size):
mid = left + size - 1
right = min((left + 2*size - 1), (n-1))
merge(array, left, mid, right)
size = 2*size
return array
def insertionsort(array, left, right):
array = array
for i in range(left + 1, right+1):
temp = array[i]
j = i - 1
while j >= left and array[j] > temp :
array[j+1] = array[j]
j -= 1
array[j+1] = temp
return array
def merge(array, l, m, r):
len1, len2 = m - l + 1, r - m
left, right = [], []
for i in range(0, len1):
left.append(array[l + i])
for i in range(0, len2):
right.append(array[m + 1 + i])
i, j, k = 0, 0, l
while i < len1 and j < len2:
if left[i] <= right[j]:
array[k] = left[i]
i += 1
else:
array[k] = right[j]
j += 1
k += 1
while i < len1:
array[k] = left[i]
k += 1
i += 1
while j < len2:
array[k] = right[j]
k += 1
j += 1
return sort(a, len(a))
def selectionsort(self, a):
array = a
for i in range(len(array)):
min_idx = i
for j in range(i+1, len(array)):
if array[min_idx] > array[j]:
min_idx = j
array[i], array[min_idx] = array[min_idx], array[i]
return array
def shellsort(self, a):
array = a
n = len(array)
gap = n//2
while gap > 0:
for i in range(gap,n):
temp = array[i]
j = i
while j >= gap and array[j-gap] >temp:
array[j] = array[j-gap]
j -= gap
array[j] = temp
gap //= 2
return array
def bubblesort(self, a):
def sort(array):
for i, num in enumerate(array):
try:
if array[i+1] < num:
array[i] = array[i+1]
array[i+1] = num
sort(array)
except IndexError:
pass
return array
return sort(a)
def cyclesort(self, a):
def sort(array):
array = array
writes = 0
for cycleStart in range(0, len(array) - 1):
item = array[cycleStart]
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
if pos == cycleStart:
continue
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
writes += 1
while pos != cycleStart:
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
writes += 1
return array
return sort(a)
def cocktailsort(self, a):
def sort(array):
array = array
n = len(array)
swapped = True
start = 0
end = n-1
while (swapped == True):
swapped = False
for i in range (start, end):
if (array[i] > array[i + 1]) :
array[i], array[i + 1]= array[i + 1], array[i]
swapped = True
if (swapped == False):
break
swapped = False
end = end-1
for i in range(end-1, start-1, -1):
if (array[i] > array[i + 1]):
array[i], array[i + 1] = array[i + 1], array[i]
swapped = True
start = start + 1
return array
return sort(a)

View File

@@ -0,0 +1,314 @@
# Titan Robotics Team 2022: StatisticalTest submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import StatisticalTest'
# setup:
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- added tukey_multicomparison
- fixed styling
1.0.1:
- fixed typo in __all__
1.0.0:
- ported analysis.StatisticalTest() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>",
)
__all__ = [
'ttest_onesample',
'ttest_independent',
'ttest_statistic',
'ttest_related',
'ks_fitness',
'chisquare',
'powerdivergence'
'ks_twosample',
'es_twosample',
'mw_rank',
'mw_tiecorrection',
'rankdata',
'wilcoxon_ranksum',
'wilcoxon_signedrank',
'kw_htest',
'friedman_chisquare',
'bm_wtest',
'combine_pvalues',
'jb_fitness',
'ab_equality',
'bartlett_variance',
'levene_variance',
'sw_normality',
'shapiro',
'ad_onesample',
'ad_ksample',
'binomial',
'fk_variance',
'mood_mediantest',
'mood_equalscale',
'skewtest',
'kurtosistest',
'normaltest',
'tukey_multicomparison'
]
import numpy as np
import scipy
from scipy import stats, interpolate
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ttest_independent(a, b, equal = True, nan_policy = 'propagate'):
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ttest_statistic(o1, o2, equal = True):
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
return {"t-value": results[0], "p-value": results[1]}
def ttest_related(a, b, axis = 0, nan_policy='propagate'):
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ks_fitness(rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
return {"ks-value": results[0], "p-value": results[1]}
def chisquare(f_obs, f_exp = None, ddof = None, axis = 0):
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
return {"chisquared-value": results[0], "p-value": results[1]}
def powerdivergence(f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
return {"powerdivergence-value": results[0], "p-value": results[1]}
def ks_twosample(x, y, alternative = 'two_sided', mode = 'auto'):
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
return {"ks-value": results[0], "p-value": results[1]}
def es_twosample(x, y, t = (0.4, 0.8)):
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
return {"es-value": results[0], "p-value": results[1]}
def mw_rank(x, y, use_continuity = True, alternative = None):
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
return {"u-value": results[0], "p-value": results[1]}
def mw_tiecorrection(rank_values):
results = scipy.stats.tiecorrect(rank_values)
return {"correction-factor": results}
def rankdata(a, method = 'average'):
results = scipy.stats.rankdata(a, method = method)
return results
def wilcoxon_ranksum(a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
results = scipy.stats.ranksums(a, b)
return {"u-value": results[0], "p-value": results[1]}
def wilcoxon_signedrank(x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
return {"t-value": results[0], "p-value": results[1]}
def kw_htest(*args, nan_policy = 'propagate'):
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
return {"h-value": results[0], "p-value": results[1]}
def friedman_chisquare(*args):
results = scipy.stats.friedmanchisquare(*args)
return {"chisquared-value": results[0], "p-value": results[1]}
def bm_wtest(x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
return {"w-value": results[0], "p-value": results[1]}
def combine_pvalues(pvalues, method = 'fisher', weights = None):
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
return {"combined-statistic": results[0], "p-value": results[1]}
def jb_fitness(x):
results = scipy.stats.jarque_bera(x)
return {"jb-value": results[0], "p-value": results[1]}
def ab_equality(x, y):
results = scipy.stats.ansari(x, y)
return {"ab-value": results[0], "p-value": results[1]}
def bartlett_variance(*args):
results = scipy.stats.bartlett(*args)
return {"t-value": results[0], "p-value": results[1]}
def levene_variance(*args, center = 'median', proportiontocut = 0.05):
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
return {"w-value": results[0], "p-value": results[1]}
def sw_normality(x):
results = scipy.stats.shapiro(x)
return {"w-value": results[0], "p-value": results[1]}
def shapiro(x):
return "destroyed by facts and logic"
def ad_onesample(x, dist = 'norm'):
results = scipy.stats.anderson(x, dist = dist)
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
def ad_ksample(samples, midrank = True):
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
def binomial(x, n = None, p = 0.5, alternative = 'two-sided'):
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
return {"p-value": results}
def fk_variance(*args, center = 'median', proportiontocut = 0.05):
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
def mood_mediantest(*args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
def mood_equalscale(x, y, axis = 0):
results = scipy.stats.mood(x, y, axis = axis)
return {"z-score": results[0], "p-value": results[1]}
def skewtest(a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def kurtosistest(a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def normaltest(a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def get_tukeyQcrit(k, df, alpha=0.05):
'''
From statsmodels.sandbox.stats.multicomp
return critical values for Tukey's HSD (Q)
Parameters
----------
k : int in {2, ..., 10}
number of tests
df : int
degrees of freedom of error term
alpha : {0.05, 0.01}
type 1 error, 1-confidence level
not enough error checking for limitations
'''
# qtable from statsmodels.sandbox.stats.multicomp
qcrit = '''
2 3 4 5 6 7 8 9 10
5 3.64 5.70 4.60 6.98 5.22 7.80 5.67 8.42 6.03 8.91 6.33 9.32 6.58 9.67 6.80 9.97 6.99 10.24
6 3.46 5.24 4.34 6.33 4.90 7.03 5.30 7.56 5.63 7.97 5.90 8.32 6.12 8.61 6.32 8.87 6.49 9.10
7 3.34 4.95 4.16 5.92 4.68 6.54 5.06 7.01 5.36 7.37 5.61 7.68 5.82 7.94 6.00 8.17 6.16 8.37
8 3.26 4.75 4.04 5.64 4.53 6.20 4.89 6.62 5.17 6.96 5.40 7.24 5.60 7.47 5.77 7.68 5.92 7.86
9 3.20 4.60 3.95 5.43 4.41 5.96 4.76 6.35 5.02 6.66 5.24 6.91 5.43 7.13 5.59 7.33 5.74 7.49
10 3.15 4.48 3.88 5.27 4.33 5.77 4.65 6.14 4.91 6.43 5.12 6.67 5.30 6.87 5.46 7.05 5.60 7.21
11 3.11 4.39 3.82 5.15 4.26 5.62 4.57 5.97 4.82 6.25 5.03 6.48 5.20 6.67 5.35 6.84 5.49 6.99
12 3.08 4.32 3.77 5.05 4.20 5.50 4.51 5.84 4.75 6.10 4.95 6.32 5.12 6.51 5.27 6.67 5.39 6.81
13 3.06 4.26 3.73 4.96 4.15 5.40 4.45 5.73 4.69 5.98 4.88 6.19 5.05 6.37 5.19 6.53 5.32 6.67
14 3.03 4.21 3.70 4.89 4.11 5.32 4.41 5.63 4.64 5.88 4.83 6.08 4.99 6.26 5.13 6.41 5.25 6.54
15 3.01 4.17 3.67 4.84 4.08 5.25 4.37 5.56 4.59 5.80 4.78 5.99 4.94 6.16 5.08 6.31 5.20 6.44
16 3.00 4.13 3.65 4.79 4.05 5.19 4.33 5.49 4.56 5.72 4.74 5.92 4.90 6.08 5.03 6.22 5.15 6.35
17 2.98 4.10 3.63 4.74 4.02 5.14 4.30 5.43 4.52 5.66 4.70 5.85 4.86 6.01 4.99 6.15 5.11 6.27
18 2.97 4.07 3.61 4.70 4.00 5.09 4.28 5.38 4.49 5.60 4.67 5.79 4.82 5.94 4.96 6.08 5.07 6.20
19 2.96 4.05 3.59 4.67 3.98 5.05 4.25 5.33 4.47 5.55 4.65 5.73 4.79 5.89 4.92 6.02 5.04 6.14
20 2.95 4.02 3.58 4.64 3.96 5.02 4.23 5.29 4.45 5.51 4.62 5.69 4.77 5.84 4.90 5.97 5.01 6.09
24 2.92 3.96 3.53 4.55 3.90 4.91 4.17 5.17 4.37 5.37 4.54 5.54 4.68 5.69 4.81 5.81 4.92 5.92
30 2.89 3.89 3.49 4.45 3.85 4.80 4.10 5.05 4.30 5.24 4.46 5.40 4.60 5.54 4.72 5.65 4.82 5.76
40 2.86 3.82 3.44 4.37 3.79 4.70 4.04 4.93 4.23 5.11 4.39 5.26 4.52 5.39 4.63 5.50 4.73 5.60
60 2.83 3.76 3.40 4.28 3.74 4.59 3.98 4.82 4.16 4.99 4.31 5.13 4.44 5.25 4.55 5.36 4.65 5.45
120 2.80 3.70 3.36 4.20 3.68 4.50 3.92 4.71 4.10 4.87 4.24 5.01 4.36 5.12 4.47 5.21 4.56 5.30
infinity 2.77 3.64 3.31 4.12 3.63 4.40 3.86 4.60 4.03 4.76 4.17 4.88 4.29 4.99 4.39 5.08 4.47 5.16
'''
res = [line.split() for line in qcrit.replace('infinity','9999').split('\n')]
c=np.array(res[2:-1]).astype(float)
#c[c==9999] = np.inf
ccols = np.arange(2,11)
crows = c[:,0]
cv005 = c[:, 1::2]
cv001 = c[:, 2::2]
if alpha == 0.05:
intp = interpolate.interp1d(crows, cv005[:,k-2])
elif alpha == 0.01:
intp = interpolate.interp1d(crows, cv001[:,k-2])
else:
raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
return intp(df)
def tukey_multicomparison(groups, alpha=0.05):
#formulas according to https://astatsa.com/OneWay_Anova_with_TukeyHSD/
k = len(groups)
df = 0
means = []
MSE = 0
for group in groups:
df+= len(group)
mean = sum(group)/len(group)
means.append(mean)
MSE += sum([(i-mean)**2 for i in group])
df -= k
MSE /= df
q_dict = {}
crit_q = get_tukeyQcrit(k, df, alpha)
for i in range(k-1):
for j in range(i+1, k):
numerator = abs(means[i] - means[j])
denominator = np.sqrt( MSE / ( 2/(1/len(groups[i]) + 1/len(groups[j])) ))
q = numerator/denominator
q_dict["group "+ str(i+1) + " and group " + str(j+1)] = [q, q>crit_q]
return q_dict

View File

@@ -0,0 +1,170 @@
# Only included for backwards compatibility! Do not update, StatisticalTest is preferred and supported.
import scipy
from scipy import stats
class StatisticalTest:
def ttest_onesample(self, a, popmean, axis = 0, nan_policy = 'propagate'):
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ttest_independent(self, a, b, equal = True, nan_policy = 'propagate'):
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ttest_statistic(self, o1, o2, equal = True):
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
return {"t-value": results[0], "p-value": results[1]}
def ttest_related(self, a, b, axis = 0, nan_policy='propagate'):
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ks_fitness(self, rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
return {"ks-value": results[0], "p-value": results[1]}
def chisquare(self, f_obs, f_exp = None, ddof = None, axis = 0):
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
return {"chisquared-value": results[0], "p-value": results[1]}
def powerdivergence(self, f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
return {"powerdivergence-value": results[0], "p-value": results[1]}
def ks_twosample(self, x, y, alternative = 'two_sided', mode = 'auto'):
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
return {"ks-value": results[0], "p-value": results[1]}
def es_twosample(self, x, y, t = (0.4, 0.8)):
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
return {"es-value": results[0], "p-value": results[1]}
def mw_rank(self, x, y, use_continuity = True, alternative = None):
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
return {"u-value": results[0], "p-value": results[1]}
def mw_tiecorrection(self, rank_values):
results = scipy.stats.tiecorrect(rank_values)
return {"correction-factor": results}
def rankdata(self, a, method = 'average'):
results = scipy.stats.rankdata(a, method = method)
return results
def wilcoxon_ranksum(self, a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
results = scipy.stats.ranksums(a, b)
return {"u-value": results[0], "p-value": results[1]}
def wilcoxon_signedrank(self, x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
return {"t-value": results[0], "p-value": results[1]}
def kw_htest(self, *args, nan_policy = 'propagate'):
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
return {"h-value": results[0], "p-value": results[1]}
def friedman_chisquare(self, *args):
results = scipy.stats.friedmanchisquare(*args)
return {"chisquared-value": results[0], "p-value": results[1]}
def bm_wtest(self, x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
return {"w-value": results[0], "p-value": results[1]}
def combine_pvalues(self, pvalues, method = 'fisher', weights = None):
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
return {"combined-statistic": results[0], "p-value": results[1]}
def jb_fitness(self, x):
results = scipy.stats.jarque_bera(x)
return {"jb-value": results[0], "p-value": results[1]}
def ab_equality(self, x, y):
results = scipy.stats.ansari(x, y)
return {"ab-value": results[0], "p-value": results[1]}
def bartlett_variance(self, *args):
results = scipy.stats.bartlett(*args)
return {"t-value": results[0], "p-value": results[1]}
def levene_variance(self, *args, center = 'median', proportiontocut = 0.05):
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
return {"w-value": results[0], "p-value": results[1]}
def sw_normality(self, x):
results = scipy.stats.shapiro(x)
return {"w-value": results[0], "p-value": results[1]}
def shapiro(self, x):
return "destroyed by facts and logic"
def ad_onesample(self, x, dist = 'norm'):
results = scipy.stats.anderson(x, dist = dist)
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
def ad_ksample(self, samples, midrank = True):
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
def binomial(self, x, n = None, p = 0.5, alternative = 'two-sided'):
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
return {"p-value": results}
def fk_variance(self, *args, center = 'median', proportiontocut = 0.05):
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
def mood_mediantest(self, *args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
def mood_equalscale(self, x, y, axis = 0):
results = scipy.stats.mood(x, y, axis = axis)
return {"z-score": results[0], "p-value": results[1]}
def skewtest(self, a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def kurtosistest(self, a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def normaltest(self, a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}

View File

@@ -0,0 +1,68 @@
# Titan Robotics Team 2022: tra_analysis package
# Written by Arthur Lu, Jacob Levine, Dev Singh, and James Pan
# Notes:
# this should be imported as a python package using 'import tra_analysis'
# this should be included in the local directory or environment variable
# this module has been optimized for multhreaded computing
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "3.0.0"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
3.0.0:
- incremented version to release 3.0.0
3.0.0-rc2:
- fixed __changelog__
- fixed __all__ of Analysis, Array, ClassificationMetric, CorrelationTest, RandomForest, Sort, SVM
- populated __all__
3.0.0-alpha.4:
- changed version to 3 because of significant changes
- added backwards compatibility import of analysis
2.1.0-alpha.3:
- fixed indentation in meta data
2.1.0-alpha.2:
- updated SVM import
2.1.0-alpha.1:
- moved multiple submodules under analysis to their own modules/files
- added header, __version__, __changelog__, __author__, __all__ (unpopulated)
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@imsa.edu>",
"Dev Singh <dev@devksingh.com>",
"James Pan <zpan@imsa.edu>"
)
__all__ = [
"Analysis",
"Array",
"ClassificationMetric",
"CorrelationTest",
"Expression",
"Fit",
"KNN",
"NaiveBayes",
"RandomForest",
"RegressionMetric",
"Sort",
"StatisticalTest",
"SVM"
]
from . import Analysis as Analysis
from . import Analysis as analysis
from .Array import Array
from .ClassificationMetric import ClassificationMetric
from . import CorrelationTest
from .equation import Expression
from . import Fit
from . import KNN
from . import NaiveBayes
from . import RandomForest
from .RegressionMetric import RegressionMetric
from . import Sort
from . import StatisticalTest
from . import SVM

View File

@@ -0,0 +1,37 @@
# Titan Robotics Team 2022: Expression submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis.Equation import Expression'
# TODO:
# - add option to pick parser backend
# - fix unit tests
# setup:
__version__ = "0.0.1-alpha"
__changelog__ = """changelog:
0.0.1-alpha:
- used the HybridExpressionParser as backend for Expression
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = {
"Expression"
}
import re
from .parser import BNF, RegexInplaceParser, HybridExpressionParser, Core, equation_base
class Expression(HybridExpressionParser):
expression = None
core = None
def __init__(self,expression,argorder=[],*args,**kwargs):
self.core = Core()
equation_base.equation_extend(self.core)
self.core.recalculateFMatch()
super().__init__(self.core, expression, argorder=[],*args,**kwargs)

View File

@@ -0,0 +1,22 @@
# Titan Robotics Team 2022: Expression submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import Equation'
# setup:
__version__ = "0.0.1-alpha"
__changelog__ = """changelog:
0.0.1-alpha:
- made first prototype of Expression
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = {
"Expression"
}
from .Expression import Expression

View File

@@ -0,0 +1,97 @@
from __future__ import division
from pyparsing import (Literal, CaselessLiteral, Word, Combine, Group, Optional, ZeroOrMore, Forward, nums, alphas, oneOf)
from . import py2
import math
import operator
class BNF(object):
def pushFirst(self, strg, loc, toks):
self.exprStack.append(toks[0])
def pushUMinus(self, strg, loc, toks):
if toks and toks[0] == '-':
self.exprStack.append('unary -')
def __init__(self):
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
point = Literal(".")
e = CaselessLiteral("E")
fnumber = Combine(Word("+-" + nums, nums) +
Optional(point + Optional(Word(nums))) +
Optional(e + Word("+-" + nums, nums)))
ident = Word(alphas, alphas + nums + "_$")
plus = Literal("+")
minus = Literal("-")
mult = Literal("*")
div = Literal("/")
lpar = Literal("(").suppress()
rpar = Literal(")").suppress()
addop = plus | minus
multop = mult | div
expop = Literal("^")
pi = CaselessLiteral("PI")
expr = Forward()
atom = ((Optional(oneOf("- +")) +
(ident + lpar + expr + rpar | pi | e | fnumber).setParseAction(self.pushFirst))
| Optional(oneOf("- +")) + Group(lpar + expr + rpar)
).setParseAction(self.pushUMinus)
factor = Forward()
factor << atom + \
ZeroOrMore((expop + factor).setParseAction(self.pushFirst))
term = factor + \
ZeroOrMore((multop + factor).setParseAction(self.pushFirst))
expr << term + \
ZeroOrMore((addop + term).setParseAction(self.pushFirst))
self.bnf = expr
epsilon = 1e-12
self.opn = {"+": operator.add,
"-": operator.sub,
"*": operator.mul,
"/": operator.truediv,
"^": operator.pow}
self.fn = {"sin": math.sin,
"cos": math.cos,
"tan": math.tan,
"exp": math.exp,
"abs": abs,
"trunc": lambda a: int(a),
"round": round,
"sgn": lambda a: abs(a) > epsilon and py2.cmp(a, 0) or 0}
def evaluateStack(self, s):
op = s.pop()
if op == 'unary -':
return -self.evaluateStack(s)
if op in "+-*/^":
op2 = self.evaluateStack(s)
op1 = self.evaluateStack(s)
return self.opn[op](op1, op2)
elif op == "PI":
return math.pi
elif op == "E":
return math.e
elif op in self.fn:
return self.fn[op](self.evaluateStack(s))
elif op[0].isalpha():
return 0
else:
return float(op)
def eval(self, num_string, parseAll=True):
self.exprStack = []
results = self.bnf.parseString(num_string, parseAll)
val = self.evaluateStack(self.exprStack[:])
return val

View File

@@ -0,0 +1,521 @@
from .Hybrid_Utils import Core, ExpressionFunction, ExpressionVariable, ExpressionValue
import sys
if sys.version_info >= (3,):
xrange = range
basestring = str
class HybridExpressionParser(object):
def __init__(self,core,expression,argorder=[],*args,**kwargs):
super(HybridExpressionParser,self).__init__(*args,**kwargs)
if isinstance(expression,type(self)): # clone the object
self.core = core
self.__args = list(expression.__args)
self.__vars = dict(expression.__vars) # intenral array of preset variables
self.__argsused = set(expression.__argsused)
self.__expr = list(expression.__expr)
self.variables = {} # call variables
else:
self.__expression = expression
self.__args = argorder;
self.__vars = {} # intenral array of preset variables
self.__argsused = set()
self.__expr = [] # compiled equation tokens
self.variables = {} # call variables
self.__compile()
del self.__expression
def __getitem__(self, name):
if name in self.__argsused:
if name in self.__vars:
return self.__vars[name]
else:
return None
else:
raise KeyError(name)
def __setitem__(self,name,value):
if name in self.__argsused:
self.__vars[name] = value
else:
raise KeyError(name)
def __delitem__(self,name):
if name in self.__argsused:
if name in self.__vars:
del self.__vars[name]
else:
raise KeyError(name)
def __contains__(self, name):
return name in self.__argsused
def __call__(self,*args,**kwargs):
if len(self.__expr) == 0:
return None
self.variables = {}
self.variables.update(self.core.constants)
self.variables.update(self.__vars)
if len(args) > len(self.__args):
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() takes at most {4:d} arguments ({5:d} given)".format(
type(self).__module__,type(self).__name__,repr(self),id(self),len(self.__args),len(args)))
for i in xrange(len(args)):
if i < len(self.__args):
if self.__args[i] in kwargs:
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() got multiple values for keyword argument '{4:s}'".format(
type(self).__module__,type(self).__name__,repr(self),id(self),self.__args[i]))
self.variables[self.__args[i]] = args[i]
self.variables.update(kwargs)
for arg in self.__argsused:
if arg not in self.variables:
min_args = len(self.__argsused - (set(self.__vars.keys()) | set(self.core.constants.keys())))
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() takes at least {4:d} arguments ({5:d} given) '{6:s}' not defined".format(
type(self).__module__,type(self).__name__,repr(self),id(self),min_args,len(args)+len(kwargs),arg))
expr = self.__expr[::-1]
args = []
while len(expr) > 0:
t = expr.pop()
r = t(args,self)
args.append(r)
if len(args) > 1:
return args
else:
return args[0]
def __next(self,__expect_op):
if __expect_op:
m = self.core.gematch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'CLOSE'
m = self.core.smatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
return ",",'SEP'
m = self.core.omatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'OP'
else:
m = self.core.gsmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'OPEN'
m = self.core.vmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groupdict(0)
if g['dec']:
if g["ivalue"]:
return complex(int(g["rsign"]+"1")*float(g["rvalue"])*10**int(g["rexpoent"]),int(g["isign"]+"1")*float(g["ivalue"])*10**int(g["iexpoent"])),'VALUE'
elif g["rexpoent"] or g["rvalue"].find('.')>=0:
return int(g["rsign"]+"1")*float(g["rvalue"])*10**int(g["rexpoent"]),'VALUE'
else:
return int(g["rsign"]+"1")*int(g["rvalue"]),'VALUE'
elif g["hex"]:
return int(g["hexsign"]+"1")*int(g["hexvalue"],16),'VALUE'
elif g["oct"]:
return int(g["octsign"]+"1")*int(g["octvalue"],8),'VALUE'
elif g["bin"]:
return int(g["binsign"]+"1")*int(g["binvalue"],2),'VALUE'
else:
raise NotImplemented("'{0:s}' Values Not Implemented Yet".format(m.string))
m = self.core.nmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'NAME'
m = self.core.fmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'FUNC'
m = self.core.umatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'UNARY'
return None
def show(self):
"""Show RPN tokens
This will print out the internal token list (RPN) of the expression
one token perline.
"""
for expr in self.__expr:
print(expr)
def __str__(self):
"""str(fn)
Generates a Printable version of the Expression
Returns
-------
str
Latex String respresation of the Expression, suitable for rendering the equation
"""
expr = self.__expr[::-1]
if len(expr) == 0:
return ""
args = [];
while len(expr) > 0:
t = expr.pop()
r = t.toStr(args,self)
args.append(r)
if len(args) > 1:
return args
else:
return args[0]
def __repr__(self):
"""repr(fn)
Generates a String that correctrly respresents the equation
Returns
-------
str
Convert the Expression to a String that passed to the constructor, will constuct
an identical equation object (in terms of sequence of tokens, and token type/value)
"""
expr = self.__expr[::-1]
if len(expr) == 0:
return ""
args = [];
while len(expr) > 0:
t = expr.pop()
r = t.toRepr(args,self)
args.append(r)
if len(args) > 1:
return args
else:
return args[0]
def __iter__(self):
return iter(self.__argsused)
def __lt__(self, other):
if isinstance(other, Expression):
return repr(self) < repr(other)
else:
raise TypeError("{0:s} is not an {1:s} Object, and can't be compared to an Expression Object".format(repr(other), type(other)))
def __eq__(self, other):
if isinstance(other, Expression):
return repr(self) == repr(other)
else:
raise TypeError("{0:s} is not an {1:s} Object, and can't be compared to an Expression Object".format(repr(other), type(other)))
def __combine(self,other,op):
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
return NotImplemented
else:
obj = type(self)(self)
if isinstance(other,(int,float,complex)):
obj.__expr.append(ExpressionValue(other))
else:
if isinstance(other,basestring):
try:
other = type(self)(other)
except:
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
obj.__expr += other.__expr
obj.__argsused |= other.__argsused
for v in other.__args:
if v not in obj.__args:
obj.__args.append(v)
for k,v in other.__vars.items():
if k not in obj.__vars:
obj.__vars[k] = v
elif v != obj.__vars[k]:
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
fn = self.core.ops[op]
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
return obj
def __rcombine(self,other,op):
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
return NotImplemented
else:
obj = type(self)(self)
if isinstance(other,(int,float,complex)):
obj.__expr.insert(0,ExpressionValue(other))
else:
if isinstance(other,basestring):
try:
other = type(self)(other)
except:
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
obj.__expr = other.__expr + self.__expr
obj.__argsused = other.__argsused | self.__expr
__args = other.__args
for v in obj.__args:
if v not in __args:
__args.append(v)
obj.__args = __args
for k,v in other.__vars.items():
if k not in obj.__vars:
obj.__vars[k] = v
elif v != obj.__vars[k]:
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
fn = self.core.ops[op]
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
return obj
def __icombine(self,other,op):
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
return NotImplemented
else:
obj = self
if isinstance(other,(int,float,complex)):
obj.__expr.append(ExpressionValue(other))
else:
if isinstance(other,basestring):
try:
other = type(self)(other)
except:
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
obj.__expr += other.__expr
obj.__argsused |= other.__argsused
for v in other.__args:
if v not in obj.__args:
obj.__args.append(v)
for k,v in other.__vars.items():
if k not in obj.__vars:
obj.__vars[k] = v
elif v != obj.__vars[k]:
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
fn = self.core.ops[op]
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
return obj
def __apply(self,op):
fn = self.core.unary_ops[op]
obj = type(self)(self)
obj.__expr.append(ExpressionFunction(fn['func'],1,fn['str'],fn['latex'],op,False))
return obj
def __applycall(self,op):
fn = self.core.functions[op]
if 1 not in fn['args'] or '*' not in fn['args']:
raise RuntimeError("Can't Apply {0:s} function, dosen't accept only 1 argument".format(op))
obj = type(self)(self)
obj.__expr.append(ExpressionFunction(fn['func'],1,fn['str'],fn['latex'],op,False))
return obj
def __add__(self,other):
return self.__combine(other,'+')
def __sub__(self,other):
return self.__combine(other,'-')
def __mul__(self,other):
return self.__combine(other,'*')
def __div__(self,other):
return self.__combine(other,'/')
def __truediv__(self,other):
return self.__combine(other,'/')
def __pow__(self,other):
return self.__combine(other,'^')
def __mod__(self,other):
return self.__combine(other,'%')
def __and__(self,other):
return self.__combine(other,'&')
def __or__(self,other):
return self.__combine(other,'|')
def __xor__(self,other):
return self.__combine(other,'</>')
def __radd__(self,other):
return self.__rcombine(other,'+')
def __rsub__(self,other):
return self.__rcombine(other,'-')
def __rmul__(self,other):
return self.__rcombine(other,'*')
def __rdiv__(self,other):
return self.__rcombine(other,'/')
def __rtruediv__(self,other):
return self.__rcombine(other,'/')
def __rpow__(self,other):
return self.__rcombine(other,'^')
def __rmod__(self,other):
return self.__rcombine(other,'%')
def __rand__(self,other):
return self.__rcombine(other,'&')
def __ror__(self,other):
return self.__rcombine(other,'|')
def __rxor__(self,other):
return self.__rcombine(other,'</>')
def __iadd__(self,other):
return self.__icombine(other,'+')
def __isub__(self,other):
return self.__icombine(other,'-')
def __imul__(self,other):
return self.__icombine(other,'*')
def __idiv__(self,other):
return self.__icombine(other,'/')
def __itruediv__(self,other):
return self.__icombine(other,'/')
def __ipow__(self,other):
return self.__icombine(other,'^')
def __imod__(self,other):
return self.__icombine(other,'%')
def __iand__(self,other):
return self.__icombine(other,'&')
def __ior__(self,other):
return self.__icombine(other,'|')
def __ixor__(self,other):
return self.__icombine(other,'</>')
def __neg__(self):
return self.__apply('-')
def __invert__(self):
return self.__apply('!')
def __abs__(self):
return self.__applycall('abs')
def __getfunction(self,op):
if op[1] == 'FUNC':
fn = self.core.functions[op[0]]
fn['type'] = 'FUNC'
elif op[1] == 'UNARY':
fn = self.core.unary_ops[op[0]]
fn['type'] = 'UNARY'
fn['args'] = 1
elif op[1] == 'OP':
fn = self.core.ops[op[0]]
fn['type'] = 'OP'
return fn
def __compile(self):
self.__expr = []
stack = []
argc = []
__expect_op = False
v = self.__next(__expect_op)
while v != None:
if not __expect_op and v[1] == "OPEN":
stack.append(v)
__expect_op = False
elif __expect_op and v[1] == "CLOSE":
op = stack.pop()
while op[1] != "OPEN":
fs = self.__getfunction(op)
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
op = stack.pop()
if len(stack) > 0 and stack[-1][0] in self.core.functions:
op = stack.pop()
fs = self.core.functions[op[0]]
args = argc.pop()
if fs['args'] != '+' and (args != fs['args'] and args not in fs['args']):
raise SyntaxError("Invalid number of arguments for {0:s} function".format(op[0]))
self.__expr.append(ExpressionFunction(fs['func'],args,fs['str'],fs['latex'],op[0],True))
__expect_op = True
elif __expect_op and v[0] == ",":
argc[-1] += 1
op = stack.pop()
while op[1] != "OPEN":
fs = self.__getfunction(op)
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
op = stack.pop()
stack.append(op)
__expect_op = False
elif __expect_op and v[0] in self.core.ops:
fn = self.core.ops[v[0]]
if len(stack) == 0:
stack.append(v)
__expect_op = False
v = self.__next(__expect_op)
continue
op = stack.pop()
if op[0] == "(":
stack.append(op)
stack.append(v)
__expect_op = False
v = self.__next(__expect_op)
continue
fs = self.__getfunction(op)
while True:
if (fn['prec'] >= fs['prec']):
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
if len(stack) == 0:
stack.append(v)
break
op = stack.pop()
if op[0] == "(":
stack.append(op)
stack.append(v)
break
fs = self.__getfunction(op)
else:
stack.append(op)
stack.append(v)
break
__expect_op = False
elif not __expect_op and v[0] in self.core.unary_ops:
fn = self.core.unary_ops[v[0]]
stack.append(v)
__expect_op = False
elif not __expect_op and v[0] in self.core.functions:
stack.append(v)
argc.append(1)
__expect_op = False
elif not __expect_op and v[1] == 'NAME':
self.__argsused.add(v[0])
if v[0] not in self.__args:
self.__args.append(v[0])
self.__expr.append(ExpressionVariable(v[0]))
__expect_op = True
elif not __expect_op and v[1] == 'VALUE':
self.__expr.append(ExpressionValue(v[0]))
__expect_op = True
else:
raise SyntaxError("Invalid Token \"{0:s}\" in Expression, Expected {1:s}".format(v,"Op" if __expect_op else "Value"))
v = self.__next(__expect_op)
if len(stack) > 0:
op = stack.pop()
while op != "(":
fs = self.__getfunction(op)
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
if len(stack) > 0:
op = stack.pop()
else:
break

View File

@@ -0,0 +1,237 @@
import math
import sys
import re
if sys.version_info >= (3,):
xrange = range
basestring = str
class ExpressionObject(object):
def __init__(self,*args,**kwargs):
super(ExpressionObject,self).__init__(*args,**kwargs)
def toStr(self,args,expression):
return ""
def toRepr(self,args,expression):
return ""
def __call__(self,args,expression):
pass
class ExpressionValue(ExpressionObject):
def __init__(self,value,*args,**kwargs):
super(ExpressionValue,self).__init__(*args,**kwargs)
self.value = value
def toStr(self,args,expression):
if (isinstance(self.value,complex)):
V = [self.value.real,self.value.imag]
E = [0,0]
B = [0,0]
out = ["",""]
for i in xrange(2):
if V[i] == 0:
E[i] = 0
B[i] = 0
else:
E[i] = int(math.floor(math.log10(abs(V[i]))))
B[i] = V[i]*10**-E[i]
if E[i] in [0,1,2,3] and str(V[i])[-2:] == ".0":
B[i] = int(V[i])
E[i] = 0
if E[i] in [-1,-2] and len(str(V[i])) <= 7:
B[i] = V[i]
E[i] = 0
if i == 1:
fmt = "{{0:+{0:s}}}"
else:
fmt = "{{0:-{0:s}}}"
if type(B[i]) == int:
out[i] += fmt.format('d').format(B[i])
else:
out[i] += fmt.format('.5f').format(B[i]).rstrip("0.")
if i == 1:
out[i] += "\\imath"
if E[i] != 0:
out[i] += "\\times10^{{{0:d}}}".format(E[i])
return "\\left(" + ''.join(out) + "\\right)"
elif (isinstance(self.value,float)):
V = self.value
E = 0
B = 0
out = ""
if V == 0:
E = 0
B = 0
else:
E = int(math.floor(math.log10(abs(V))))
B = V*10**-E
if E in [0,1,2,3] and str(V)[-2:] == ".0":
B = int(V)
E = 0
if E in [-1,-2] and len(str(V)) <= 7:
B = V
E = 0
if type(B) == int:
out += "{0:-d}".format(B)
else:
out += "{0:-.5f}".format(B).rstrip("0.")
if E != 0:
out += "\\times10^{{{0:d}}}".format(E)
return "\\left(" + out + "\\right)"
else:
return out
else:
return str(self.value)
def toRepr(self,args,expression):
return str(self.value)
def __call__(self,args,expression):
return self.value
def __repr__(self):
return "<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.value),id(self))
class ExpressionFunction(ExpressionObject):
def __init__(self,function,nargs,form,display,id,isfunc,*args,**kwargs):
super(ExpressionFunction,self).__init__(*args,**kwargs)
self.function = function
self.nargs = nargs
self.form = form
self.display = display
self.id = id
self.isfunc = isfunc
def toStr(self,args,expression):
params = []
for i in xrange(self.nargs):
params.append(args.pop())
if self.isfunc:
return str(self.display.format(','.join(params[::-1])))
else:
return str(self.display.format(*params[::-1]))
def toRepr(self,args,expression):
params = []
for i in xrange(self.nargs):
params.append(args.pop())
if self.isfunc:
return str(self.form.format(','.join(params[::-1])))
else:
return str(self.form.format(*params[::-1]))
def __call__(self,args,expression):
params = []
for i in xrange(self.nargs):
params.append(args.pop())
return self.function(*params[::-1])
def __repr__(self):
return "<{0:s}.{1:s}({2:s},{3:d}) object at {4:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.id),self.nargs,id(self))
class ExpressionVariable(ExpressionObject):
def __init__(self,name,*args,**kwargs):
super(ExpressionVariable,self).__init__(*args,**kwargs)
self.name = name
def toStr(self,args,expression):
return str(self.name)
def toRepr(self,args,expression):
return str(self.name)
def __call__(self,args,expression):
if self.name in expression.variables:
return expression.variables[self.name]
else:
return 0 # Default variables to return 0
def __repr__(self):
return "<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.name),id(self))
class Core():
constants = {}
unary_ops = {}
ops = {}
functions = {}
smatch = re.compile(r"\s*,")
vmatch = re.compile(r"\s*"
"(?:"
"(?P<oct>"
"(?P<octsign>[+-]?)"
r"\s*0o"
"(?P<octvalue>[0-7]+)"
")|(?P<hex>"
"(?P<hexsign>[+-]?)"
r"\s*0x"
"(?P<hexvalue>[0-9a-fA-F]+)"
")|(?P<bin>"
"(?P<binsign>[+-]?)"
r"\s*0b"
"(?P<binvalue>[01]+)"
")|(?P<dec>"
"(?P<rsign>[+-]?)"
r"\s*"
r"(?P<rvalue>(?:\d+\.\d+|\d+\.|\.\d+|\d+))"
"(?:"
"[Ee]"
r"(?P<rexpoent>[+-]?\d+)"
")?"
"(?:"
r"\s*"
r"(?P<sep>(?(rvalue)\+|))?"
r"\s*"
"(?P<isign>(?(rvalue)(?(sep)[+-]?|[+-])|[+-]?)?)"
r"\s*"
r"(?P<ivalue>(?:\d+\.\d+|\d+\.|\.\d+|\d+))"
"(?:"
"[Ee]"
r"(?P<iexpoent>[+-]?\d+)"
")?"
"[ij]"
")?"
")"
")")
nmatch = re.compile(r"\s*([a-zA-Z_][a-zA-Z0-9_]*)")
gsmatch = re.compile(r'\s*(\()')
gematch = re.compile(r'\s*(\))')
def recalculateFMatch(self):
fks = sorted(self.functions.keys(), key=len, reverse=True)
oks = sorted(self.ops.keys(), key=len, reverse=True)
uks = sorted(self.unary_ops.keys(), key=len, reverse=True)
self.fmatch = re.compile(r'\s*(' + '|'.join(map(re.escape,fks)) + ')')
self.omatch = re.compile(r'\s*(' + '|'.join(map(re.escape,oks)) + ')')
self.umatch = re.compile(r'\s*(' + '|'.join(map(re.escape,uks)) + ')')
def addFn(self,id,str,latex,args,func):
self.functions[id] = {
'str': str,
'latex': latex,
'args': args,
'func': func}
def addOp(self,id,str,latex,single,prec,func):
if single:
raise RuntimeError("Single Ops Not Yet Supported")
self.ops[id] = {
'str': str,
'latex': latex,
'args': 2,
'prec': prec,
'func': func}
def addUnaryOp(self,id,str,latex,func):
self.unary_ops[id] = {
'str': str,
'latex': latex,
'args': 1,
'prec': 0,
'func': func}
def addConst(self,name,value):
self.constants[name] = value

View File

@@ -0,0 +1,2 @@
from . import equation_base as equation_base
from .ExpressionCore import ExpressionValue, ExpressionFunction, ExpressionVariable, Core

View File

@@ -0,0 +1,106 @@
try:
import numpy as np
has_numpy = True
except ImportError:
import math
has_numpy = False
try:
import scipy.constants
has_scipy = True
except ImportError:
has_scipy = False
import operator as op
from .similar import sim, nsim, gsim, lsim
def equation_extend(core):
def product(*args):
if len(args) == 1 and has_numpy:
return np.prod(args[0])
else:
return reduce(op.mul,args,1)
def sumargs(*args):
if len(args) == 1:
return sum(args[0])
else:
return sum(args)
core.addOp('+',"({0:s} + {1:s})","\\left({0:s} + {1:s}\\right)",False,3,op.add)
core.addOp('-',"({0:s} - {1:s})","\\left({0:s} - {1:s}\\right)",False,3,op.sub)
core.addOp('*',"({0:s} * {1:s})","\\left({0:s} \\times {1:s}\\right)",False,2,op.mul)
core.addOp('/',"({0:s} / {1:s})","\\frac{{{0:s}}}{{{1:s}}}",False,2,op.truediv)
core.addOp('%',"({0:s} % {1:s})","\\left({0:s} \\bmod {1:s}\\right)",False,2,op.mod)
core.addOp('^',"({0:s} ^ {1:s})","{0:s}^{{{1:s}}}",False,1,op.pow)
core.addOp('**',"({0:s} ^ {1:s})","{0:s}^{{{1:s}}}",False,1,op.pow)
core.addOp('&',"({0:s} & {1:s})","\\left({0:s} \\land {1:s}\\right)",False,4,op.and_)
core.addOp('|',"({0:s} | {1:s})","\\left({0:s} \\lor {1:s}\\right)",False,4,op.or_)
core.addOp('</>',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
core.addOp('&|',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
core.addOp('|&',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
core.addOp('==',"({0:s} == {1:s})","\\left({0:s} = {1:s}\\right)",False,5,op.eq)
core.addOp('=',"({0:s} == {1:s})","\\left({0:s} = {1:s}\\right)",False,5,op.eq)
core.addOp('~',"({0:s} ~ {1:s})","\\left({0:s} \\approx {1:s}\\right)",False,5,sim)
core.addOp('!~',"({0:s} !~ {1:s})","\\left({0:s} \\not\\approx {1:s}\\right)",False,5,nsim)
core.addOp('!=',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
core.addOp('<>',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
core.addOp('><',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
core.addOp('<',"({0:s} < {1:s})","\\left({0:s} < {1:s}\\right)",False,5,op.lt)
core.addOp('>',"({0:s} > {1:s})","\\left({0:s} > {1:s}\\right)",False,5,op.gt)
core.addOp('<=',"({0:s} <= {1:s})","\\left({0:s} \\leq {1:s}\\right)",False,5,op.le)
core.addOp('>=',"({0:s} >= {1:s})","\\left({0:s} \\geq {1:s}\\right)",False,5,op.ge)
core.addOp('=<',"({0:s} <= {1:s})","\\left({0:s} \\leq {1:s}\\right)",False,5,op.le)
core.addOp('=>',"({0:s} >= {1:s})","\\left({0:s} \\geq {1:s}\\right)",False,5,op.ge)
core.addOp('<~',"({0:s} <~ {1:s})","\\left({0:s} \lessapprox {1:s}\\right)",False,5,lsim)
core.addOp('>~',"({0:s} >~ {1:s})","\\left({0:s} \\gtrapprox {1:s}\\right)",False,5,gsim)
core.addOp('~<',"({0:s} <~ {1:s})","\\left({0:s} \lessapprox {1:s}\\right)",False,5,lsim)
core.addOp('~>',"({0:s} >~ {1:s})","\\left({0:s} \\gtrapprox {1:s}\\right)",False,5,gsim)
core.addUnaryOp('!',"(!{0:s})","\\neg{0:s}",op.not_)
core.addUnaryOp('-',"-{0:s}","-{0:s}",op.neg)
core.addFn('abs',"abs({0:s})","\\left|{0:s}\\right|",1,op.abs)
core.addFn('sum',"sum({0:s})","\\sum\\left({0:s}\\right)",'+',sumargs)
core.addFn('prod',"prod({0:s})","\\prod\\left({0:s}\\right)",'+',product)
if has_numpy:
core.addFn('floor',"floor({0:s})","\\lfloor {0:s} \\rfloor",1,np.floor)
core.addFn('ceil',"ceil({0:s})","\\lceil {0:s} \\rceil",1,np.ceil)
core.addFn('round',"round({0:s})","\\lfloor {0:s} \\rceil",1,np.round)
core.addFn('sin',"sin({0:s})","\\sin\\left({0:s}\\right)",1,np.sin)
core.addFn('cos',"cos({0:s})","\\cos\\left({0:s}\\right)",1,np.cos)
core.addFn('tan',"tan({0:s})","\\tan\\left({0:s}\\right)",1,np.tan)
core.addFn('re',"re({0:s})","\\Re\\left({0:s}\\right)",1,np.real)
core.addFn('im',"re({0:s})","\\Im\\left({0:s}\\right)",1,np.imag)
core.addFn('sqrt',"sqrt({0:s})","\\sqrt{{{0:s}}}",1,np.sqrt)
core.addConst("pi",np.pi)
core.addConst("e",np.e)
core.addConst("Inf",np.Inf)
core.addConst("NaN",np.NaN)
else:
core.addFn('floor',"floor({0:s})","\\lfloor {0:s} \\rfloor",1,math.floor)
core.addFn('ceil',"ceil({0:s})","\\lceil {0:s} \\rceil",1,math.ceil)
core.addFn('round',"round({0:s})","\\lfloor {0:s} \\rceil",1,round)
core.addFn('sin',"sin({0:s})","\\sin\\left({0:s}\\right)",1,math.sin)
core.addFn('cos',"cos({0:s})","\\cos\\left({0:s}\\right)",1,math.cos)
core.addFn('tan',"tan({0:s})","\\tan\\left({0:s}\\right)",1,math.tan)
core.addFn('re',"re({0:s})","\\Re\\left({0:s}\\right)",1,complex.real)
core.addFn('im',"re({0:s})","\\Im\\left({0:s}\\right)",1,complex.imag)
core.addFn('sqrt',"sqrt({0:s})","\\sqrt{{{0:s}}}",1,math.sqrt)
core.addConst("pi",math.pi)
core.addConst("e",math.e)
core.addConst("Inf",float("Inf"))
core.addConst("NaN",float("NaN"))
if has_scipy:
core.addConst("h",scipy.constants.h)
core.addConst("hbar",scipy.constants.hbar)
core.addConst("m_e",scipy.constants.m_e)
core.addConst("m_p",scipy.constants.m_p)
core.addConst("m_n",scipy.constants.m_n)
core.addConst("c",scipy.constants.c)
core.addConst("N_A",scipy.constants.N_A)
core.addConst("mu_0",scipy.constants.mu_0)
core.addConst("eps_0",scipy.constants.epsilon_0)
core.addConst("k",scipy.constants.k)
core.addConst("G",scipy.constants.G)
core.addConst("g",scipy.constants.g)
core.addConst("q",scipy.constants.e)
core.addConst("R",scipy.constants.R)
core.addConst("sigma",scipy.constants.e)
core.addConst("Rb",scipy.constants.Rydberg)

View File

@@ -0,0 +1,49 @@
_tol = 1e-5
def sim(a,b):
if (a==b):
return True
elif a == 0 or b == 0:
return False
if (a<b):
return (1-a/b)<=_tol
else:
return (1-b/a)<=_tol
def nsim(a,b):
if (a==b):
return False
elif a == 0 or b == 0:
return True
if (a<b):
return (1-a/b)>_tol
else:
return (1-b/a)>_tol
def gsim(a,b):
if a >= b:
return True
return (1-a/b)<=_tol
def lsim(a,b):
if a <= b:
return True
return (1-b/a)<=_tol
def set_tol(value=1e-5):
r"""Set Error Tolerance
Set the tolerance for detriming if two numbers are simliar, i.e
:math:`\left|\frac{a}{b}\right| = 1 \pm tolerance`
Parameters
----------
value: float
The Value to set the tolerance to show be very small as it respresents the
percentage of acceptable error in detriming if two values are the same.
"""
global _tol
if isinstance(value,float):
_tol = value
else:
raise TypeError(type(value))

View File

@@ -0,0 +1,51 @@
import re
from decimal import Decimal
from functools import reduce
class RegexInplaceParser(object):
def __init__(self, string):
self.string = string
def add(self, string):
while(len(re.findall("[+]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[+]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x + y), [Decimal(i) for i in re.split("[+]{1}", re.search("[-]?\d+[.]?\d*[+]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def sub(self, string):
while(len(re.findall("\d+[.]?\d*[-]{1,2}\d+[.]?\d*", string)) != 0):
g = re.search("\d+[.]?\d*[-]{1,2}\d+[.]?\d*", string).group()
if(re.search("[-]{1,2}", g).group() == "-"):
r = re.sub("[-]{1}", "+-", g, 1)
string = re.sub(g, r, string, 1)
elif(re.search("[-]{1,2}", g).group() == "--"):
r = re.sub("[-]{2}", "+", g, 1)
string = re.sub(g, r, string, 1)
else:
pass
return string
def mul(self, string):
while(len(re.findall("[*]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[*]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x * y), [Decimal(i) for i in re.split("[*]{1}", re.search("[-]?\d+[.]?\d*[*]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def div(self, string):
while(len(re.findall("[/]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[/]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x / y), [Decimal(i) for i in re.split("[/]{1}", re.search("[-]?\d+[.]?\d*[/]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def exp(self, string):
while(len(re.findall("[\^]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[\^]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x ** y), [Decimal(i) for i in re.split("[\^]{1}", re.search("[-]?\d+[.]?\d*[\^]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def evaluate(self):
string = self.string
string = self.exp(string)
string = self.div(string)
string = self.mul(string)
string = self.sub(string)
string = self.add(string)
return string

View File

@@ -0,0 +1,34 @@
# Titan Robotics Team 2022: Expression submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis.Equation import parser'
# setup:
__version__ = "0.0.4-alpha"
__changelog__ = """changelog:
0.0.4-alpha:
- moved individual parsers to their own files
0.0.3-alpha:
- readded old regex based parser as RegexInplaceParser
0.0.2-alpha:
- wrote BNF using pyparsing and uses a BNF metasyntax
- renamed this submodule parser
0.0.1-alpha:
- took items from equation.ipynb and ported here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = {
"BNF",
"RegexInplaceParser",
"HybridExpressionParser"
}
from .BNF import BNF as BNF
from .RegexInplaceParser import RegexInplaceParser as RegexInplaceParser
from .Hybrid import HybridExpressionParser
from .Hybrid_Utils import equation_base, Core

View File

@@ -0,0 +1,21 @@
# Titan Robotics Team 2022: py2 module
# Written by Arthur Lu
# Notes:
# this module should only be used internally, contains old python 2.X functions that have been removed.
# setup:
from __future__ import division
__version__ = "1.0.0"
__changelog__ = """changelog:
1.0.0:
- added cmp function
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
def cmp(a, b):
return (a > b) - (a < b)

View File

@@ -0,0 +1,7 @@
import numpy as np
def calculate(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
return starting_score + K*(np.sum(observed) - np.sum(expected))

View File

@@ -0,0 +1,99 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -0,0 +1,907 @@
from __future__ import absolute_import
from itertools import chain
import math
from six import iteritems
from six.moves import map, range, zip
from six import iterkeys
import copy
try:
from numbers import Number
except ImportError:
Number = (int, long, float, complex)
inf = float('inf')
class Gaussian(object):
#: Precision, the inverse of the variance.
pi = 0
#: Precision adjusted mean, the precision multiplied by the mean.
tau = 0
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
if mu is not None:
if sigma is None:
raise TypeError('sigma argument is needed')
elif sigma == 0:
raise ValueError('sigma**2 should be greater than 0')
pi = sigma ** -2
tau = pi * mu
self.pi = pi
self.tau = tau
@property
def mu(self):
return self.pi and self.tau / self.pi
@property
def sigma(self):
return math.sqrt(1 / self.pi) if self.pi else inf
def __mul__(self, other):
pi, tau = self.pi + other.pi, self.tau + other.tau
return Gaussian(pi=pi, tau=tau)
def __truediv__(self, other):
pi, tau = self.pi - other.pi, self.tau - other.tau
return Gaussian(pi=pi, tau=tau)
__div__ = __truediv__ # for Python 2
def __eq__(self, other):
return self.pi == other.pi and self.tau == other.tau
def __lt__(self, other):
return self.mu < other.mu
def __le__(self, other):
return self.mu <= other.mu
def __gt__(self, other):
return self.mu > other.mu
def __ge__(self, other):
return self.mu >= other.mu
def __repr__(self):
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
def _repr_latex_(self):
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
return '$%s$' % latex
class Matrix(list):
def __init__(self, src, height=None, width=None):
if callable(src):
f, src = src, {}
size = [height, width]
if not height:
def set_height(height):
size[0] = height
size[0] = set_height
if not width:
def set_width(width):
size[1] = width
size[1] = set_width
try:
for (r, c), val in f(*size):
src[r, c] = val
except TypeError:
raise TypeError('A callable src must return an interable '
'which generates a tuple containing '
'coordinate and value')
height, width = tuple(size)
if height is None or width is None:
raise TypeError('A callable src must call set_height and '
'set_width if the size is non-deterministic')
if isinstance(src, list):
is_number = lambda x: isinstance(x, Number)
unique_col_sizes = set(map(len, src))
everything_are_number = filter(is_number, sum(src, []))
if len(unique_col_sizes) != 1 or not everything_are_number:
raise ValueError('src must be a rectangular array of numbers')
two_dimensional_array = src
elif isinstance(src, dict):
if not height or not width:
w = h = 0
for r, c in iterkeys(src):
if not height:
h = max(h, r + 1)
if not width:
w = max(w, c + 1)
if not height:
height = h
if not width:
width = w
two_dimensional_array = []
for r in range(height):
row = []
two_dimensional_array.append(row)
for c in range(width):
row.append(src.get((r, c), 0))
else:
raise TypeError('src must be a list or dict or callable')
super(Matrix, self).__init__(two_dimensional_array)
@property
def height(self):
return len(self)
@property
def width(self):
return len(self[0])
def transpose(self):
height, width = self.height, self.width
src = {}
for c in range(width):
for r in range(height):
src[c, r] = self[r][c]
return type(self)(src, height=width, width=height)
def minor(self, row_n, col_n):
height, width = self.height, self.width
if not (0 <= row_n < height):
raise ValueError('row_n should be between 0 and %d' % height)
elif not (0 <= col_n < width):
raise ValueError('col_n should be between 0 and %d' % width)
two_dimensional_array = []
for r in range(height):
if r == row_n:
continue
row = []
two_dimensional_array.append(row)
for c in range(width):
if c == col_n:
continue
row.append(self[r][c])
return type(self)(two_dimensional_array)
def determinant(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can calculate a determinant')
tmp, rv = copy.deepcopy(self), 1.
for c in range(width - 1, 0, -1):
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
pivot = tmp[r][c]
if not pivot:
return 0.
tmp[r], tmp[c] = tmp[c], tmp[r]
if r != c:
rv = -rv
rv *= pivot
fact = -1. / pivot
for r in range(c):
f = fact * tmp[r][c]
for x in range(c):
tmp[r][x] += f * tmp[c][x]
return rv * tmp[0][0]
def adjugate(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can be adjugated')
if height == 2:
a, b = self[0][0], self[0][1]
c, d = self[1][0], self[1][1]
return type(self)([[d, -b], [-c, a]])
src = {}
for r in range(height):
for c in range(width):
sign = -1 if (r + c) % 2 else 1
src[r, c] = self.minor(r, c).determinant() * sign
return type(self)(src, height, width)
def inverse(self):
if self.height == self.width == 1:
return type(self)([[1. / self[0][0]]])
return (1. / self.determinant()) * self.adjugate()
def __add__(self, other):
height, width = self.height, self.width
if (height, width) != (other.height, other.width):
raise ValueError('Must be same size')
src = {}
for r in range(height):
for c in range(width):
src[r, c] = self[r][c] + other[r][c]
return type(self)(src, height, width)
def __mul__(self, other):
if self.width != other.height:
raise ValueError('Bad size')
height, width = self.height, other.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = sum(self[r][x] * other[x][c]
for x in range(self.width))
return type(self)(src, height, width)
def __rmul__(self, other):
if not isinstance(other, Number):
raise TypeError('The operand should be a number')
height, width = self.height, self.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = other * self[r][c]
return type(self)(src, height, width)
def __repr__(self):
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
def _repr_latex_(self):
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
return '$%s$' % latex
def _gen_erfcinv(erfc, math=math):
def erfcinv(y):
"""The inverse function of erfc."""
if y >= 2:
return -100.
elif y <= 0:
return 100.
zero_point = y < 1
if not zero_point:
y = 2 - y
t = math.sqrt(-2 * math.log(y / 2.))
x = -0.70711 * \
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
for i in range(2):
err = erfc(x) - y
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
return x if zero_point else -x
return erfcinv
def _gen_ppf(erfc, math=math):
erfcinv = _gen_erfcinv(erfc, math)
def ppf(x, mu=0, sigma=1):
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
return ppf
def erfc(x):
z = abs(x)
t = 1. / (1. + z / 2.)
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
-0.82215223 + t * 0.17087277
)))
)))
)))
return 2. - r if x < 0 else r
def cdf(x, mu=0, sigma=1):
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
def pdf(x, mu=0, sigma=1):
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
ppf = _gen_ppf(erfc)
def choose_backend(backend):
if backend is None: # fallback
return cdf, pdf, ppf
elif backend == 'mpmath':
try:
import mpmath
except ImportError:
raise ImportError('Install "mpmath" to use this backend')
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
elif backend == 'scipy':
try:
from scipy.stats import norm
except ImportError:
raise ImportError('Install "scipy" to use this backend')
return norm.cdf, norm.pdf, norm.ppf
raise ValueError('%r backend is not defined' % backend)
def available_backends():
backends = [None]
for backend in ['mpmath', 'scipy']:
try:
__import__(backend)
except ImportError:
continue
backends.append(backend)
return backends
class Node(object):
pass
class Variable(Node, Gaussian):
def __init__(self):
self.messages = {}
super(Variable, self).__init__()
def set(self, val):
delta = self.delta(val)
self.pi, self.tau = val.pi, val.tau
return delta
def delta(self, other):
pi_delta = abs(self.pi - other.pi)
if pi_delta == inf:
return 0.
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
def update_message(self, factor, pi=0, tau=0, message=None):
message = message or Gaussian(pi=pi, tau=tau)
old_message, self[factor] = self[factor], message
return self.set(self / old_message * message)
def update_value(self, factor, pi=0, tau=0, value=None):
value = value or Gaussian(pi=pi, tau=tau)
old_message = self[factor]
self[factor] = value * old_message / self
return self.set(value)
def __getitem__(self, factor):
return self.messages[factor]
def __setitem__(self, factor, message):
self.messages[factor] = message
def __repr__(self):
args = (type(self).__name__, super(Variable, self).__repr__(),
len(self.messages), '' if len(self.messages) == 1 else 's')
return '<%s %s with %d connection%s>' % args
class Factor(Node):
def __init__(self, variables):
self.vars = variables
for var in variables:
var[self] = Gaussian()
def down(self):
return 0
def up(self):
return 0
@property
def var(self):
assert len(self.vars) == 1
return self.vars[0]
def __repr__(self):
args = (type(self).__name__, len(self.vars),
'' if len(self.vars) == 1 else 's')
return '<%s with %d connection%s>' % args
class PriorFactor(Factor):
def __init__(self, var, val, dynamic=0):
super(PriorFactor, self).__init__([var])
self.val = val
self.dynamic = dynamic
def down(self):
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
value = Gaussian(self.val.mu, sigma)
return self.var.update_value(self, value=value)
class LikelihoodFactor(Factor):
def __init__(self, mean_var, value_var, variance):
super(LikelihoodFactor, self).__init__([mean_var, value_var])
self.mean = mean_var
self.value = value_var
self.variance = variance
def calc_a(self, var):
return 1. / (1. + self.variance * var.pi)
def down(self):
# update value.
msg = self.mean / self.mean[self]
a = self.calc_a(msg)
return self.value.update_message(self, a * msg.pi, a * msg.tau)
def up(self):
# update mean.
msg = self.value / self.value[self]
a = self.calc_a(msg)
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
class SumFactor(Factor):
def __init__(self, sum_var, term_vars, coeffs):
super(SumFactor, self).__init__([sum_var] + term_vars)
self.sum = sum_var
self.terms = term_vars
self.coeffs = coeffs
def down(self):
vals = self.terms
msgs = [var[self] for var in vals]
return self.update(self.sum, vals, msgs, self.coeffs)
def up(self, index=0):
coeff = self.coeffs[index]
coeffs = []
for x, c in enumerate(self.coeffs):
try:
if x == index:
coeffs.append(1. / coeff)
else:
coeffs.append(-c / coeff)
except ZeroDivisionError:
coeffs.append(0.)
vals = self.terms[:]
vals[index] = self.sum
msgs = [var[self] for var in vals]
return self.update(self.terms[index], vals, msgs, coeffs)
def update(self, var, vals, msgs, coeffs):
pi_inv = 0
mu = 0
for val, msg, coeff in zip(vals, msgs, coeffs):
div = val / msg
mu += coeff * div.mu
if pi_inv == inf:
continue
try:
# numpy.float64 handles floating-point error by different way.
# For example, it can just warn RuntimeWarning on n/0 problem
# instead of throwing ZeroDivisionError. So div.pi, the
# denominator has to be a built-in float.
pi_inv += coeff ** 2 / float(div.pi)
except ZeroDivisionError:
pi_inv = inf
pi = 1. / pi_inv
tau = pi * mu
return var.update_message(self, pi, tau)
class TruncateFactor(Factor):
def __init__(self, var, v_func, w_func, draw_margin):
super(TruncateFactor, self).__init__([var])
self.v_func = v_func
self.w_func = w_func
self.draw_margin = draw_margin
def up(self):
val = self.var
msg = self.var[self]
div = val / msg
sqrt_pi = math.sqrt(div.pi)
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
v = self.v_func(*args)
w = self.w_func(*args)
denom = (1. - w)
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
return val.update_value(self, pi, tau)
#: Default initial mean of ratings.
MU = 25.
#: Default initial standard deviation of ratings.
SIGMA = MU / 3
#: Default distance that guarantees about 76% chance of winning.
BETA = SIGMA / 2
#: Default dynamic factor.
TAU = SIGMA / 100
#: Default draw probability of the game.
DRAW_PROBABILITY = .10
#: A basis to check reliability of the result.
DELTA = 0.0001
def calc_draw_probability(draw_margin, size, env=None):
if env is None:
env = global_env()
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
def calc_draw_margin(draw_probability, size, env=None):
if env is None:
env = global_env()
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
def _team_sizes(rating_groups):
team_sizes = [0]
for group in rating_groups:
team_sizes.append(len(group) + team_sizes[-1])
del team_sizes[0]
return team_sizes
def _floating_point_error(env):
if env.backend == 'mpmath':
msg = 'Set "mpmath.mp.dps" to higher'
else:
msg = 'Cannot calculate correctly, set backend to "mpmath"'
return FloatingPointError(msg)
class Rating(Gaussian):
def __init__(self, mu=None, sigma=None):
if isinstance(mu, tuple):
mu, sigma = mu
elif isinstance(mu, Gaussian):
mu, sigma = mu.mu, mu.sigma
if mu is None:
mu = global_env().mu
if sigma is None:
sigma = global_env().sigma
super(Rating, self).__init__(mu, sigma)
def __int__(self):
return int(self.mu)
def __long__(self):
return long(self.mu)
def __float__(self):
return float(self.mu)
def __iter__(self):
return iter((self.mu, self.sigma))
def __repr__(self):
c = type(self)
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
return '%s(mu=%.3f, sigma=%.3f)' % args
class TrueSkill(object):
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None):
self.mu = mu
self.sigma = sigma
self.beta = beta
self.tau = tau
self.draw_probability = draw_probability
self.backend = backend
if isinstance(backend, tuple):
self.cdf, self.pdf, self.ppf = backend
else:
self.cdf, self.pdf, self.ppf = choose_backend(backend)
def create_rating(self, mu=None, sigma=None):
if mu is None:
mu = self.mu
if sigma is None:
sigma = self.sigma
return Rating(mu, sigma)
def v_win(self, diff, draw_margin):
x = diff - draw_margin
denom = self.cdf(x)
return (self.pdf(x) / denom) if denom else -x
def v_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
numer = self.pdf(b) - self.pdf(a)
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
def w_win(self, diff, draw_margin):
x = diff - draw_margin
v = self.v_win(diff, draw_margin)
w = v * (v + x)
if 0 < w < 1:
return w
raise _floating_point_error(self)
def w_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
if not denom:
raise _floating_point_error(self)
v = self.v_draw(abs_diff, draw_margin)
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
def validate_rating_groups(self, rating_groups):
# check group sizes
if len(rating_groups) < 2:
raise ValueError('Need multiple rating groups')
elif not all(rating_groups):
raise ValueError('Each group must contain multiple ratings')
# check group types
group_types = set(map(type, rating_groups))
if len(group_types) != 1:
raise TypeError('All groups should be same type')
elif group_types.pop() is Rating:
raise TypeError('Rating cannot be a rating group')
# normalize rating_groups
if isinstance(rating_groups[0], dict):
dict_rating_groups = rating_groups
rating_groups = []
keys = []
for dict_rating_group in dict_rating_groups:
rating_group, key_group = [], []
for key, rating in iteritems(dict_rating_group):
rating_group.append(rating)
key_group.append(key)
rating_groups.append(tuple(rating_group))
keys.append(tuple(key_group))
else:
rating_groups = list(rating_groups)
keys = None
return rating_groups, keys
def validate_weights(self, weights, rating_groups, keys=None):
if weights is None:
weights = [(1,) * len(g) for g in rating_groups]
elif isinstance(weights, dict):
weights_dict, weights = weights, []
for x, group in enumerate(rating_groups):
w = []
weights.append(w)
for y, rating in enumerate(group):
if keys is not None:
y = keys[x][y]
w.append(weights_dict.get((x, y), 1))
return weights
def factor_graph_builders(self, rating_groups, ranks, weights):
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
size = len(flatten_ratings)
group_size = len(rating_groups)
# create variables
rating_vars = [Variable() for x in range(size)]
perf_vars = [Variable() for x in range(size)]
team_perf_vars = [Variable() for x in range(group_size)]
team_diff_vars = [Variable() for x in range(group_size - 1)]
team_sizes = _team_sizes(rating_groups)
# layer builders
def build_rating_layer():
for rating_var, rating in zip(rating_vars, flatten_ratings):
yield PriorFactor(rating_var, rating, self.tau)
def build_perf_layer():
for rating_var, perf_var in zip(rating_vars, perf_vars):
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
def build_team_perf_layer():
for team, team_perf_var in enumerate(team_perf_vars):
if team > 0:
start = team_sizes[team - 1]
else:
start = 0
end = team_sizes[team]
child_perf_vars = perf_vars[start:end]
coeffs = flatten_weights[start:end]
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
def build_team_diff_layer():
for team, team_diff_var in enumerate(team_diff_vars):
yield SumFactor(team_diff_var,
team_perf_vars[team:team + 2], [+1, -1])
def build_trunc_layer():
for x, team_diff_var in enumerate(team_diff_vars):
if callable(self.draw_probability):
# dynamic draw probability
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
args = (Rating(team_perf1), Rating(team_perf2), self)
draw_probability = self.draw_probability(*args)
else:
# static draw probability
draw_probability = self.draw_probability
size = sum(map(len, rating_groups[x:x + 2]))
draw_margin = calc_draw_margin(draw_probability, size, self)
if ranks[x] == ranks[x + 1]: # is a tie?
v_func, w_func = self.v_draw, self.w_draw
else:
v_func, w_func = self.v_win, self.w_win
yield TruncateFactor(team_diff_var,
v_func, w_func, draw_margin)
# build layers
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
build_team_diff_layer, build_trunc_layer)
def run_schedule(self, build_rating_layer, build_perf_layer,
build_team_perf_layer, build_team_diff_layer,
build_trunc_layer, min_delta=DELTA):
if min_delta <= 0:
raise ValueError('min_delta must be greater than 0')
layers = []
def build(builders):
layers_built = [list(build()) for build in builders]
layers.extend(layers_built)
return layers_built
# gray arrows
layers_built = build([build_rating_layer,
build_perf_layer,
build_team_perf_layer])
rating_layer, perf_layer, team_perf_layer = layers_built
for f in chain(*layers_built):
f.down()
# arrow #1, #2, #3
team_diff_layer, trunc_layer = build([build_team_diff_layer,
build_trunc_layer])
team_diff_len = len(team_diff_layer)
for x in range(10):
if team_diff_len == 1:
# only two teams
team_diff_layer[0].down()
delta = trunc_layer[0].up()
else:
# multiple teams
delta = 0
for x in range(team_diff_len - 1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(1) # up to right variable
for x in range(team_diff_len - 1, 0, -1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(0) # up to left variable
# repeat until to small update
if delta <= min_delta:
break
# up both ends
team_diff_layer[0].up(0)
team_diff_layer[team_diff_len - 1].up(1)
# up the remainder of the black arrows
for f in team_perf_layer:
for x in range(len(f.vars) - 1):
f.up(x)
for f in perf_layer:
f.up()
return layers
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
group_size = len(rating_groups)
if ranks is None:
ranks = range(group_size)
elif len(ranks) != group_size:
raise ValueError('Wrong ranks')
# sort rating groups by rank
by_rank = lambda x: x[1][1]
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
key=by_rank)
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
for x, (g, r, w) in sorting:
sorted_rating_groups.append(g)
sorted_ranks.append(r)
# make weights to be greater than 0
sorted_weights.append(max(min_delta, w_) for w_ in w)
# build factor graph
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
builders = self.factor_graph_builders(*args)
args = builders + (min_delta,)
layers = self.run_schedule(*args)
# make result
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
transformed_groups = []
for start, end in zip([0] + team_sizes[:-1], team_sizes):
group = []
for f in rating_layer[start:end]:
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
transformed_groups.append(tuple(group))
by_hint = lambda x: x[0]
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
key=by_hint)
if keys is None:
return [g for x, g in unsorting]
# restore the structure with input dictionary keys
return [dict(zip(keys[x], g)) for x, g in unsorting]
def quality(self, rating_groups, weights=None):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
length = len(flatten_ratings)
# a vector of all of the skill means
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
# a matrix whose diagonal values are the variances (sigma ** 2) of each
# of the players.
def variance_matrix(height, width):
variances = (r.sigma ** 2 for r in flatten_ratings)
for x, variance in enumerate(variances):
yield (x, x), variance
variance_matrix = Matrix(variance_matrix, length, length)
# the player-team assignment and comparison matrix
def rotated_a_matrix(set_height, set_width):
t = 0
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
rating_groups[1:])):
for x in range(t, t + len(cur)):
yield (r, x), flatten_weights[x]
t += 1
x += 1
for x in range(x, x + len(_next)):
yield (r, x), -flatten_weights[x]
set_height(r + 1)
set_width(x + 1)
rotated_a_matrix = Matrix(rotated_a_matrix)
a_matrix = rotated_a_matrix.transpose()
# match quality further derivation
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
_atsa = rotated_a_matrix * variance_matrix * a_matrix
start = mean_matrix.transpose() * a_matrix
middle = _ata + _atsa
end = rotated_a_matrix * mean_matrix
# make result
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
s_arg = _ata.determinant() / middle.determinant()
return math.exp(e_arg) * math.sqrt(s_arg)
def expose(self, rating):
k = self.mu / self.sigma
return rating.mu - k * rating.sigma
def make_as_global(self):
return setup(env=self)
def __repr__(self):
c = type(self)
if callable(self.draw_probability):
f = self.draw_probability
draw_probability = '.'.join([f.__module__, f.__name__])
else:
draw_probability = '%.1f%%' % (self.draw_probability * 100)
if self.backend is None:
backend = ''
elif isinstance(self.backend, tuple):
backend = ', backend=...'
else:
backend = ', backend=%r' % self.backend
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
self.beta, self.tau, draw_probability, backend)
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
'draw_probability=%s%s)' % args)
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
if env is None:
env = global_env()
ranks = [0, 0 if drawn else 1]
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
return teams[0][0], teams[1][0]
def quality_1vs1(rating1, rating2, env=None):
if env is None:
env = global_env()
return env.quality([(rating1,), (rating2,)])
def global_env():
try:
global_env.__trueskill__
except AttributeError:
# setup the default environment
setup()
return global_env.__trueskill__
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
if env is None:
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
global_env.__trueskill__ = env
return env
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
return global_env().rate(rating_groups, ranks, weights, min_delta)
def quality(rating_groups, weights=None):
return global_env().quality(rating_groups, weights)
def expose(rating):
return global_env().expose(rating)

View File

@@ -0,0 +1,222 @@
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Not actively maintained, may be removed in future release
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
# setup:
__version__ = "0.0.4"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
0.0.4:
- bug fixes
- fixed changelog
0.0.3:
- bug fixes
0.0.2:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
0.0.1:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain',
'CircleFit'
]
import torch
global device
device = "cuda:0" if torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel

View File

@@ -0,0 +1,122 @@
# Titan Robotics Team 2022: ML Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import titanlearn'
# this should be included in the local directory or environment variable
# this module is optimized for multhreaded computing
# this module learns from its mistakes far faster than 2022's captains
# setup:
__version__ = "1.1.1"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.1:
- removed matplotlib import
- removed graphloss()
1.1.0:
- added net, dataset, dataloader, and stdtrain template definitions
- added graphloss function
1.0.1:
- added clear functions
1.0.0:
- complete rewrite planned
- depreciated 1.0.0.xxx versions
- added simple training loop
0.0.x:
-added generation of ANNS, basic SGD training
"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>,"
"Jacob Levine <jlevine@ttic.edu>,"
)
__all__ = [
'clear',
'net',
'dataset',
'dataloader',
'train',
'stdtrainer',
]
import torch
from os import system, name
import numpy as np
def clear():
if name == 'nt':
_ = system('cls')
else:
_ = system('clear')
class net(torch.nn.Module): #template for standard neural net
def __init__(self):
super(Net, self).__init__()
def forward(self, input):
pass
class dataset(torch.utils.data.Dataset): #template for standard dataset
def __init__(self):
super(torch.utils.data.Dataset).__init__()
def __getitem__(self, index):
pass
def __len__(self):
pass
def dataloader(dataset, batch_size, num_workers, shuffle = True):
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
def train(device, net, epochs, trainloader, optimizer, criterion): #expects standard dataloader, whch returns (inputs, labels)
dataset_len = trainloader.dataset.__len__()
iter_count = 0
running_loss = 0
running_loss_list = []
for epoch in range(epochs): # loop over the dataset multiple times
for i, data in enumerate(trainloader, 0):
inputs = data[0].to(device)
labels = data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels.to(torch.float))
loss.backward()
optimizer.step()
# monitoring steps below
iter_count += 1
running_loss += loss.item()
running_loss_list.append(running_loss)
clear()
print("training on: " + device)
print("iteration: " + str(i) + "/" + str(int(dataset_len / trainloader.batch_size)) + " | " + "epoch: " + str(epoch) + "/" + str(epochs))
print("current batch loss: " + str(loss.item))
print("running loss: " + str(running_loss / iter_count))
return net, running_loss_list
print("finished training")
def stdtrainer(net, criterion, optimizer, dataloader, epochs, batch_size):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = net.to(device)
criterion = criterion.to(device)
optimizer = optimizer.to(device)
trainloader = dataloader
return train(device, net, epochs, trainloader, optimizer, criterion)

View File

@@ -0,0 +1,58 @@
# Titan Robotics Team 2022: Visualization Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import visualization'
# this should be included in the local directory or environment variable
# fancy
# setup:
__version__ = "0.0.1"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
0.0.1:
- added graphhistogram function as a fragment of visualize_pit.py
0.0.0:
- created visualization.py
- added graphloss()
- added imports
"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>,"
"Jacob Levine <jlevine@ttic.edu>,"
)
__all__ = [
'graphloss',
]
import matplotlib.pyplot as plt
import numpy as np
def graphloss(losses):
x = range(0, len(losses))
plt.plot(x, losses)
plt.show()
def graphhistogram(data, figsize, sharey = True): # expects library with key as variable and contents as occurances
fig, ax = plt.subplots(1, len(data), sharey=sharey, figsize=figsize)
i = 0
for variable in data:
ax[i].hist(data[variable])
ax[i].invert_xaxis()
ax[i].set_xlabel('Variable')
ax[i].set_ylabel('Frequency')
ax[i].set_title(variable)
plt.yticks(np.arange(len(data[variable])))
i+=1
plt.show()

View File

@@ -1 +0,0 @@
2020ilch

View File

@@ -1,14 +0,0 @@
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
wheel-mechanism
low-balls
high-balls
wheel-success
strategic-focus
climb-mechanism
attitude

View File

@@ -1,102 +0,0 @@
import requests
import pymongo
import pandas as pd
import time
def pull_new_tba_matches(apikey, competition, cutoff):
api_key= apikey
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
out = []
for i in x.json():
if (i["actual_time"] != None and i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
return out
def get_team_match_data(apikey, competition, team_num):
client = pymongo.MongoClient(apikey)
db = client.data_scouting
mdata = db.matchdata
out = {}
for i in mdata.find({"competition" : competition, "team_scouted": team_num}):
out[i['match']] = i['data']
return pd.DataFrame(out)
def get_team_pit_data(apikey, competition, team_num):
client = pymongo.MongoClient(apikey)
db = client.data_scouting
mdata = db.pitdata
out = {}
return mdata.find_one({"competition" : competition, "team_scouted": team_num})["data"]
def get_team_metrics_data(apikey, competition, team_num):
client = pymongo.MongoClient(apikey)
db = client.data_processing
mdata = db.team_metrics
return mdata.find_one({"competition" : competition, "team": team_num})
def unkeyify_2l(layered_dict):
out = {}
for i in layered_dict.keys():
add = []
sortkey = []
for j in layered_dict[i].keys():
add.append([j,layered_dict[i][j]])
add.sort(key = lambda x: x[0])
out[i] = list(map(lambda x: x[1], add))
return out
def get_match_data_formatted(apikey, competition):
client = pymongo.MongoClient(apikey)
db = client.data_scouting
mdata = db.teamlist
x=mdata.find_one({"competition":competition})
out = {}
for i in x:
try:
out[int(i)] = unkeyify_2l(get_team_match_data(apikey, competition, int(i)).transpose().to_dict())
except:
pass
return out
def get_pit_data_formatted(apikey, competition):
client = pymongo.MongoClient(apikey)
db = client.data_scouting
mdata = db.teamlist
x=mdata.find_one({"competition":competition})
out = {}
for i in x:
try:
out[int(i)] = get_team_pit_data(apikey, competition, int(i))
except:
pass
return out
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
client = pymongo.MongoClient(apikey)
db = client[dbname]
mdata = db[colname]
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "data" : data}, True)
def push_team_metrics_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_metrics"):
client = pymongo.MongoClient(apikey)
db = client[dbname]
mdata = db[colname]
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True)
def push_team_pit_data(apikey, competition, variable, data, dbname = "data_processing", colname = "team_pit"):
client = pymongo.MongoClient(apikey)
db = client[dbname]
mdata = db[colname]
mdata.replace_one({"competition" : competition, "variable": variable}, {"competition" : competition, "variable" : variable, "data" : data}, True)
def get_analysis_flags(apikey, flag):
client = pymongo.MongoClient(apikey)
db = client.data_processing
mdata = db.flags
return mdata.find_one({flag:{"$exists":True}})
def set_analysis_flags(apikey, flag, data):
client = pymongo.MongoClient(apikey)
db = client.data_processing
mdata = db.flags
return mdata.replace_one({flag:{"$exists":True}}, data, True)

View File

@@ -1,59 +0,0 @@
import data as d
from analysis import analysis as an
import pymongo
import operator
def load_config(file):
config_vector = {}
file = an.load_csv(file)
for line in file[1:]:
config_vector[line[0]] = line[1:]
return (file[0][0], config_vector)
def get_metrics_processed_formatted(apikey, competition):
client = pymongo.MongoClient(apikey)
db = client.data_scouting
mdata = db.teamlist
x=mdata.find_one({"competition":competition})
out = {}
for i in x:
try:
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
except:
pass
return out
def main():
apikey = an.load_csv("keys.txt")[0][0]
tbakey = an.load_csv("keys.txt")[1][0]
competition, config = load_config("config.csv")
metrics = get_metrics_processed_formatted(apikey, competition)
elo = {}
gl2 = {}
for team in metrics:
elo[team] = metrics[team]["metrics"]["elo"]["score"]
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
for team in elo:
print("teams sorted by elo:")
print("" + str(team) + " | " + str(elo[team]))
print("*"*25)
for team in gl2:
print("teams sorted by glicko2:")
print("" + str(team) + " | " + str(gl2[team]))
main()

View File

@@ -1,4 +0,0 @@
requests
pymongo
pandas
dnspython

View File

@@ -1,378 +0,0 @@
# Titan Robotics Team 2022: Superscript Script
# Written by Arthur Lu & Jacob Levine
# Notes:
# setup:
__version__ = "0.0.5.002"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
0.0.5.002:
- made changes due to refactoring of analysis
0.0.5.001:
- text fixes
- removed matplotlib requirement
0.0.5.000:
- improved user interface
0.0.4.002:
- removed unessasary code
0.0.4.001:
- fixed bug where X range for regression was determined before sanitization
- better sanitized data
0.0.4.000:
- fixed spelling issue in __changelog__
- addressed nan bug in regression
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
- fixed errors in metrics computing
0.0.3.000:
- added analysis to pit data
0.0.2.001:
- minor stability patches
- implemented db syncing for timestamps
- fixed bugs
0.0.2.000:
- finalized testing and small fixes
0.0.1.004:
- finished metrics implement, trueskill is bugged
0.0.1.003:
- working
0.0.1.002:
- started implement of metrics
0.0.1.001:
- cleaned up imports
0.0.1.000:
- tested working, can push to database
0.0.0.009:
- tested working
- prints out stats for the time being, will push to database later
0.0.0.008:
- added data import
- removed tba import
- finished main method
0.0.0.007:
- added load_config
- optimized simpleloop for readibility
- added __all__ entries
- added simplestats engine
- pending testing
0.0.0.006:
- fixes
0.0.0.005:
- imported pickle
- created custom database object
0.0.0.004:
- fixed simpleloop to actually return a vector
0.0.0.003:
- added metricsloop which is unfinished
0.0.0.002:
- added simpleloop which is untested until data is provided
0.0.0.001:
- created script
- added analysis, numba, numpy imports
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@imsa.edu>",
)
__all__ = [
"main",
"load_config",
"simpleloop",
"simplestats",
"metricsloop"
]
# imports:
from analysis import analysis as an
import data as d
import numpy as np
from os import system, name
from pathlib import Path
import time
import warnings
def main():
warnings.filterwarnings("ignore")
while(True):
current_time = time.time()
print("[OK] time: " + str(current_time))
start = time.time()
config = load_config(Path("config/stats.config"))
competition = an.load_csv(Path("config/competition.config"))[0][0]
print("[OK] configs loaded")
apikey = an.load_csv(Path("config/keys.config"))[0][0]
tbakey = an.load_csv(Path("config/keys.config"))[1][0]
print("[OK] loaded keys")
previous_time = d.get_analysis_flags(apikey, "latest_update")
if(previous_time == None):
d.set_analysis_flags(apikey, "latest_update", 0)
previous_time = 0
else:
previous_time = previous_time["latest_update"]
print("[OK] analysis backtimed to: " + str(previous_time))
print("[OK] loading data")
start = time.time()
data = d.get_match_data_formatted(apikey, competition)
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
print("[OK] running tests")
start = time.time()
results = simpleloop(data, config)
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
print("[OK] running metrics")
start = time.time()
metricsloop(tbakey, apikey, competition, previous_time)
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
print("[OK] running pit analysis")
start = time.time()
pit = pitloop(pit_data, config)
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
print("[OK] pushing to database")
start = time.time()
push_to_database(apikey, competition, results, pit)
print("[OK] pushed to database in " + str(time.time() - start) + " seconds")
clear()
def clear():
# for windows
if name == 'nt':
_ = system('cls')
# for mac and linux(here, os.name is 'posix')
else:
_ = system('clear')
def load_config(file):
config_vector = {}
file = an.load_csv(file)
for line in file:
config_vector[line[0]] = line[1:]
return config_vector
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
return_vector = {}
for team in data:
variable_vector = {}
for variable in data[team]:
test_vector = {}
variable_data = data[team][variable]
if(variable in tests):
for test in tests[variable]:
test_vector[test] = simplestats(variable_data, test)
else:
pass
variable_vector[variable] = test_vector
return_vector[team] = variable_vector
return return_vector
def simplestats(data, test):
data = np.array(data)
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
if(test == "basic_stats"):
return an.basic_stats(data)
if(test == "historical_analysis"):
return an.histo_analysis([ranges, data])
if(test == "regression_linear"):
return an.regression(ranges, data, ['lin'])
if(test == "regression_logarithmic"):
return an.regression(ranges, data, ['log'])
if(test == "regression_exponential"):
return an.regression(ranges, data, ['exp'])
if(test == "regression_polynomial"):
return an.regression(ranges, data, ['ply'])
if(test == "regression_sigmoidal"):
return an.regression(ranges, data, ['sig'])
def push_to_database(apikey, competition, results, pit):
for team in results:
d.push_team_tests_data(apikey, competition, team, results[team])
for variable in pit:
d.push_team_pit_data(apikey, competition, variable, pit[variable])
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
elo_N = 400
elo_K = 24
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
red = {}
blu = {}
for match in matches:
red = load_metrics(apikey, competition, match, "red")
blu = load_metrics(apikey, competition, match, "blue")
elo_red_total = 0
elo_blu_total = 0
gl2_red_score_total = 0
gl2_blu_score_total = 0
gl2_red_rd_total = 0
gl2_blu_rd_total = 0
gl2_red_vol_total = 0
gl2_blu_vol_total = 0
for team in red:
elo_red_total += red[team]["elo"]["score"]
gl2_red_score_total += red[team]["gl2"]["score"]
gl2_red_rd_total += red[team]["gl2"]["rd"]
gl2_red_vol_total += red[team]["gl2"]["vol"]
for team in blu:
elo_blu_total += blu[team]["elo"]["score"]
gl2_blu_score_total += blu[team]["gl2"]["score"]
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
red_elo = {"score": elo_red_total / len(red)}
blu_elo = {"score": elo_blu_total / len(blu)}
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
if(match["winner"] == "red"):
observations = {"red": 1, "blu": 0}
elif(match["winner"] == "blue"):
observations = {"red": 0, "blu": 1}
else:
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.Metrics.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metrics.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metrics.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metrics.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
for team in red:
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
for team in blu:
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
for team in temp_vector:
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
def load_metrics(apikey, competition, match, group_name):
group = {}
for team in match[group_name]:
db_data = d.get_team_metrics_data(apikey, competition, team)
if d.get_team_metrics_data(apikey, competition, team) == None:
elo = {"score": 1500}
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
ts = {"mu": 25, "sigma": 25/3}
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
else:
metrics = db_data["metrics"]
elo = metrics["elo"]
gl2 = metrics["gl2"]
ts = metrics["ts"]
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
return group
def pitloop(pit, tests):
return_vector = {}
for team in pit:
for variable in pit[team]:
if(variable in tests):
if(not variable in return_vector):
return_vector[variable] = []
return_vector[variable].append(pit[team][variable])
return return_vector
main()
"""
Metrics Defaults:
elo starting score = 1500
elo N = 400
elo K = 24
gl2 starting score = 1500
gl2 starting rd = 350
gl2 starting vol = 0.06
"""

Some files were not shown because too many files have changed in this diff Show More