mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
9f71ab3aad
* reflected doc changes to README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* tra_analysis v 2.1.0-alpha.1
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* changed setup.py to use __version__ from source
added Topic and keywords
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* updated Supported Platforms in README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved required files back to parent
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved security back to parent
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved security back to parent
moved contributing back to parent
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* add PR template
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved to parent folder
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved meta files to .github folder
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* Analysis.py v 3.0.1
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* updated test_analysis for submodules, and added missing numpy import in Sort.py
* fixed item one of Issue #58
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* readded cache searching in postCreateCommand
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* added myself as an author
* feat: created kivy gui boilerplate
* added Kivy to requirements.txt
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* feat: gui with placeholders
* fix: changed config.json path
* migrated docker base image to debian
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* style: spaces to tabs
* migrated to ubuntu
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fixed issues
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fix: docker build?
* fix: use ubuntu bionic
* fix: get kivy installed
* @ltcptgeneral can't spell
* optim dockerfile for not installing unused packages
* install basic stuff while building the container
* use prebuilt image for development
* install pylint on base image
* rename and use new kivy
* tests: added tests for Array and CorrelationTest
Both are not working due to errors
* use new thing
* use 20.04 base
* symlink pip3 to pip
* use pip instead of pip3
* equation.Expression.py v 0.0.1-alpha
added corresponding .pyc to .gitignore
* parser.py v 0.0.2-alpha
* added pyparsing to requirements.txt
* parser v 0.0.4-alpha
* Equation v 0.0.1-alpha
* added Equation to tra_analysis imports
* tests: New unit tests for submoduling (#66)
* feat: created kivy gui boilerplate
* migrated docker base image to debian
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* migrated to ubuntu
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fixed issues
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fix: docker build?
* fix: use ubuntu bionic
* fix: get kivy installed
* @ltcptgeneral can't spell
* optim dockerfile for not installing unused packages
* install basic stuff while building the container
* use prebuilt image for development
* install pylint on base image
* rename and use new kivy
* tests: added tests for Array and CorrelationTest
Both are not working due to errors
* fix: Array no longer has *args and CorrelationTest functions no longer have self in the arguments
* use new thing
* use 20.04 base
* symlink pip3 to pip
* use pip instead of pip3
* tra_analysis v 2.1.0-alpha.2
SVM v 1.0.1
added unvalidated SVM unit tests
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fixed version number
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* tests: added tests for ClassificationMetric
* partially fixed and commented out svm unit tests
* fixed some SVM unit tests
* added installing pytest to devcontainer.json
* fix: small fixes to KNN
Namely, removing self from parameters and passing correct arguments to KNeighborsClassifier constructor
* fix, test: Added tests for KNN and NaiveBayes.
Also made some small fixes in KNN, NaiveBayes, and RegressionMetric
* test: finished unit tests except for StatisticalTest
Also made various small fixes and style changes
* StatisticalTest v 1.0.1
* fixed RegressionMetric unit test
temporarily disabled CorrelationTest unit tests
* tra_analysis v 2.1.0-alpha.3
* readded __all__
* fix: floating point issues in unit tests for CorrelationTest
Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: ltcptgeneral <learthurgo@gmail.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: jzpan1 <panzhenyu2014@gmail.com>
* fixed depreciated escape sequences
* ficed tests, indent, import in test_analysis
* changed version to 3.0.0
added backwards compatibility
* ficed pytest install in container
* removed GUI changes
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* incremented version to rc.1 (release candidate 1)
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* fixed NaiveBayes __changelog__
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* fix: __setitem__ == to single =
* Array v 1.0.1
* Revert "Array v 1.0.1"
This reverts commit 59783b79f7
.
* Array v 1.0.1
* Array.py v 1.0.2
added more Array unit tests
* cleaned .gitignore
tra_analysis v 3.0.0-rc2
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* added *.pyc to gitignore
finished subdividing test_analysis
* feat: gui layout + basic func
* Froze and removed superscript (data-analysis)
* remove data-analysis deps install for devcontainer
* tukey pairwise comparison and multicomparison but no critical q-values
* quick patch for devcontainer.json
* better fix for devcontainer.json
* fixed some styling in StatisticalTest
removed print statement in StatisticalTest unit tests
* update analysis tests to be more effecient
* don't use loop for test_nativebayes
* removed useless secondary docker files
* tra-analysis v 3.0.0
Co-authored-by: James Pan <panzhenyu2014@gmail.com>
Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: zpan1 <72054510+zpan1@users.noreply.github.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: = <=>
Co-authored-by: Dev Singh <dsingh@imsa.edu>
Co-authored-by: zpan1 <zpan@imsa.edu>
25 lines
2.5 KiB
Python
25 lines
2.5 KiB
Python
# Only included for backwards compatibility! Do not update, RandomForest is preferred and supported.
|
|
|
|
import sklearn
|
|
from sklearn import ensemble, model_selection
|
|
from . import ClassificationMetric, RegressionMetric
|
|
|
|
class RandomForest:
|
|
|
|
def random_forest_classifier(self, data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
|
kernel.fit(data_train, labels_train)
|
|
predictions = kernel.predict(data_test)
|
|
|
|
return kernel, ClassificationMetric(predictions, labels_test)
|
|
|
|
def random_forest_regressor(self, data, outputs, test_size, n_estimators, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
|
|
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
|
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
|
kernel.fit(data_train, outputs_train)
|
|
predictions = kernel.predict(data_test)
|
|
|
|
return kernel, RegressionMetric(predictions, outputs_test) |