mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
analysis.py v 1.2.0.003
This commit is contained in:
parent
8d703b10b3
commit
4545f5721a
Binary file not shown.
@ -7,10 +7,14 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.2.0.002"
|
||||
__version__ = "1.2.0.003"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.2.0.003:
|
||||
- bug fixes with CorrelationTests and StatisticalTests
|
||||
- moved glicko2 and trueskill to the metrics subpackage
|
||||
- moved elo to a new metrics subpackage
|
||||
1.2.0.002:
|
||||
- fixed docs
|
||||
1.2.0.001:
|
||||
@ -295,7 +299,8 @@ __all__ = [
|
||||
# imports (now in alphabetical order! v 1.0.3.006):
|
||||
|
||||
import csv
|
||||
from analysis import glicko2 as Glicko2
|
||||
from analysis.metrics import elo as Elo
|
||||
from analysis.metrics import glicko2 as Glicko2
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
@ -303,7 +308,7 @@ import scipy
|
||||
from scipy import optimize, stats
|
||||
import sklearn
|
||||
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
|
||||
from analysis import trueskill as Trueskill
|
||||
from analysis.metrics import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
@ -464,9 +469,7 @@ class Metrics:
|
||||
|
||||
def elo(starting_score, opposing_score, observed, N, K):
|
||||
|
||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||
|
||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
||||
|
||||
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
@ -830,7 +833,7 @@ class StatisticalTests:
|
||||
results = scipy.stats.friedmanchisquare(*args)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bm-wtest(x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
||||
def bm_wtest(x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
@ -857,7 +860,7 @@ class StatisticalTests:
|
||||
|
||||
def levene_variance(*args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.levene(*args center = center, proportiontocut = proportiontocut)
|
||||
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def sw_normality(x):
|
||||
@ -871,7 +874,7 @@ class StatisticalTests:
|
||||
|
||||
def ad_onesample(x, dist = 'norm'):
|
||||
|
||||
results = scipy.stats.anderson(x, dist = dist):
|
||||
results = scipy.stats.anderson(x, dist = dist)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def ad_ksample(samples, midrank = True):
|
||||
@ -886,12 +889,12 @@ class StatisticalTests:
|
||||
|
||||
def fk_variance(*args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.fligner(*args center = center, proportiontocut = proportiontocut)
|
||||
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
|
||||
|
||||
def mood_mediantest(*args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)*
|
||||
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
|
||||
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
|
||||
|
||||
def mood_equalscale(x, y, axis = 0):
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
7
analysis-master/analysis-amd64/analysis/metrics/elo.py
Normal file
7
analysis-master/analysis-amd64/analysis/metrics/elo.py
Normal file
@ -0,0 +1,7 @@
|
||||
import numpy as np
|
||||
|
||||
def calculate(starting_score, opposing_score, observed, N, K):
|
||||
|
||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||
|
||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
Loading…
Reference in New Issue
Block a user