49 Commits

Author SHA1 Message Date
ltcptgeneral
7a58cd08e2 analysis pkg v 1.0.0.11
analysis.py v 1.1.13.009
superscript.py v 0.0.5.002
2020-04-12 02:51:40 +00:00
ltcptgeneral
337fae68ee analysis pkg v 1.0.0.10
analysis.py v 1.1.13.008
superscript.py v 0.0.5.001
2020-04-09 22:16:26 -05:00
art
5e71d05626 removed app from dep 2020-04-05 21:42:12 +00:00
art
01df42aa49 added gitgraph to vscode container 2020-04-05 21:36:12 +00:00
ltcptgeneral
33eea153c1 Merge pull request #8 from titanscout2022/containerization-testing
Containerization testing
2020-04-05 16:32:40 -05:00
art
114eee5d57 finalized changes to docker implements 2020-04-05 21:29:16 +00:00
ltcptgeneral
06f008746a Merge pull request #7 from titanscout2022/master
merge
2020-04-05 14:57:56 -05:00
art
4f9c4e0dbb verified and tested docker files 2020-04-05 19:53:01 +00:00
art
5697e8b79e created dockerfiles 2020-04-05 19:04:07 +00:00
ltcptgeneral
e054e66743 started on dockerfile 2020-04-05 12:46:21 -05:00
ltcptgeneral
c914bd3754 removed unessasary comment 2020-04-04 11:59:19 -05:00
ltcptgeneral
6c08885a53 created two new analysis variants
the existing amd64
new unpopulated arm64
2020-04-04 00:09:40 -05:00
ltcptgeneral
375befd0c4 analysis pkg v 1.0.0.9 2020-03-17 20:03:49 -05:00
ltcptgeneral
893d1fb1d0 analysis.py v 1.1.13.007 2020-03-16 22:05:52 -05:00
ltcptgeneral
6a426ae4cd a 2020-03-10 00:45:42 -05:00
ltcptgeneral
50c064ffa4 worked 2020-03-09 22:58:51 -05:00
ltcptgeneral
1b0a9967c8 test1 2020-03-09 22:58:11 -05:00
ltcptgeneral
2605f7c29f Merge pull request #6 from titanscout2022/testing
Testing
2020-03-09 20:42:30 -05:00
ltcptgeneral
6f5a3edd88 superscript.py v 0.0.5.000 2020-03-09 20:35:11 -05:00
ltcptgeneral
457146b0e4 working 2020-03-09 20:29:44 -05:00
ltcptgeneral
f7fd8ffcf9 working 2020-03-09 20:18:30 -05:00
art
77bc792426 removed unessasary stuff 2020-03-09 10:29:59 -05:00
ltcptgeneral
39146cc555 Merge pull request #5 from titanscout2022/comp-edits
Comp edits
2020-03-09 10:28:48 -05:00
ltcptgeneral
04141bbec8 analysis.py v 1.1.13.006
regression.py v 1.0.0.003
analysis pkg v 1.0.0.8
2020-03-08 16:48:19 -05:00
ltcptgeneral
40e5899972 added get_team_rakings.py 2020-03-08 14:26:21 -05:00
ltcptgeneral
025c7f9b3c a 2020-03-06 21:39:46 -06:00
Dev Singh
2daa09c040 hi 2020-03-06 21:21:37 -06:00
ltcptgeneral
9776136649 superscript.py v 0.0.4.002 2020-03-06 21:09:16 -06:00
Dev Singh
68d27a6302 add reqs 2020-03-06 20:44:40 -06:00
Dev Singh
7fc18b7c35 add Procfile 2020-03-06 20:41:53 -06:00
ltcptgeneral
9b412b51a8 analysis pkg v 1.0.0.7 2020-03-06 20:32:41 -06:00
ltcptgeneral
b6ac05a66e Merge pull request #4 from titanscout2022/comp-edits
Comp edits merge
2020-03-06 20:29:50 -06:00
Dev Singh
435c8a7bc6 tiny brain fix 2020-03-06 14:52:41 -06:00
Dev Singh
a69b18354b ultimate carl the fat kid brain working 2020-03-06 14:50:54 -06:00
Dev Singh
7b9e6921d0 ultra galaxybrain working 2020-03-06 14:44:13 -06:00
Dev Singh
fb2800cf9e fix 2020-03-06 13:12:01 -06:00
Dev Singh
12cbb21077 super ultra working 2020-03-06 12:43:01 -06:00
Dev Singh
46d1a48999 even more working 2020-03-06 12:21:17 -06:00
Dev Singh
ad0a761d53 more working 2020-03-06 12:18:42 -06:00
Dev Singh
43f503a38d working 2020-03-06 12:15:35 -06:00
Dev Singh
d38744438b working 2020-03-06 11:50:07 -06:00
Dev Singh
eb8914aa26 maybe working 2020-03-06 11:27:32 -06:00
Dev Singh
283140094f a 2020-03-06 11:18:02 -06:00
Dev Singh
66ac1c304e testing part 2 better electric boogaloo 2020-03-06 11:16:24 -06:00
Dev Singh
0eb9e07711 testing 2020-03-06 11:14:10 -06:00
Dev Singh
f56c85b298 10:57 2020-03-06 10:57:39 -06:00
Dev Singh
6a9a17c5b4 10:43 2020-03-06 10:43:45 -06:00
Dev Singh
e24c49bedb 10:25 2020-03-06 10:25:20 -06:00
Dev Singh
2daed73aaa 10:21 unverified 2020-03-06 10:21:23 -06:00
64 changed files with 624 additions and 918 deletions

2
.devcontainer/Dockerfile Normal file
View File

@@ -0,0 +1,2 @@
FROM python
WORKDIR ~/

View File

@@ -0,0 +1,26 @@
{
"name": "TRA Analysis Development Environment",
"build": {
"dockerfile": "Dockerfile",
},
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"python.pythonPath": "/usr/local/bin/python",
"python.linting.enabled": true,
"python.linting.pylintEnabled": true,
"python.formatting.autopep8Path": "/usr/local/py-utils/bin/autopep8",
"python.formatting.blackPath": "/usr/local/py-utils/bin/black",
"python.formatting.yapfPath": "/usr/local/py-utils/bin/yapf",
"python.linting.banditPath": "/usr/local/py-utils/bin/bandit",
"python.linting.flake8Path": "/usr/local/py-utils/bin/flake8",
"python.linting.mypyPath": "/usr/local/py-utils/bin/mypy",
"python.linting.pycodestylePath": "/usr/local/py-utils/bin/pycodestyle",
"python.linting.pydocstylePath": "/usr/local/py-utils/bin/pydocstyle",
"python.linting.pylintPath": "/usr/local/py-utils/bin/pylint",
"python.testing.pytestPath": "/usr/local/py-utils/bin/pytest"
},
"extensions": [
"mhutchie.git-graph",
],
"postCreateCommand": "pip install -r analysis-master/analysis-amd64/requirements.txt"
}

5
.gitignore vendored
View File

@@ -18,4 +18,7 @@ data analysis/arthur_pull.ipynb
data analysis/keys.txt
data analysis/check_for_new_matches.ipynb
data analysis/test.ipynb
data analysis/visualize_pit.ipynb
data analysis/visualize_pit.ipynb
data analysis/config/keys.config
analysis-master/analysis/__pycache__/
data analysis/__pycache__/

View File

@@ -1,6 +1,6 @@
Metadata-Version: 2.1
Name: analysis
Version: 1.0.0.6
Version: 1.0.0.11
Summary: analysis package developed by Titan Scouting for The Red Alliance
Home-page: https://github.com/titanscout2022/tr2022-strategy
Author: The Titan Scouting Team

View File

@@ -1,6 +1,7 @@
setup.py
analysis/__init__.py
analysis/analysis.py
analysis/glicko2.py
analysis/regression.py
analysis/titanlearn.py
analysis/trueskill.py
@@ -8,4 +9,5 @@ analysis/visualization.py
analysis.egg-info/PKG-INFO
analysis.egg-info/SOURCES.txt
analysis.egg-info/dependency_links.txt
analysis.egg-info/requires.txt
analysis.egg-info/top_level.txt

View File

@@ -0,0 +1,6 @@
numba
numpy
scipy
scikit-learn
six
matplotlib

View File

@@ -7,10 +7,26 @@
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.13.001"
__version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
- fixed bug with trueskill
1.1.13.006:
- cleaned up imports
1.1.13.005:
- cleaned up package
1.1.13.004:
- small fixes to regression to improve performance
1.1.13.003:
- filtered nans from regression
1.1.13.002:
- removed torch requirement, and moved Regression back to regression.py
1.1.13.001:
- bug fix with linear regression not returning a proper value
- cleaned up regression
@@ -239,7 +255,6 @@ __author__ = (
)
__all__ = [
'_init_device',
'load_csv',
'basic_stats',
'z_score',
@@ -260,8 +275,6 @@ __all__ = [
'SVM',
'random_forest_classifier',
'random_forest_regressor',
'Regression',
'Glicko2',
# all statistics functions left out due to integration in other functions
]
@@ -270,27 +283,19 @@ __all__ = [
# imports (now in alphabetical order! v 1.0.3.006):
import csv
from analysis import glicko2 as Glicko2
import numba
from numba import jit
import numpy as np
import math
import scipy
from scipy import *
import sklearn
from sklearn import *
import torch
try:
from analysis import trueskill as Trueskill
except:
import trueskill as Trueskill
from analysis import trueskill as Trueskill
class error(ValueError):
pass
def _init_device(): # initiates computation device for ANNs
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
return device
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
@@ -349,15 +354,15 @@ def histo_analysis(hist_data):
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
X = np.array(inputs)
y = np.array(outputs)
regressions = []
if 'lin' in args: # formula: ax + b
try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b):
return a * x + b
@@ -374,9 +379,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b, c, d):
return a * np.log(b*(x + c)) + d
@@ -391,10 +393,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
try:
X = np.array(inputs)
y = np.array(outputs)
try:
def func(x, a, b, c, d):
@@ -410,8 +409,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = [inputs]
outputs = [outputs]
inputs = np.array([inputs])
outputs = np.array([outputs])
plys = []
limit = len(outputs[0])
@@ -433,10 +432,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'sig' in args: # formula: a tanh (b(x + c)) + d
try:
X = np.array(inputs)
y = np.array(outputs)
try:
def func(x, a, b, c, d):
@@ -452,32 +448,34 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
return regressions
def elo(starting_score, opposing_score, observed, N, K):
class Metrics:
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
def elo(starting_score, opposing_score, observed, N, K):
return starting_score + K*(np.sum(observed) - np.sum(expected))
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
return starting_score + K*(np.sum(observed) - np.sum(expected))
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
return (player.rating, player.rd, player.vol)
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
return (player.rating, player.rd, player.vol)
team_ratings = []
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
for team in teams_data:
team_temp = []
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp.append(player)
team_ratings.append(team_temp)
team_ratings = []
return Trueskill.rate(teams_data, observations)
for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
class RegressionMetrics():
@@ -569,24 +567,25 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
return model, metrics
@jit(forceobj=True)
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
class KNN:
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
return model, ClassificationMetrics(predictions, labels_test)
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
return model, ClassificationMetrics(predictions, labels_test)
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
return model, RegressionMetrics(predictions, outputs_test)
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test)
class NaiveBayes:
@@ -698,322 +697,4 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test)
return kernel, RegressionMetrics(predictions, outputs_test)
class Regression:
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.003"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()
return kernel, RegressionMetrics(predictions, outputs_test)

View File

@@ -0,0 +1,99 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -1,20 +1,23 @@
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import regression'
# this should be included in the local directory or environment variable
# this module is cuda-optimized and vectorized (except for one small part)
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.002"
__version__ = "1.0.0.004"
# changelog should be viewed using print(regression.__changelog__)
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.004:
- bug fixes
- fixed changelog
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
@@ -22,6 +25,7 @@ __changelog__ = """
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
@@ -39,35 +43,15 @@ __all__ = [
'CustomTrain'
]
# imports (just one for now):
import torch
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def factorial(n):
if n==0:
return 1
else:
return n*factorial(n-1)
def num_poly_terms(num_vars, power):
if power == 0:
return 0
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
def take_all_pwrs(vec,pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0])
for i in torch.t(combins):
out *= i
return torch.cat(out,take_all_pwrs(vec, pwr-1))
def set_device(new_device):
global device
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
@@ -154,20 +138,39 @@ class PolyRegKernel():
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=num_poly_terms(num_vars, power)
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(take_all_pwrs(i,self.power))
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
@@ -192,7 +195,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
optim.step()
return kernel
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
@@ -214,4 +217,4 @@ def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
return kernel

View File

@@ -0,0 +1 @@
python setup.py sdist bdist_wheel || python3 setup.py sdist bdist_wheel

View File

@@ -7,10 +7,26 @@
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.13.001"
__version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
- fixed bug with trueskill
1.1.13.006:
- cleaned up imports
1.1.13.005:
- cleaned up package
1.1.13.004:
- small fixes to regression to improve performance
1.1.13.003:
- filtered nans from regression
1.1.13.002:
- removed torch requirement, and moved Regression back to regression.py
1.1.13.001:
- bug fix with linear regression not returning a proper value
- cleaned up regression
@@ -239,7 +255,6 @@ __author__ = (
)
__all__ = [
'_init_device',
'load_csv',
'basic_stats',
'z_score',
@@ -260,8 +275,6 @@ __all__ = [
'SVM',
'random_forest_classifier',
'random_forest_regressor',
'Regression',
'Glicko2',
# all statistics functions left out due to integration in other functions
]
@@ -270,27 +283,19 @@ __all__ = [
# imports (now in alphabetical order! v 1.0.3.006):
import csv
from analysis import glicko2 as Glicko2
import numba
from numba import jit
import numpy as np
import math
import scipy
from scipy import *
import sklearn
from sklearn import *
import torch
try:
from analysis import trueskill as Trueskill
except:
import trueskill as Trueskill
from analysis import trueskill as Trueskill
class error(ValueError):
pass
def _init_device(): # initiates computation device for ANNs
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
return device
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
@@ -349,15 +354,15 @@ def histo_analysis(hist_data):
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
X = np.array(inputs)
y = np.array(outputs)
regressions = []
if 'lin' in args: # formula: ax + b
try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b):
return a * x + b
@@ -374,9 +379,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b, c, d):
return a * np.log(b*(x + c)) + d
@@ -391,10 +393,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
try:
X = np.array(inputs)
y = np.array(outputs)
try:
def func(x, a, b, c, d):
@@ -410,8 +409,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = [inputs]
outputs = [outputs]
inputs = np.array([inputs])
outputs = np.array([outputs])
plys = []
limit = len(outputs[0])
@@ -433,10 +432,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'sig' in args: # formula: a tanh (b(x + c)) + d
try:
X = np.array(inputs)
y = np.array(outputs)
try:
def func(x, a, b, c, d):
@@ -452,32 +448,34 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
return regressions
def elo(starting_score, opposing_score, observed, N, K):
class Metrics:
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
def elo(starting_score, opposing_score, observed, N, K):
return starting_score + K*(np.sum(observed) - np.sum(expected))
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
return starting_score + K*(np.sum(observed) - np.sum(expected))
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
return (player.rating, player.rd, player.vol)
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
return (player.rating, player.rd, player.vol)
team_ratings = []
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
for team in teams_data:
team_temp = []
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp.append(player)
team_ratings.append(team_temp)
team_ratings = []
return Trueskill.rate(teams_data, observations)
for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
class RegressionMetrics():
@@ -569,24 +567,25 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
return model, metrics
@jit(forceobj=True)
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
class KNN:
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
return model, ClassificationMetrics(predictions, labels_test)
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
return model, ClassificationMetrics(predictions, labels_test)
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
return model, RegressionMetrics(predictions, outputs_test)
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test)
class NaiveBayes:
@@ -698,322 +697,4 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test)
return kernel, RegressionMetrics(predictions, outputs_test)
class Regression:
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.003"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()
return kernel, RegressionMetrics(predictions, outputs_test)

View File

@@ -0,0 +1,99 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -1,20 +1,23 @@
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import regression'
# this should be included in the local directory or environment variable
# this module is cuda-optimized and vectorized (except for one small part)
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.002"
__version__ = "1.0.0.004"
# changelog should be viewed using print(regression.__changelog__)
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.004:
- bug fixes
- fixed changelog
1.0.0.003:
- bug fixes
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
@@ -22,6 +25,7 @@ __changelog__ = """
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
@@ -39,35 +43,15 @@ __all__ = [
'CustomTrain'
]
# imports (just one for now):
import torch
global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def factorial(n):
if n==0:
return 1
else:
return n*factorial(n-1)
def num_poly_terms(num_vars, power):
if power == 0:
return 0
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
def take_all_pwrs(vec,pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0])
for i in torch.t(combins):
out *= i
return torch.cat(out,take_all_pwrs(vec, pwr-1))
def set_device(new_device):
global device
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
@@ -154,20 +138,39 @@ class PolyRegKernel():
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=num_poly_terms(num_vars, power)
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(take_all_pwrs(i,self.power))
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
@@ -192,7 +195,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
optim.step()
return kernel
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
@@ -214,4 +217,4 @@ def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
return kernel

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,5 @@
FROM python
WORKDIR ~/
COPY ./ ./
RUN pip install -r requirements.txt
CMD ["bash"]

View File

@@ -0,0 +1,3 @@
cd ..
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
docker run -it tra-analysis-amd64-dev

View File

@@ -0,0 +1,6 @@
numba
numpy
scipy
scikit-learn
six
matplotlib

View File

@@ -1,8 +1,14 @@
import setuptools
requirements = []
with open("requirements.txt", 'r') as file:
for line in file:
requirements.append(line)
setuptools.setup(
name="analysis", # Replace with your own username
version="1.0.0.006",
name="analysis",
version="1.0.0.011",
author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com",
description="analysis package developed by Titan Scouting for The Red Alliance",
@@ -10,6 +16,7 @@ setuptools.setup(
long_description_content_type="text/markdown",
url="https://github.com/titanscout2022/tr2022-strategy",
packages=setuptools.find_packages(),
install_requires=requirements,
license = "GNU General Public License v3.0",
classifiers=[
"Programming Language :: Python :: 3",

View File

@@ -0,0 +1,3 @@
cd ..
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
docker run -it tra-analysis-amd64-dev

View File

@@ -1 +0,0 @@
python3 setup.py sdist bdist_wheel

Binary file not shown.

View File

@@ -1,13 +0,0 @@
2020ilch
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
wheel-mechanism
low-balls
high-balls
wheel-success
strategic-focus
climb-mechanism
attitude
1 2020ilch
2 balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
3 balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
4 balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
5 balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
6 balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
7 wheel-mechanism
8 low-balls
9 high-balls
10 wheel-success
11 strategic-focus
12 climb-mechanism
13 attitude

View File

@@ -0,0 +1 @@
2020ilch

View File

@@ -0,0 +1,14 @@
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
wheel-mechanism
low-balls
high-balls
wheel-success
strategic-focus
climb-mechanism
attitude

View File

@@ -0,0 +1,59 @@
import data as d
from analysis import analysis as an
import pymongo
import operator
def load_config(file):
config_vector = {}
file = an.load_csv(file)
for line in file[1:]:
config_vector[line[0]] = line[1:]
return (file[0][0], config_vector)
def get_metrics_processed_formatted(apikey, competition):
client = pymongo.MongoClient(apikey)
db = client.data_scouting
mdata = db.teamlist
x=mdata.find_one({"competition":competition})
out = {}
for i in x:
try:
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
except:
pass
return out
def main():
apikey = an.load_csv("keys.txt")[0][0]
tbakey = an.load_csv("keys.txt")[1][0]
competition, config = load_config("config.csv")
metrics = get_metrics_processed_formatted(apikey, competition)
elo = {}
gl2 = {}
for team in metrics:
elo[team] = metrics[team]["metrics"]["elo"]["score"]
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
for team in elo:
print("teams sorted by elo:")
print("" + str(team) + " | " + str(elo[team]))
print("*"*25)
for team in gl2:
print("teams sorted by glicko2:")
print("" + str(team) + " | " + str(gl2[team]))
main()

View File

@@ -0,0 +1,4 @@
requests
pymongo
pandas
dnspython

View File

@@ -3,11 +3,28 @@
# Notes:
# setup:
__version__ = "0.0.3.000"
__version__ = "0.0.5.002"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
0.0.3.00:
0.0.5.002:
- made changes due to refactoring of analysis
0.0.5.001:
- text fixes
- removed matplotlib requirement
0.0.5.000:
- improved user interface
0.0.4.002:
- removed unessasary code
0.0.4.001:
- fixed bug where X range for regression was determined before sanitization
- better sanitized data
0.0.4.000:
- fixed spelling issue in __changelog__
- addressed nan bug in regression
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
- fixed errors in metrics computing
0.0.3.000:
- added analysis to pit data
0.0.2.001:
- minor stability patches
@@ -71,7 +88,9 @@ __all__ = [
from analysis import analysis as an
import data as d
import matplotlib.pyplot as plt
import numpy as np
from os import system, name
from pathlib import Path
import time
import warnings
@@ -80,16 +99,16 @@ def main():
while(True):
current_time = time.time()
print("time: " + str(current_time))
print("[OK] time: " + str(current_time))
print(" loading config")
competition, config = load_config("config.csv")
print(" config loaded")
start = time.time()
config = load_config(Path("config/stats.config"))
competition = an.load_csv(Path("config/competition.config"))[0][0]
print("[OK] configs loaded")
print(" loading database keys")
apikey = an.load_csv("keys.txt")[0][0]
tbakey = an.load_csv("keys.txt")[1][0]
print(" loaded keys")
apikey = an.load_csv(Path("config/keys.config"))[0][0]
tbakey = an.load_csv(Path("config/keys.config"))[1][0]
print("[OK] loaded keys")
previous_time = d.get_analysis_flags(apikey, "latest_update")
@@ -102,38 +121,55 @@ def main():
previous_time = previous_time["latest_update"]
print(" analysis backtimed to: " + str(previous_time))
print("[OK] analysis backtimed to: " + str(previous_time))
print(" loading data")
print("[OK] loading data")
start = time.time()
data = d.get_match_data_formatted(apikey, competition)
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
print(" loaded data")
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
print(" running tests")
print("[OK] running tests")
start = time.time()
results = simpleloop(data, config)
print(" finished tests")
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
print(" running metrics")
metrics = metricsloop(tbakey, apikey, competition, previous_time)
print(" finished metrics")
print("[OK] running metrics")
start = time.time()
metricsloop(tbakey, apikey, competition, previous_time)
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
print(" running pit analysis")
print("[OK] running pit analysis")
start = time.time()
pit = pitloop(pit_data, config)
print(" finished pit analysis")
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
print(" pushing to database")
push_to_database(apikey, competition, results, metrics, pit)
print(" pushed to database")
print("[OK] pushing to database")
start = time.time()
push_to_database(apikey, competition, results, pit)
print("[OK] pushed to database in " + str(time.time() - start) + " seconds")
clear()
def clear():
# for windows
if name == 'nt':
_ = system('cls')
# for mac and linux(here, os.name is 'posix')
else:
_ = system('clear')
def load_config(file):
config_vector = {}
file = an.load_csv(file)
for line in file[1:]:
for line in file:
config_vector[line[0]] = line[1:]
return (file[0][0], config_vector)
return config_vector
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
@@ -155,37 +191,37 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
def simplestats(data, test):
data = np.array(data)
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
if(test == "basic_stats"):
return an.basic_stats(data)
if(test == "historical_analysis"):
return an.histo_analysis([list(range(len(data))), data])
return an.histo_analysis([ranges, data])
if(test == "regression_linear"):
return an.regression(list(range(len(data))), data, ['lin'])
return an.regression(ranges, data, ['lin'])
if(test == "regression_logarithmic"):
return an.regression(list(range(len(data))), data, ['log'])
return an.regression(ranges, data, ['log'])
if(test == "regression_exponential"):
return an.regression(list(range(len(data))), data, ['exp'])
return an.regression(ranges, data, ['exp'])
if(test == "regression_polynomial"):
return an.regression(list(range(len(data))), data, ['ply'])
return an.regression(ranges, data, ['ply'])
if(test == "regression_sigmoidal"):
return an.regression(list(range(len(data))), data, ['sig'])
return an.regression(ranges, data, ['sig'])
def push_to_database(apikey, competition, results, metrics, pit):
def push_to_database(apikey, competition, results, pit):
for team in results:
d.push_team_tests_data(apikey, competition, team, results[team])
for team in metrics:
d.push_team_metrics_data(apikey, competition, team, metrics[team])
for variable in pit:
d.push_team_pit_data(apikey, competition, variable, pit[variable])
@@ -197,8 +233,6 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
return_vector = {}
red = {}
blu = {}
@@ -206,7 +240,7 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
red = load_metrics(apikey, competition, match, "red")
blu = load_metrics(apikey, competition, match, "blue")
elo_red_total = 0
elo_blu_total = 0
@@ -254,11 +288,11 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
red_elo_delta = an.Metrics.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metrics.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metrics.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metrics.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
@@ -279,36 +313,13 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
""" not functional for now
red_trueskill = []
blu_trueskill = []
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
red_ts_team_lookup = []
blu_ts_team_lookup = []
for team in temp_vector:
for team in red:
red_trueskill.append((red[team]["ts"]["mu"], red[team]["ts"]["sigma"]))
red_ts_team_lookup.append(team)
for team in blu:
blu_trueskill.append((blu[team]["ts"]["mu"], blu[team]["ts"]["sigma"]))
blu_ts_team_lookup.append(team)
print(red_trueskill)
print(blu_trueskill)
results = an.trueskill([red_trueskill, blu_trueskill], [observations["red"], observations["blu"]])
print(results)
"""
return_vector.update(red)
return_vector.update(blu)
return return_vector
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
def load_metrics(apikey, competition, match, group_name):
@@ -324,16 +335,17 @@ def load_metrics(apikey, competition, match, group_name):
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
ts = {"mu": 25, "sigma": 25/3}
d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gliko2":gl2,"trueskill":ts})
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
else:
metrics = db_data["metrics"]
elo = metrics["elo"]
gl2 = metrics["gliko2"]
ts = metrics["trueskill"]
gl2 = metrics["gl2"]
ts = metrics["ts"]
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}

View File

@@ -34,7 +34,7 @@ import numpy as np
# %%
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(20,10))
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(80,15))
i = 0