mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-09-06 23:17:22 +00:00
Compare commits
37 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
375befd0c4 | ||
|
893d1fb1d0 | ||
|
6a426ae4cd | ||
|
50c064ffa4 | ||
|
1b0a9967c8 | ||
|
2605f7c29f | ||
|
6f5a3edd88 | ||
|
457146b0e4 | ||
|
f7fd8ffcf9 | ||
|
77bc792426 | ||
|
39146cc555 | ||
|
04141bbec8 | ||
|
40e5899972 | ||
|
025c7f9b3c | ||
|
2daa09c040 | ||
|
9776136649 | ||
|
68d27a6302 | ||
|
7fc18b7c35 | ||
|
9b412b51a8 | ||
|
b6ac05a66e | ||
|
435c8a7bc6 | ||
|
a69b18354b | ||
|
7b9e6921d0 | ||
|
fb2800cf9e | ||
|
12cbb21077 | ||
|
46d1a48999 | ||
|
ad0a761d53 | ||
|
43f503a38d | ||
|
d38744438b | ||
|
eb8914aa26 | ||
|
283140094f | ||
|
66ac1c304e | ||
|
0eb9e07711 | ||
|
f56c85b298 | ||
|
6a9a17c5b4 | ||
|
e24c49bedb | ||
|
2daed73aaa |
5
.gitignore
vendored
5
.gitignore
vendored
@@ -18,4 +18,7 @@ data analysis/arthur_pull.ipynb
|
||||
data analysis/keys.txt
|
||||
data analysis/check_for_new_matches.ipynb
|
||||
data analysis/test.ipynb
|
||||
data analysis/visualize_pit.ipynb
|
||||
data analysis/visualize_pit.ipynb
|
||||
data analysis/config/keys.config
|
||||
analysis-master/analysis/__pycache__/
|
||||
data analysis/__pycache__/
|
@@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: analysis
|
||||
Version: 1.0.0.6
|
||||
Version: 1.0.0.9
|
||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||
Author: The Titan Scouting Team
|
||||
|
@@ -8,4 +8,5 @@ analysis/visualization.py
|
||||
analysis.egg-info/PKG-INFO
|
||||
analysis.egg-info/SOURCES.txt
|
||||
analysis.egg-info/dependency_links.txt
|
||||
analysis.egg-info/requires.txt
|
||||
analysis.egg-info/top_level.txt
|
6
analysis-master/analysis.egg-info/requires.txt
Normal file
6
analysis-master/analysis.egg-info/requires.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
numba
|
||||
numpy
|
||||
scipy
|
||||
scikit-learn
|
||||
six
|
||||
matplotlib
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -7,10 +7,22 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.001"
|
||||
__version__ = "1.1.13.007"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.007:
|
||||
- fixed bug with trueskill
|
||||
1.1.13.006:
|
||||
- cleaned up imports
|
||||
1.1.13.005:
|
||||
- cleaned up package
|
||||
1.1.13.004:
|
||||
- small fixes to regression to improve performance
|
||||
1.1.13.003:
|
||||
- filtered nans from regression
|
||||
1.1.13.002:
|
||||
- removed torch requirement, and moved Regression back to regression.py
|
||||
1.1.13.001:
|
||||
- bug fix with linear regression not returning a proper value
|
||||
- cleaned up regression
|
||||
@@ -239,7 +251,6 @@ __author__ = (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'_init_device',
|
||||
'load_csv',
|
||||
'basic_stats',
|
||||
'z_score',
|
||||
@@ -260,7 +271,6 @@ __all__ = [
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'Regression',
|
||||
'Glicko2',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
@@ -273,24 +283,15 @@ import csv
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import math
|
||||
import scipy
|
||||
from scipy import *
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
import torch
|
||||
try:
|
||||
from analysis import trueskill as Trueskill
|
||||
except:
|
||||
import trueskill as Trueskill
|
||||
from analysis import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def _init_device(): # initiates computation device for ANNs
|
||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
||||
return device
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
@@ -349,15 +350,15 @@ def histo_analysis(hist_data):
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
regressions = []
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b):
|
||||
|
||||
return a * x + b
|
||||
@@ -374,9 +375,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.log(b*(x + c)) + d
|
||||
@@ -391,10 +389,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
@@ -410,8 +405,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
inputs = [inputs]
|
||||
outputs = [outputs]
|
||||
inputs = np.array([inputs])
|
||||
outputs = np.array([outputs])
|
||||
|
||||
plys = []
|
||||
limit = len(outputs[0])
|
||||
@@ -433,10 +428,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
@@ -471,13 +463,13 @@ def trueskill(teams_data, observations): # teams_data is array of array of tuple
|
||||
team_ratings = []
|
||||
|
||||
for team in teams_data:
|
||||
team_temp = []
|
||||
team_temp = ()
|
||||
for player in team:
|
||||
player = Trueskill.Rating(player[0], player[1])
|
||||
team_temp.append(player)
|
||||
team_temp = team_temp + (player,)
|
||||
team_ratings.append(team_temp)
|
||||
|
||||
return Trueskill.rate(teams_data, observations)
|
||||
return Trueskill.rate(team_ratings, ranks=observations)
|
||||
|
||||
class RegressionMetrics():
|
||||
|
||||
@@ -700,225 +692,6 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
|
||||
|
||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||
|
||||
class Regression:
|
||||
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.003"
|
||||
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'factorial',
|
||||
'take_all_pwrs',
|
||||
'num_poly_terms',
|
||||
'set_device',
|
||||
'LinearRegKernel',
|
||||
'SigmoidalRegKernel',
|
||||
'LogRegKernel',
|
||||
'PolyRegKernel',
|
||||
'ExpRegKernel',
|
||||
'SigmoidalRegKernelArthur',
|
||||
'SGDTrain',
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def set_device(self, new_device):
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,mtx)+long_bias
|
||||
|
||||
class SigmoidalRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||||
|
||||
class SigmoidalRegKernelArthur():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class LogRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class ExpRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class PolyRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=self.num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def num_poly_terms(self,num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||
def factorial(self,n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*self.factorial(n-1)
|
||||
def take_all_pwrs(self, vec, pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||
for i in torch.t(combins).to(device).to(torch.float):
|
||||
out *= i
|
||||
if pwr == 1:
|
||||
return out
|
||||
else:
|
||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(self.take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data)
|
||||
ls=loss(pred,ground)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
class Glicko2:
|
||||
|
||||
_tau = 0.5
|
||||
@@ -1016,4 +789,4 @@ class Glicko2:
|
||||
|
||||
def did_not_compete(self):
|
||||
|
||||
self._preRatingRD()
|
||||
self._preRatingRD()
|
||||
|
@@ -1,20 +1,23 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import regression'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.002"
|
||||
__version__ = "1.0.0.004"
|
||||
|
||||
# changelog should be viewed using print(regression.__changelog__)
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.004:
|
||||
- bug fixes
|
||||
- fixed changelog
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
@@ -22,6 +25,7 @@ __changelog__ = """
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
@@ -39,35 +43,15 @@ __all__ = [
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
|
||||
# imports (just one for now):
|
||||
|
||||
import torch
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def factorial(n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*factorial(n-1)
|
||||
def num_poly_terms(num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
|
||||
|
||||
def take_all_pwrs(vec,pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0])
|
||||
for i in torch.t(combins):
|
||||
out *= i
|
||||
return torch.cat(out,take_all_pwrs(vec, pwr-1))
|
||||
|
||||
def set_device(new_device):
|
||||
global device
|
||||
def set_device(self, new_device):
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
@@ -154,20 +138,39 @@ class PolyRegKernel():
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=num_poly_terms(num_vars, power)
|
||||
num_terms=self.num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def num_poly_terms(self,num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||
def factorial(self,n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*self.factorial(n-1)
|
||||
def take_all_pwrs(self, vec, pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||
for i in torch.t(combins).to(device).to(torch.float):
|
||||
out *= i
|
||||
if pwr == 1:
|
||||
return out
|
||||
else:
|
||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(take_all_pwrs(i,self.power))
|
||||
cols.append(self.take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
@@ -192,7 +195,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
@@ -214,4 +217,4 @@ def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
return kernel
|
@@ -7,10 +7,22 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.001"
|
||||
__version__ = "1.1.13.007"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.007:
|
||||
- fixed bug with trueskill
|
||||
1.1.13.006:
|
||||
- cleaned up imports
|
||||
1.1.13.005:
|
||||
- cleaned up package
|
||||
1.1.13.004:
|
||||
- small fixes to regression to improve performance
|
||||
1.1.13.003:
|
||||
- filtered nans from regression
|
||||
1.1.13.002:
|
||||
- removed torch requirement, and moved Regression back to regression.py
|
||||
1.1.13.001:
|
||||
- bug fix with linear regression not returning a proper value
|
||||
- cleaned up regression
|
||||
@@ -239,7 +251,6 @@ __author__ = (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'_init_device',
|
||||
'load_csv',
|
||||
'basic_stats',
|
||||
'z_score',
|
||||
@@ -260,7 +271,6 @@ __all__ = [
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'Regression',
|
||||
'Glicko2',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
@@ -273,24 +283,15 @@ import csv
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import math
|
||||
import scipy
|
||||
from scipy import *
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
import torch
|
||||
try:
|
||||
from analysis import trueskill as Trueskill
|
||||
except:
|
||||
import trueskill as Trueskill
|
||||
from analysis import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def _init_device(): # initiates computation device for ANNs
|
||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
||||
return device
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
@@ -349,15 +350,15 @@ def histo_analysis(hist_data):
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
regressions = []
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b):
|
||||
|
||||
return a * x + b
|
||||
@@ -374,9 +375,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.log(b*(x + c)) + d
|
||||
@@ -391,10 +389,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
@@ -410,8 +405,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
inputs = [inputs]
|
||||
outputs = [outputs]
|
||||
inputs = np.array([inputs])
|
||||
outputs = np.array([outputs])
|
||||
|
||||
plys = []
|
||||
limit = len(outputs[0])
|
||||
@@ -433,10 +428,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
@@ -471,13 +463,13 @@ def trueskill(teams_data, observations): # teams_data is array of array of tuple
|
||||
team_ratings = []
|
||||
|
||||
for team in teams_data:
|
||||
team_temp = []
|
||||
team_temp = ()
|
||||
for player in team:
|
||||
player = Trueskill.Rating(player[0], player[1])
|
||||
team_temp.append(player)
|
||||
team_temp = team_temp + (player,)
|
||||
team_ratings.append(team_temp)
|
||||
|
||||
return Trueskill.rate(teams_data, observations)
|
||||
return Trueskill.rate(team_ratings, ranks=observations)
|
||||
|
||||
class RegressionMetrics():
|
||||
|
||||
@@ -700,225 +692,6 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
|
||||
|
||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||
|
||||
class Regression:
|
||||
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.003"
|
||||
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'factorial',
|
||||
'take_all_pwrs',
|
||||
'num_poly_terms',
|
||||
'set_device',
|
||||
'LinearRegKernel',
|
||||
'SigmoidalRegKernel',
|
||||
'LogRegKernel',
|
||||
'PolyRegKernel',
|
||||
'ExpRegKernel',
|
||||
'SigmoidalRegKernelArthur',
|
||||
'SGDTrain',
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def set_device(self, new_device):
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,mtx)+long_bias
|
||||
|
||||
class SigmoidalRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def forward(self,mtx):
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||||
|
||||
class SigmoidalRegKernelArthur():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
sigmoid=torch.nn.Sigmoid()
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class LogRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class ExpRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
in_bias=None
|
||||
scal_mult=None
|
||||
out_bias=None
|
||||
def __init__(self, num_vars):
|
||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||
def forward(self,mtx):
|
||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||
|
||||
class PolyRegKernel():
|
||||
parameters= []
|
||||
weights=None
|
||||
bias=None
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=self.num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def num_poly_terms(self,num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||
def factorial(self,n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*self.factorial(n-1)
|
||||
def take_all_pwrs(self, vec, pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||
for i in torch.t(combins).to(device).to(torch.float):
|
||||
out *= i
|
||||
if pwr == 1:
|
||||
return out
|
||||
else:
|
||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(self.take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
losses=[]
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data)
|
||||
ls=loss(pred,ground)
|
||||
losses.append(ls.item())
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return [kernel,losses]
|
||||
else:
|
||||
for i in range(iterations):
|
||||
with torch.set_grad_enabled(True):
|
||||
optim.zero_grad()
|
||||
pred=kernel.forward(data_cuda)
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
class Glicko2:
|
||||
|
||||
_tau = 0.5
|
||||
@@ -1016,4 +789,4 @@ class Glicko2:
|
||||
|
||||
def did_not_compete(self):
|
||||
|
||||
self._preRatingRD()
|
||||
self._preRatingRD()
|
||||
|
@@ -1,20 +1,23 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import regression'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.002"
|
||||
__version__ = "1.0.0.004"
|
||||
|
||||
# changelog should be viewed using print(regression.__changelog__)
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.004:
|
||||
- bug fixes
|
||||
- fixed changelog
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
@@ -22,6 +25,7 @@ __changelog__ = """
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
@@ -39,35 +43,15 @@ __all__ = [
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
|
||||
# imports (just one for now):
|
||||
|
||||
import torch
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def factorial(n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*factorial(n-1)
|
||||
def num_poly_terms(num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
|
||||
|
||||
def take_all_pwrs(vec,pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0])
|
||||
for i in torch.t(combins):
|
||||
out *= i
|
||||
return torch.cat(out,take_all_pwrs(vec, pwr-1))
|
||||
|
||||
def set_device(new_device):
|
||||
global device
|
||||
def set_device(self, new_device):
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
@@ -154,20 +138,39 @@ class PolyRegKernel():
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=num_poly_terms(num_vars, power)
|
||||
num_terms=self.num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def num_poly_terms(self,num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||
def factorial(self,n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*self.factorial(n-1)
|
||||
def take_all_pwrs(self, vec, pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||
for i in torch.t(combins).to(device).to(torch.float):
|
||||
out *= i
|
||||
if pwr == 1:
|
||||
return out
|
||||
else:
|
||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(take_all_pwrs(i,self.power))
|
||||
cols.append(self.take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
@@ -192,7 +195,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
@@ -214,4 +217,4 @@ def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
return kernel
|
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.6.tar.gz
vendored
BIN
analysis-master/dist/analysis-1.0.0.6.tar.gz
vendored
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.9-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.9-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.9.tar.gz
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.9.tar.gz
vendored
Normal file
Binary file not shown.
@@ -2,7 +2,7 @@ import setuptools
|
||||
|
||||
setuptools.setup(
|
||||
name="analysis", # Replace with your own username
|
||||
version="1.0.0.006",
|
||||
version="1.0.0.009",
|
||||
author="The Titan Scouting Team",
|
||||
author_email="titanscout2022@gmail.com",
|
||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||
@@ -10,6 +10,14 @@ setuptools.setup(
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/titanscout2022/tr2022-strategy",
|
||||
packages=setuptools.find_packages(),
|
||||
install_requires=[
|
||||
"numba",
|
||||
"numpy",
|
||||
"scipy",
|
||||
"scikit-learn",
|
||||
"six",
|
||||
"matplotlib"
|
||||
],
|
||||
license = "GNU General Public License v3.0",
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
|
Binary file not shown.
Binary file not shown.
@@ -1,13 +0,0 @@
|
||||
2020ilch
|
||||
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
wheel-mechanism
|
||||
low-balls
|
||||
high-balls
|
||||
wheel-success
|
||||
strategic-focus
|
||||
climb-mechanism
|
||||
attitude
|
|
1
data analysis/config/competition.config
Normal file
1
data analysis/config/competition.config
Normal file
@@ -0,0 +1 @@
|
||||
2020ilch
|
0
data analysis/config/database.config
Normal file
0
data analysis/config/database.config
Normal file
14
data analysis/config/stats.config
Normal file
14
data analysis/config/stats.config
Normal file
@@ -0,0 +1,14 @@
|
||||
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||
wheel-mechanism
|
||||
low-balls
|
||||
high-balls
|
||||
wheel-success
|
||||
strategic-focus
|
||||
climb-mechanism
|
||||
attitude
|
59
data analysis/get_team_rankings.py
Normal file
59
data analysis/get_team_rankings.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import data as d
|
||||
from analysis import analysis as an
|
||||
import pymongo
|
||||
import operator
|
||||
|
||||
def load_config(file):
|
||||
config_vector = {}
|
||||
file = an.load_csv(file)
|
||||
for line in file[1:]:
|
||||
config_vector[line[0]] = line[1:]
|
||||
|
||||
return (file[0][0], config_vector)
|
||||
|
||||
def get_metrics_processed_formatted(apikey, competition):
|
||||
client = pymongo.MongoClient(apikey)
|
||||
db = client.data_scouting
|
||||
mdata = db.teamlist
|
||||
x=mdata.find_one({"competition":competition})
|
||||
out = {}
|
||||
for i in x:
|
||||
try:
|
||||
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
|
||||
except:
|
||||
pass
|
||||
return out
|
||||
|
||||
def main():
|
||||
|
||||
apikey = an.load_csv("keys.txt")[0][0]
|
||||
tbakey = an.load_csv("keys.txt")[1][0]
|
||||
|
||||
competition, config = load_config("config.csv")
|
||||
|
||||
metrics = get_metrics_processed_formatted(apikey, competition)
|
||||
|
||||
elo = {}
|
||||
gl2 = {}
|
||||
|
||||
for team in metrics:
|
||||
|
||||
elo[team] = metrics[team]["metrics"]["elo"]["score"]
|
||||
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
|
||||
|
||||
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
|
||||
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
|
||||
|
||||
for team in elo:
|
||||
|
||||
print("teams sorted by elo:")
|
||||
print("" + str(team) + " | " + str(elo[team]))
|
||||
|
||||
print("*"*25)
|
||||
|
||||
for team in gl2:
|
||||
|
||||
print("teams sorted by glicko2:")
|
||||
print("" + str(team) + " | " + str(gl2[team]))
|
||||
|
||||
main()
|
@@ -3,11 +3,23 @@
|
||||
# Notes:
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.3.000"
|
||||
__version__ = "0.0.5.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.0.3.00:
|
||||
0.0.5.000:
|
||||
improved user interface
|
||||
0.0.4.002:
|
||||
- removed unessasary code
|
||||
0.0.4.001:
|
||||
- fixed bug where X range for regression was determined before sanitization
|
||||
- better sanitized data
|
||||
0.0.4.000:
|
||||
- fixed spelling issue in __changelog__
|
||||
- addressed nan bug in regression
|
||||
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
|
||||
- fixed errors in metrics computing
|
||||
0.0.3.000:
|
||||
- added analysis to pit data
|
||||
0.0.2.001:
|
||||
- minor stability patches
|
||||
@@ -71,7 +83,10 @@ __all__ = [
|
||||
|
||||
from analysis import analysis as an
|
||||
import data as d
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from os import system, name
|
||||
from pathlib import Path
|
||||
import time
|
||||
import warnings
|
||||
|
||||
@@ -80,16 +95,16 @@ def main():
|
||||
while(True):
|
||||
|
||||
current_time = time.time()
|
||||
print("time: " + str(current_time))
|
||||
print("[OK] time: " + str(current_time))
|
||||
|
||||
print(" loading config")
|
||||
competition, config = load_config("config.csv")
|
||||
print(" config loaded")
|
||||
start = time.time()
|
||||
config = load_config(Path("config/stats.config"))
|
||||
competition = an.load_csv(Path("config/competition.config"))[0][0]
|
||||
print("[OK] configs loaded")
|
||||
|
||||
print(" loading database keys")
|
||||
apikey = an.load_csv("keys.txt")[0][0]
|
||||
tbakey = an.load_csv("keys.txt")[1][0]
|
||||
print(" loaded keys")
|
||||
apikey = an.load_csv(Path("config/keys.config"))[0][0]
|
||||
tbakey = an.load_csv(Path("config/keys.config"))[1][0]
|
||||
print("[OK] loaded keys")
|
||||
|
||||
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
||||
|
||||
@@ -102,38 +117,55 @@ def main():
|
||||
|
||||
previous_time = previous_time["latest_update"]
|
||||
|
||||
print(" analysis backtimed to: " + str(previous_time))
|
||||
print("[OK] analysis backtimed to: " + str(previous_time))
|
||||
|
||||
print(" loading data")
|
||||
print("[OK] loading data")
|
||||
start = time.time()
|
||||
data = d.get_match_data_formatted(apikey, competition)
|
||||
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
|
||||
print(" loaded data")
|
||||
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print(" running tests")
|
||||
print("[OK] running tests")
|
||||
start = time.time()
|
||||
results = simpleloop(data, config)
|
||||
print(" finished tests")
|
||||
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print(" running metrics")
|
||||
metrics = metricsloop(tbakey, apikey, competition, previous_time)
|
||||
print(" finished metrics")
|
||||
print("[OK] running metrics")
|
||||
start = time.time()
|
||||
metricsloop(tbakey, apikey, competition, previous_time)
|
||||
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print(" running pit analysis")
|
||||
print("[OK] running pit analysis")
|
||||
start = time.time()
|
||||
pit = pitloop(pit_data, config)
|
||||
print(" finished pit analysis")
|
||||
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
|
||||
|
||||
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
||||
|
||||
print(" pushing to database")
|
||||
push_to_database(apikey, competition, results, metrics, pit)
|
||||
print(" pushed to database")
|
||||
print("[OK] pushing to database")
|
||||
start = time.time()
|
||||
push_to_database(apikey, competition, results, pit)
|
||||
print("[OK] pushed to database in " + str(time.time() - start) + " seconds")
|
||||
|
||||
clear()
|
||||
|
||||
def clear():
|
||||
|
||||
# for windows
|
||||
if name == 'nt':
|
||||
_ = system('cls')
|
||||
|
||||
# for mac and linux(here, os.name is 'posix')
|
||||
else:
|
||||
_ = system('clear')
|
||||
|
||||
def load_config(file):
|
||||
config_vector = {}
|
||||
file = an.load_csv(file)
|
||||
for line in file[1:]:
|
||||
for line in file:
|
||||
config_vector[line[0]] = line[1:]
|
||||
|
||||
return (file[0][0], config_vector)
|
||||
return config_vector
|
||||
|
||||
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
|
||||
@@ -155,37 +187,37 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
|
||||
def simplestats(data, test):
|
||||
|
||||
data = np.array(data)
|
||||
data = data[np.isfinite(data)]
|
||||
ranges = list(range(len(data)))
|
||||
|
||||
if(test == "basic_stats"):
|
||||
return an.basic_stats(data)
|
||||
|
||||
if(test == "historical_analysis"):
|
||||
return an.histo_analysis([list(range(len(data))), data])
|
||||
return an.histo_analysis([ranges, data])
|
||||
|
||||
if(test == "regression_linear"):
|
||||
return an.regression(list(range(len(data))), data, ['lin'])
|
||||
return an.regression(ranges, data, ['lin'])
|
||||
|
||||
if(test == "regression_logarithmic"):
|
||||
return an.regression(list(range(len(data))), data, ['log'])
|
||||
return an.regression(ranges, data, ['log'])
|
||||
|
||||
if(test == "regression_exponential"):
|
||||
return an.regression(list(range(len(data))), data, ['exp'])
|
||||
return an.regression(ranges, data, ['exp'])
|
||||
|
||||
if(test == "regression_polynomial"):
|
||||
return an.regression(list(range(len(data))), data, ['ply'])
|
||||
return an.regression(ranges, data, ['ply'])
|
||||
|
||||
if(test == "regression_sigmoidal"):
|
||||
return an.regression(list(range(len(data))), data, ['sig'])
|
||||
return an.regression(ranges, data, ['sig'])
|
||||
|
||||
def push_to_database(apikey, competition, results, metrics, pit):
|
||||
def push_to_database(apikey, competition, results, pit):
|
||||
|
||||
for team in results:
|
||||
|
||||
d.push_team_tests_data(apikey, competition, team, results[team])
|
||||
|
||||
for team in metrics:
|
||||
|
||||
d.push_team_metrics_data(apikey, competition, team, metrics[team])
|
||||
|
||||
for variable in pit:
|
||||
|
||||
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
||||
@@ -197,8 +229,6 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
||||
|
||||
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
||||
|
||||
return_vector = {}
|
||||
|
||||
red = {}
|
||||
blu = {}
|
||||
|
||||
@@ -206,7 +236,7 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
||||
|
||||
red = load_metrics(apikey, competition, match, "red")
|
||||
blu = load_metrics(apikey, competition, match, "blue")
|
||||
|
||||
|
||||
elo_red_total = 0
|
||||
elo_blu_total = 0
|
||||
|
||||
@@ -279,36 +309,13 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
||||
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
||||
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
||||
|
||||
""" not functional for now
|
||||
red_trueskill = []
|
||||
blu_trueskill = []
|
||||
temp_vector = {}
|
||||
temp_vector.update(red)
|
||||
temp_vector.update(blu)
|
||||
|
||||
red_ts_team_lookup = []
|
||||
blu_ts_team_lookup = []
|
||||
for team in temp_vector:
|
||||
|
||||
for team in red:
|
||||
|
||||
red_trueskill.append((red[team]["ts"]["mu"], red[team]["ts"]["sigma"]))
|
||||
red_ts_team_lookup.append(team)
|
||||
|
||||
for team in blu:
|
||||
|
||||
blu_trueskill.append((blu[team]["ts"]["mu"], blu[team]["ts"]["sigma"]))
|
||||
blu_ts_team_lookup.append(team)
|
||||
|
||||
print(red_trueskill)
|
||||
print(blu_trueskill)
|
||||
|
||||
results = an.trueskill([red_trueskill, blu_trueskill], [observations["red"], observations["blu"]])
|
||||
|
||||
print(results)
|
||||
|
||||
"""
|
||||
|
||||
return_vector.update(red)
|
||||
return_vector.update(blu)
|
||||
|
||||
return return_vector
|
||||
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
|
||||
|
||||
def load_metrics(apikey, competition, match, group_name):
|
||||
|
||||
@@ -324,16 +331,17 @@ def load_metrics(apikey, competition, match, group_name):
|
||||
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
|
||||
ts = {"mu": 25, "sigma": 25/3}
|
||||
|
||||
d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gliko2":gl2,"trueskill":ts})
|
||||
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
|
||||
|
||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||
|
||||
else:
|
||||
|
||||
metrics = db_data["metrics"]
|
||||
|
||||
elo = metrics["elo"]
|
||||
gl2 = metrics["gliko2"]
|
||||
ts = metrics["trueskill"]
|
||||
gl2 = metrics["gl2"]
|
||||
ts = metrics["ts"]
|
||||
|
||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||
|
||||
|
@@ -34,7 +34,7 @@ import numpy as np
|
||||
|
||||
|
||||
# %%
|
||||
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(20,10))
|
||||
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(80,15))
|
||||
|
||||
i = 0
|
||||
|
||||
|
Reference in New Issue
Block a user