mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-09-07 07:27:20 +00:00
Compare commits
55 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
7a58cd08e2 | ||
|
337fae68ee | ||
|
5e71d05626 | ||
|
01df42aa49 | ||
|
33eea153c1 | ||
|
114eee5d57 | ||
|
06f008746a | ||
|
4f9c4e0dbb | ||
|
5697e8b79e | ||
|
e054e66743 | ||
|
c914bd3754 | ||
|
6c08885a53 | ||
|
375befd0c4 | ||
|
893d1fb1d0 | ||
|
6a426ae4cd | ||
|
50c064ffa4 | ||
|
1b0a9967c8 | ||
|
2605f7c29f | ||
|
6f5a3edd88 | ||
|
457146b0e4 | ||
|
f7fd8ffcf9 | ||
|
77bc792426 | ||
|
39146cc555 | ||
|
04141bbec8 | ||
|
40e5899972 | ||
|
025c7f9b3c | ||
|
2daa09c040 | ||
|
9776136649 | ||
|
68d27a6302 | ||
|
7fc18b7c35 | ||
|
9b412b51a8 | ||
|
b6ac05a66e | ||
|
435c8a7bc6 | ||
|
a69b18354b | ||
|
7b9e6921d0 | ||
|
fb2800cf9e | ||
|
12cbb21077 | ||
|
46d1a48999 | ||
|
ad0a761d53 | ||
|
43f503a38d | ||
|
d38744438b | ||
|
eb8914aa26 | ||
|
283140094f | ||
|
66ac1c304e | ||
|
0eb9e07711 | ||
|
f56c85b298 | ||
|
6a9a17c5b4 | ||
|
e24c49bedb | ||
|
2daed73aaa | ||
|
8ebdb3b89b | ||
|
a0e1293361 | ||
|
b669e55283 | ||
|
3e38446eae | ||
|
dac0a4a0cd | ||
|
897ba03078 |
2
.devcontainer/Dockerfile
Normal file
2
.devcontainer/Dockerfile
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
FROM python
|
||||||
|
WORKDIR ~/
|
26
.devcontainer/devcontainer.json
Normal file
26
.devcontainer/devcontainer.json
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
{
|
||||||
|
"name": "TRA Analysis Development Environment",
|
||||||
|
"build": {
|
||||||
|
"dockerfile": "Dockerfile",
|
||||||
|
},
|
||||||
|
"settings": {
|
||||||
|
"terminal.integrated.shell.linux": "/bin/bash",
|
||||||
|
"python.pythonPath": "/usr/local/bin/python",
|
||||||
|
"python.linting.enabled": true,
|
||||||
|
"python.linting.pylintEnabled": true,
|
||||||
|
"python.formatting.autopep8Path": "/usr/local/py-utils/bin/autopep8",
|
||||||
|
"python.formatting.blackPath": "/usr/local/py-utils/bin/black",
|
||||||
|
"python.formatting.yapfPath": "/usr/local/py-utils/bin/yapf",
|
||||||
|
"python.linting.banditPath": "/usr/local/py-utils/bin/bandit",
|
||||||
|
"python.linting.flake8Path": "/usr/local/py-utils/bin/flake8",
|
||||||
|
"python.linting.mypyPath": "/usr/local/py-utils/bin/mypy",
|
||||||
|
"python.linting.pycodestylePath": "/usr/local/py-utils/bin/pycodestyle",
|
||||||
|
"python.linting.pydocstylePath": "/usr/local/py-utils/bin/pydocstyle",
|
||||||
|
"python.linting.pylintPath": "/usr/local/py-utils/bin/pylint",
|
||||||
|
"python.testing.pytestPath": "/usr/local/py-utils/bin/pytest"
|
||||||
|
},
|
||||||
|
"extensions": [
|
||||||
|
"mhutchie.git-graph",
|
||||||
|
],
|
||||||
|
"postCreateCommand": "pip install -r analysis-master/analysis-amd64/requirements.txt"
|
||||||
|
}
|
7
.gitignore
vendored
7
.gitignore
vendored
@@ -16,4 +16,9 @@ data analysis/.ipynb_checkpoints/test-checkpoint.ipynb
|
|||||||
.vscode
|
.vscode
|
||||||
data analysis/arthur_pull.ipynb
|
data analysis/arthur_pull.ipynb
|
||||||
data analysis/keys.txt
|
data analysis/keys.txt
|
||||||
data analysis/check_for_new_matches.ipynb
|
data analysis/check_for_new_matches.ipynb
|
||||||
|
data analysis/test.ipynb
|
||||||
|
data analysis/visualize_pit.ipynb
|
||||||
|
data analysis/config/keys.config
|
||||||
|
analysis-master/analysis/__pycache__/
|
||||||
|
data analysis/__pycache__/
|
@@ -1,6 +1,6 @@
|
|||||||
Metadata-Version: 2.1
|
Metadata-Version: 2.1
|
||||||
Name: analysis
|
Name: analysis
|
||||||
Version: 1.0.0.3
|
Version: 1.0.0.11
|
||||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||||
Author: The Titan Scouting Team
|
Author: The Titan Scouting Team
|
@@ -1,6 +1,7 @@
|
|||||||
setup.py
|
setup.py
|
||||||
analysis/__init__.py
|
analysis/__init__.py
|
||||||
analysis/analysis.py
|
analysis/analysis.py
|
||||||
|
analysis/glicko2.py
|
||||||
analysis/regression.py
|
analysis/regression.py
|
||||||
analysis/titanlearn.py
|
analysis/titanlearn.py
|
||||||
analysis/trueskill.py
|
analysis/trueskill.py
|
||||||
@@ -8,4 +9,5 @@ analysis/visualization.py
|
|||||||
analysis.egg-info/PKG-INFO
|
analysis.egg-info/PKG-INFO
|
||||||
analysis.egg-info/SOURCES.txt
|
analysis.egg-info/SOURCES.txt
|
||||||
analysis.egg-info/dependency_links.txt
|
analysis.egg-info/dependency_links.txt
|
||||||
|
analysis.egg-info/requires.txt
|
||||||
analysis.egg-info/top_level.txt
|
analysis.egg-info/top_level.txt
|
@@ -0,0 +1,6 @@
|
|||||||
|
numba
|
||||||
|
numpy
|
||||||
|
scipy
|
||||||
|
scikit-learn
|
||||||
|
six
|
||||||
|
matplotlib
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -7,10 +7,32 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.12.006"
|
__version__ = "1.1.13.009"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.13.009:
|
||||||
|
- moved elo, glicko2, trueskill functions under class Metrics
|
||||||
|
1.1.13.008:
|
||||||
|
- moved Glicko2 to a seperate package
|
||||||
|
1.1.13.007:
|
||||||
|
- fixed bug with trueskill
|
||||||
|
1.1.13.006:
|
||||||
|
- cleaned up imports
|
||||||
|
1.1.13.005:
|
||||||
|
- cleaned up package
|
||||||
|
1.1.13.004:
|
||||||
|
- small fixes to regression to improve performance
|
||||||
|
1.1.13.003:
|
||||||
|
- filtered nans from regression
|
||||||
|
1.1.13.002:
|
||||||
|
- removed torch requirement, and moved Regression back to regression.py
|
||||||
|
1.1.13.001:
|
||||||
|
- bug fix with linear regression not returning a proper value
|
||||||
|
- cleaned up regression
|
||||||
|
- fixed bug with polynomial regressions
|
||||||
|
1.1.13.000:
|
||||||
|
- fixed all regressions to now properly work
|
||||||
1.1.12.006:
|
1.1.12.006:
|
||||||
- fixed bg with a division by zero in histo_analysis
|
- fixed bg with a division by zero in histo_analysis
|
||||||
1.1.12.005:
|
1.1.12.005:
|
||||||
@@ -233,7 +255,6 @@ __author__ = (
|
|||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'_init_device',
|
|
||||||
'load_csv',
|
'load_csv',
|
||||||
'basic_stats',
|
'basic_stats',
|
||||||
'z_score',
|
'z_score',
|
||||||
@@ -254,8 +275,6 @@ __all__ = [
|
|||||||
'SVM',
|
'SVM',
|
||||||
'random_forest_classifier',
|
'random_forest_classifier',
|
||||||
'random_forest_regressor',
|
'random_forest_regressor',
|
||||||
'Regression',
|
|
||||||
'Glicko2',
|
|
||||||
# all statistics functions left out due to integration in other functions
|
# all statistics functions left out due to integration in other functions
|
||||||
]
|
]
|
||||||
|
|
||||||
@@ -264,25 +283,19 @@ __all__ = [
|
|||||||
# imports (now in alphabetical order! v 1.0.3.006):
|
# imports (now in alphabetical order! v 1.0.3.006):
|
||||||
|
|
||||||
import csv
|
import csv
|
||||||
|
from analysis import glicko2 as Glicko2
|
||||||
import numba
|
import numba
|
||||||
from numba import jit
|
from numba import jit
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
import scipy
|
||||||
|
from scipy import *
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn import *
|
from sklearn import *
|
||||||
import torch
|
from analysis import trueskill as Trueskill
|
||||||
try:
|
|
||||||
from analysis import trueskill as Trueskill
|
|
||||||
except:
|
|
||||||
import trueskill as Trueskill
|
|
||||||
|
|
||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def _init_device(): # initiates computation device for ANNs
|
|
||||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
||||||
return device
|
|
||||||
|
|
||||||
def load_csv(filepath):
|
def load_csv(filepath):
|
||||||
with open(filepath, newline='') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = np.array(list(csv.reader(csvfile)))
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
@@ -339,33 +352,65 @@ def histo_analysis(hist_data):
|
|||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
|
X = np.array(inputs)
|
||||||
|
y = np.array(outputs)
|
||||||
|
|
||||||
regressions = []
|
regressions = []
|
||||||
Regression().set_device(ndevice)
|
|
||||||
|
|
||||||
if 'lin' in args: # formula: ax + b
|
if 'lin' in args: # formula: ax + b
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * x + b
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b, c, d):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * np.log(b*(x + c)) + d
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b, c, d):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * np.exp(b*(x + c)) + d
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||||
|
|
||||||
|
inputs = np.array([inputs])
|
||||||
|
outputs = np.array([outputs])
|
||||||
|
|
||||||
plys = []
|
plys = []
|
||||||
limit = len(outputs[0])
|
limit = len(outputs[0])
|
||||||
@@ -385,41 +430,52 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
regressions.append(plys)
|
regressions.append(plys)
|
||||||
|
|
||||||
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b, c, d):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * np.tanh(b*(x + c)) + d
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
return regressions
|
return regressions
|
||||||
|
|
||||||
def elo(starting_score, opposing_score, observed, N, K):
|
class Metrics:
|
||||||
|
|
||||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
def elo(starting_score, opposing_score, observed, N, K):
|
||||||
|
|
||||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||||
|
|
||||||
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||||
|
|
||||||
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||||
|
|
||||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||||
|
|
||||||
return (player.rating, player.rd, player.vol)
|
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||||
|
|
||||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
return (player.rating, player.rd, player.vol)
|
||||||
|
|
||||||
team_ratings = []
|
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||||
|
|
||||||
for team in teams_data:
|
team_ratings = []
|
||||||
team_temp = []
|
|
||||||
for player in team:
|
|
||||||
player = Trueskill.Rating(player[0], player[1])
|
|
||||||
team_temp.append(player)
|
|
||||||
team_ratings.append(team_temp)
|
|
||||||
|
|
||||||
return Trueskill.rate(teams_data, observations)
|
for team in teams_data:
|
||||||
|
team_temp = ()
|
||||||
|
for player in team:
|
||||||
|
player = Trueskill.Rating(player[0], player[1])
|
||||||
|
team_temp = team_temp + (player,)
|
||||||
|
team_ratings.append(team_temp)
|
||||||
|
|
||||||
|
return Trueskill.rate(team_ratings, ranks=observations)
|
||||||
|
|
||||||
class RegressionMetrics():
|
class RegressionMetrics():
|
||||||
|
|
||||||
@@ -511,24 +567,25 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
|
|||||||
|
|
||||||
return model, metrics
|
return model, metrics
|
||||||
|
|
||||||
@jit(forceobj=True)
|
class KNN:
|
||||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||||
model = sklearn.neighbors.KNeighborsClassifier()
|
|
||||||
model.fit(data_train, labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, ClassificationMetrics(predictions, labels_test)
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.neighbors.KNeighborsClassifier()
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
return model, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
|
||||||
model.fit(data_train, outputs_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, RegressionMetrics(predictions, outputs_test)
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||||
|
model.fit(data_train, outputs_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, RegressionMetrics(predictions, outputs_test)
|
||||||
|
|
||||||
class NaiveBayes:
|
class NaiveBayes:
|
||||||
|
|
||||||
@@ -640,322 +697,4 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
|
|||||||
kernel.fit(data_train, outputs_train)
|
kernel.fit(data_train, outputs_train)
|
||||||
predictions = kernel.predict(data_test)
|
predictions = kernel.predict(data_test)
|
||||||
|
|
||||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||||
|
|
||||||
class Regression:
|
|
||||||
|
|
||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
|
||||||
# Written by Arthur Lu & Jacob Levine
|
|
||||||
# Notes:
|
|
||||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
|
||||||
# setup:
|
|
||||||
|
|
||||||
__version__ = "1.0.0.003"
|
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
|
||||||
__changelog__ = """
|
|
||||||
1.0.0.003:
|
|
||||||
- bug fixes
|
|
||||||
1.0.0.002:
|
|
||||||
-Added more parameters to log, exponential, polynomial
|
|
||||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
|
||||||
to train the scaling and shifting of sigmoids
|
|
||||||
|
|
||||||
1.0.0.001:
|
|
||||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
|
||||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
|
||||||
"""
|
|
||||||
|
|
||||||
__author__ = (
|
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
|
||||||
"Arthur Lu <learthurgo@gmail.com>"
|
|
||||||
)
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
'factorial',
|
|
||||||
'take_all_pwrs',
|
|
||||||
'num_poly_terms',
|
|
||||||
'set_device',
|
|
||||||
'LinearRegKernel',
|
|
||||||
'SigmoidalRegKernel',
|
|
||||||
'LogRegKernel',
|
|
||||||
'PolyRegKernel',
|
|
||||||
'ExpRegKernel',
|
|
||||||
'SigmoidalRegKernelArthur',
|
|
||||||
'SGDTrain',
|
|
||||||
'CustomTrain'
|
|
||||||
]
|
|
||||||
|
|
||||||
global device
|
|
||||||
|
|
||||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
|
||||||
|
|
||||||
#todo: document completely
|
|
||||||
|
|
||||||
def set_device(self, new_device):
|
|
||||||
device=new_device
|
|
||||||
|
|
||||||
class LinearRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return torch.matmul(self.weights,mtx)+long_bias
|
|
||||||
|
|
||||||
class SigmoidalRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
sigmoid=torch.nn.Sigmoid()
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
|
||||||
|
|
||||||
class SigmoidalRegKernelArthur():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
sigmoid=torch.nn.Sigmoid()
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class LogRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class ExpRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class PolyRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
power=None
|
|
||||||
def __init__(self, num_vars, power):
|
|
||||||
self.power=power
|
|
||||||
num_terms=self.num_poly_terms(num_vars, power)
|
|
||||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def num_poly_terms(self,num_vars, power):
|
|
||||||
if power == 0:
|
|
||||||
return 0
|
|
||||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
|
||||||
def factorial(self,n):
|
|
||||||
if n==0:
|
|
||||||
return 1
|
|
||||||
else:
|
|
||||||
return n*self.factorial(n-1)
|
|
||||||
def take_all_pwrs(self, vec, pwr):
|
|
||||||
#todo: vectorize (kinda)
|
|
||||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
||||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
|
||||||
for i in torch.t(combins).to(device).to(torch.float):
|
|
||||||
out *= i
|
|
||||||
if pwr == 1:
|
|
||||||
return out
|
|
||||||
else:
|
|
||||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
|
||||||
def forward(self,mtx):
|
|
||||||
#TODO: Vectorize the last part
|
|
||||||
cols=[]
|
|
||||||
for i in torch.t(mtx):
|
|
||||||
cols.append(self.take_all_pwrs(i,self.power))
|
|
||||||
new_mtx=torch.t(torch.stack(cols))
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
|
||||||
|
|
||||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
|
||||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
|
||||||
data_cuda=data.to(device)
|
|
||||||
ground_cuda=ground.to(device)
|
|
||||||
if (return_losses):
|
|
||||||
losses=[]
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
losses.append(ls.item())
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return [kernel,losses]
|
|
||||||
else:
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return kernel
|
|
||||||
|
|
||||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
|
||||||
data_cuda=data.to(device)
|
|
||||||
ground_cuda=ground.to(device)
|
|
||||||
if (return_losses):
|
|
||||||
losses=[]
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data)
|
|
||||||
ls=loss(pred,ground)
|
|
||||||
losses.append(ls.item())
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return [kernel,losses]
|
|
||||||
else:
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return kernel
|
|
||||||
|
|
||||||
class Glicko2:
|
|
||||||
|
|
||||||
_tau = 0.5
|
|
||||||
|
|
||||||
def getRating(self):
|
|
||||||
return (self.__rating * 173.7178) + 1500
|
|
||||||
|
|
||||||
def setRating(self, rating):
|
|
||||||
self.__rating = (rating - 1500) / 173.7178
|
|
||||||
|
|
||||||
rating = property(getRating, setRating)
|
|
||||||
|
|
||||||
def getRd(self):
|
|
||||||
return self.__rd * 173.7178
|
|
||||||
|
|
||||||
def setRd(self, rd):
|
|
||||||
self.__rd = rd / 173.7178
|
|
||||||
|
|
||||||
rd = property(getRd, setRd)
|
|
||||||
|
|
||||||
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
|
||||||
|
|
||||||
self.setRating(rating)
|
|
||||||
self.setRd(rd)
|
|
||||||
self.vol = vol
|
|
||||||
|
|
||||||
def _preRatingRD(self):
|
|
||||||
|
|
||||||
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
|
||||||
|
|
||||||
def update_player(self, rating_list, RD_list, outcome_list):
|
|
||||||
|
|
||||||
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
|
||||||
RD_list = [x / 173.7178 for x in RD_list]
|
|
||||||
|
|
||||||
v = self._v(rating_list, RD_list)
|
|
||||||
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
|
||||||
self._preRatingRD()
|
|
||||||
|
|
||||||
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempSum += self._g(RD_list[i]) * \
|
|
||||||
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
|
||||||
self.__rating += math.pow(self.__rd, 2) * tempSum
|
|
||||||
|
|
||||||
|
|
||||||
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
|
||||||
a = math.log(math.pow(self.vol, 2))
|
|
||||||
tau = self._tau
|
|
||||||
x0 = a
|
|
||||||
x1 = 0
|
|
||||||
|
|
||||||
while x0 != x1:
|
|
||||||
# New iteration, so x(i) becomes x(i-1)
|
|
||||||
x0 = x1
|
|
||||||
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
|
||||||
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
|
||||||
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
|
||||||
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
|
||||||
(math.pow(self.__rating, 2) + v) \
|
|
||||||
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
|
||||||
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
|
||||||
x1 = x0 - (h1 / h2)
|
|
||||||
|
|
||||||
return math.exp(x1 / 2)
|
|
||||||
|
|
||||||
def _delta(self, rating_list, RD_list, outcome_list, v):
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
|
||||||
return v * tempSum
|
|
||||||
|
|
||||||
def _v(self, rating_list, RD_list):
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempE = self._E(rating_list[i], RD_list[i])
|
|
||||||
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
|
||||||
return 1 / tempSum
|
|
||||||
|
|
||||||
def _E(self, p2rating, p2RD):
|
|
||||||
|
|
||||||
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
|
||||||
(self.__rating - p2rating)))
|
|
||||||
|
|
||||||
def _g(self, RD):
|
|
||||||
|
|
||||||
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
|
||||||
|
|
||||||
def did_not_compete(self):
|
|
||||||
|
|
||||||
self._preRatingRD()
|
|
99
analysis-master/analysis-amd64/analysis/glicko2.py
Normal file
99
analysis-master/analysis-amd64/analysis/glicko2.py
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
class Glicko2:
|
||||||
|
_tau = 0.5
|
||||||
|
|
||||||
|
def getRating(self):
|
||||||
|
return (self.__rating * 173.7178) + 1500
|
||||||
|
|
||||||
|
def setRating(self, rating):
|
||||||
|
self.__rating = (rating - 1500) / 173.7178
|
||||||
|
|
||||||
|
rating = property(getRating, setRating)
|
||||||
|
|
||||||
|
def getRd(self):
|
||||||
|
return self.__rd * 173.7178
|
||||||
|
|
||||||
|
def setRd(self, rd):
|
||||||
|
self.__rd = rd / 173.7178
|
||||||
|
|
||||||
|
rd = property(getRd, setRd)
|
||||||
|
|
||||||
|
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
||||||
|
|
||||||
|
self.setRating(rating)
|
||||||
|
self.setRd(rd)
|
||||||
|
self.vol = vol
|
||||||
|
|
||||||
|
def _preRatingRD(self):
|
||||||
|
|
||||||
|
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
||||||
|
|
||||||
|
def update_player(self, rating_list, RD_list, outcome_list):
|
||||||
|
|
||||||
|
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
||||||
|
RD_list = [x / 173.7178 for x in RD_list]
|
||||||
|
|
||||||
|
v = self._v(rating_list, RD_list)
|
||||||
|
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
||||||
|
self._preRatingRD()
|
||||||
|
|
||||||
|
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempSum += self._g(RD_list[i]) * \
|
||||||
|
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||||
|
self.__rating += math.pow(self.__rd, 2) * tempSum
|
||||||
|
|
||||||
|
|
||||||
|
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
||||||
|
a = math.log(math.pow(self.vol, 2))
|
||||||
|
tau = self._tau
|
||||||
|
x0 = a
|
||||||
|
x1 = 0
|
||||||
|
|
||||||
|
while x0 != x1:
|
||||||
|
# New iteration, so x(i) becomes x(i-1)
|
||||||
|
x0 = x1
|
||||||
|
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
||||||
|
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
||||||
|
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
||||||
|
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
||||||
|
(math.pow(self.__rating, 2) + v) \
|
||||||
|
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
||||||
|
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
||||||
|
x1 = x0 - (h1 / h2)
|
||||||
|
|
||||||
|
return math.exp(x1 / 2)
|
||||||
|
|
||||||
|
def _delta(self, rating_list, RD_list, outcome_list, v):
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||||
|
return v * tempSum
|
||||||
|
|
||||||
|
def _v(self, rating_list, RD_list):
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempE = self._E(rating_list[i], RD_list[i])
|
||||||
|
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
||||||
|
return 1 / tempSum
|
||||||
|
|
||||||
|
def _E(self, p2rating, p2RD):
|
||||||
|
|
||||||
|
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
||||||
|
(self.__rating - p2rating)))
|
||||||
|
|
||||||
|
def _g(self, RD):
|
||||||
|
|
||||||
|
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
||||||
|
|
||||||
|
def did_not_compete(self):
|
||||||
|
|
||||||
|
self._preRatingRD()
|
@@ -1,20 +1,23 @@
|
|||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
# Written by Arthur Lu & Jacob Levine
|
# Written by Arthur Lu & Jacob Levine
|
||||||
# Notes:
|
# Notes:
|
||||||
# this should be imported as a python module using 'import regression'
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||||
# this should be included in the local directory or environment variable
|
# this module is cuda-optimized and vectorized (except for one small part)
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.0.002"
|
__version__ = "1.0.0.004"
|
||||||
|
|
||||||
# changelog should be viewed using print(regression.__changelog__)
|
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||||
__changelog__ = """
|
__changelog__ = """
|
||||||
|
1.0.0.004:
|
||||||
|
- bug fixes
|
||||||
|
- fixed changelog
|
||||||
|
1.0.0.003:
|
||||||
|
- bug fixes
|
||||||
1.0.0.002:
|
1.0.0.002:
|
||||||
-Added more parameters to log, exponential, polynomial
|
-Added more parameters to log, exponential, polynomial
|
||||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||||
to train the scaling and shifting of sigmoids
|
to train the scaling and shifting of sigmoids
|
||||||
|
|
||||||
1.0.0.001:
|
1.0.0.001:
|
||||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||||
@@ -22,6 +25,7 @@ __changelog__ = """
|
|||||||
|
|
||||||
__author__ = (
|
__author__ = (
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
|
"Arthur Lu <learthurgo@gmail.com>"
|
||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
@@ -39,35 +43,15 @@ __all__ = [
|
|||||||
'CustomTrain'
|
'CustomTrain'
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
# imports (just one for now):
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
global device
|
||||||
|
|
||||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
#todo: document completely
|
#todo: document completely
|
||||||
|
|
||||||
def factorial(n):
|
def set_device(self, new_device):
|
||||||
if n==0:
|
|
||||||
return 1
|
|
||||||
else:
|
|
||||||
return n*factorial(n-1)
|
|
||||||
def num_poly_terms(num_vars, power):
|
|
||||||
if power == 0:
|
|
||||||
return 0
|
|
||||||
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
|
|
||||||
|
|
||||||
def take_all_pwrs(vec,pwr):
|
|
||||||
#todo: vectorize (kinda)
|
|
||||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
||||||
out=torch.ones(combins.size()[0])
|
|
||||||
for i in torch.t(combins):
|
|
||||||
out *= i
|
|
||||||
return torch.cat(out,take_all_pwrs(vec, pwr-1))
|
|
||||||
|
|
||||||
def set_device(new_device):
|
|
||||||
global device
|
|
||||||
device=new_device
|
device=new_device
|
||||||
|
|
||||||
class LinearRegKernel():
|
class LinearRegKernel():
|
||||||
@@ -154,20 +138,39 @@ class PolyRegKernel():
|
|||||||
power=None
|
power=None
|
||||||
def __init__(self, num_vars, power):
|
def __init__(self, num_vars, power):
|
||||||
self.power=power
|
self.power=power
|
||||||
num_terms=num_poly_terms(num_vars, power)
|
num_terms=self.num_poly_terms(num_vars, power)
|
||||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.parameters=[self.weights,self.bias]
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def num_poly_terms(self,num_vars, power):
|
||||||
|
if power == 0:
|
||||||
|
return 0
|
||||||
|
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||||
|
def factorial(self,n):
|
||||||
|
if n==0:
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
return n*self.factorial(n-1)
|
||||||
|
def take_all_pwrs(self, vec, pwr):
|
||||||
|
#todo: vectorize (kinda)
|
||||||
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||||
|
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||||
|
for i in torch.t(combins).to(device).to(torch.float):
|
||||||
|
out *= i
|
||||||
|
if pwr == 1:
|
||||||
|
return out
|
||||||
|
else:
|
||||||
|
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||||
def forward(self,mtx):
|
def forward(self,mtx):
|
||||||
#TODO: Vectorize the last part
|
#TODO: Vectorize the last part
|
||||||
cols=[]
|
cols=[]
|
||||||
for i in torch.t(mtx):
|
for i in torch.t(mtx):
|
||||||
cols.append(take_all_pwrs(i,self.power))
|
cols.append(self.take_all_pwrs(i,self.power))
|
||||||
new_mtx=torch.t(torch.stack(cols))
|
new_mtx=torch.t(torch.stack(cols))
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||||
|
|
||||||
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||||
data_cuda=data.to(device)
|
data_cuda=data.to(device)
|
||||||
ground_cuda=ground.to(device)
|
ground_cuda=ground.to(device)
|
||||||
@@ -192,7 +195,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
|
|||||||
optim.step()
|
optim.step()
|
||||||
return kernel
|
return kernel
|
||||||
|
|
||||||
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||||
data_cuda=data.to(device)
|
data_cuda=data.to(device)
|
||||||
ground_cuda=ground.to(device)
|
ground_cuda=ground.to(device)
|
||||||
if (return_losses):
|
if (return_losses):
|
||||||
@@ -214,4 +217,4 @@ def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations
|
|||||||
ls=loss(pred,ground_cuda)
|
ls=loss(pred,ground_cuda)
|
||||||
ls.backward()
|
ls.backward()
|
||||||
optim.step()
|
optim.step()
|
||||||
return kernel
|
return kernel
|
1
analysis-master/analysis-amd64/build.sh
Executable file
1
analysis-master/analysis-amd64/build.sh
Executable file
@@ -0,0 +1 @@
|
|||||||
|
python setup.py sdist bdist_wheel || python3 setup.py sdist bdist_wheel
|
@@ -7,10 +7,32 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.12.006"
|
__version__ = "1.1.13.009"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.13.009:
|
||||||
|
- moved elo, glicko2, trueskill functions under class Metrics
|
||||||
|
1.1.13.008:
|
||||||
|
- moved Glicko2 to a seperate package
|
||||||
|
1.1.13.007:
|
||||||
|
- fixed bug with trueskill
|
||||||
|
1.1.13.006:
|
||||||
|
- cleaned up imports
|
||||||
|
1.1.13.005:
|
||||||
|
- cleaned up package
|
||||||
|
1.1.13.004:
|
||||||
|
- small fixes to regression to improve performance
|
||||||
|
1.1.13.003:
|
||||||
|
- filtered nans from regression
|
||||||
|
1.1.13.002:
|
||||||
|
- removed torch requirement, and moved Regression back to regression.py
|
||||||
|
1.1.13.001:
|
||||||
|
- bug fix with linear regression not returning a proper value
|
||||||
|
- cleaned up regression
|
||||||
|
- fixed bug with polynomial regressions
|
||||||
|
1.1.13.000:
|
||||||
|
- fixed all regressions to now properly work
|
||||||
1.1.12.006:
|
1.1.12.006:
|
||||||
- fixed bg with a division by zero in histo_analysis
|
- fixed bg with a division by zero in histo_analysis
|
||||||
1.1.12.005:
|
1.1.12.005:
|
||||||
@@ -233,7 +255,6 @@ __author__ = (
|
|||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'_init_device',
|
|
||||||
'load_csv',
|
'load_csv',
|
||||||
'basic_stats',
|
'basic_stats',
|
||||||
'z_score',
|
'z_score',
|
||||||
@@ -254,8 +275,6 @@ __all__ = [
|
|||||||
'SVM',
|
'SVM',
|
||||||
'random_forest_classifier',
|
'random_forest_classifier',
|
||||||
'random_forest_regressor',
|
'random_forest_regressor',
|
||||||
'Regression',
|
|
||||||
'Glicko2',
|
|
||||||
# all statistics functions left out due to integration in other functions
|
# all statistics functions left out due to integration in other functions
|
||||||
]
|
]
|
||||||
|
|
||||||
@@ -264,25 +283,19 @@ __all__ = [
|
|||||||
# imports (now in alphabetical order! v 1.0.3.006):
|
# imports (now in alphabetical order! v 1.0.3.006):
|
||||||
|
|
||||||
import csv
|
import csv
|
||||||
|
from analysis import glicko2 as Glicko2
|
||||||
import numba
|
import numba
|
||||||
from numba import jit
|
from numba import jit
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
import scipy
|
||||||
|
from scipy import *
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn import *
|
from sklearn import *
|
||||||
import torch
|
from analysis import trueskill as Trueskill
|
||||||
try:
|
|
||||||
from analysis import trueskill as Trueskill
|
|
||||||
except:
|
|
||||||
import trueskill as Trueskill
|
|
||||||
|
|
||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def _init_device(): # initiates computation device for ANNs
|
|
||||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
||||||
return device
|
|
||||||
|
|
||||||
def load_csv(filepath):
|
def load_csv(filepath):
|
||||||
with open(filepath, newline='') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = np.array(list(csv.reader(csvfile)))
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
@@ -339,33 +352,65 @@ def histo_analysis(hist_data):
|
|||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
|
X = np.array(inputs)
|
||||||
|
y = np.array(outputs)
|
||||||
|
|
||||||
regressions = []
|
regressions = []
|
||||||
Regression().set_device(ndevice)
|
|
||||||
|
|
||||||
if 'lin' in args: # formula: ax + b
|
if 'lin' in args: # formula: ax + b
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * x + b
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b, c, d):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * np.log(b*(x + c)) + d
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b, c, d):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * np.exp(b*(x + c)) + d
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||||
|
|
||||||
|
inputs = np.array([inputs])
|
||||||
|
outputs = np.array([outputs])
|
||||||
|
|
||||||
plys = []
|
plys = []
|
||||||
limit = len(outputs[0])
|
limit = len(outputs[0])
|
||||||
@@ -385,41 +430,52 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
regressions.append(plys)
|
regressions.append(plys)
|
||||||
|
|
||||||
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
try:
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
def func(x, a, b, c, d):
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
return a * np.tanh(b*(x + c)) + d
|
||||||
|
|
||||||
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
return regressions
|
return regressions
|
||||||
|
|
||||||
def elo(starting_score, opposing_score, observed, N, K):
|
class Metrics:
|
||||||
|
|
||||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
def elo(starting_score, opposing_score, observed, N, K):
|
||||||
|
|
||||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||||
|
|
||||||
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||||
|
|
||||||
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||||
|
|
||||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||||
|
|
||||||
return (player.rating, player.rd, player.vol)
|
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||||
|
|
||||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
return (player.rating, player.rd, player.vol)
|
||||||
|
|
||||||
team_ratings = []
|
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||||
|
|
||||||
for team in teams_data:
|
team_ratings = []
|
||||||
team_temp = []
|
|
||||||
for player in team:
|
|
||||||
player = Trueskill.Rating(player[0], player[1])
|
|
||||||
team_temp.append(player)
|
|
||||||
team_ratings.append(team_temp)
|
|
||||||
|
|
||||||
return Trueskill.rate(teams_data, observations)
|
for team in teams_data:
|
||||||
|
team_temp = ()
|
||||||
|
for player in team:
|
||||||
|
player = Trueskill.Rating(player[0], player[1])
|
||||||
|
team_temp = team_temp + (player,)
|
||||||
|
team_ratings.append(team_temp)
|
||||||
|
|
||||||
|
return Trueskill.rate(team_ratings, ranks=observations)
|
||||||
|
|
||||||
class RegressionMetrics():
|
class RegressionMetrics():
|
||||||
|
|
||||||
@@ -511,24 +567,25 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
|
|||||||
|
|
||||||
return model, metrics
|
return model, metrics
|
||||||
|
|
||||||
@jit(forceobj=True)
|
class KNN:
|
||||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||||
model = sklearn.neighbors.KNeighborsClassifier()
|
|
||||||
model.fit(data_train, labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, ClassificationMetrics(predictions, labels_test)
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.neighbors.KNeighborsClassifier()
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
return model, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
|
||||||
model.fit(data_train, outputs_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, RegressionMetrics(predictions, outputs_test)
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||||
|
model.fit(data_train, outputs_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, RegressionMetrics(predictions, outputs_test)
|
||||||
|
|
||||||
class NaiveBayes:
|
class NaiveBayes:
|
||||||
|
|
||||||
@@ -640,322 +697,4 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
|
|||||||
kernel.fit(data_train, outputs_train)
|
kernel.fit(data_train, outputs_train)
|
||||||
predictions = kernel.predict(data_test)
|
predictions = kernel.predict(data_test)
|
||||||
|
|
||||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||||
|
|
||||||
class Regression:
|
|
||||||
|
|
||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
|
||||||
# Written by Arthur Lu & Jacob Levine
|
|
||||||
# Notes:
|
|
||||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
|
||||||
# setup:
|
|
||||||
|
|
||||||
__version__ = "1.0.0.003"
|
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
|
||||||
__changelog__ = """
|
|
||||||
1.0.0.003:
|
|
||||||
- bug fixes
|
|
||||||
1.0.0.002:
|
|
||||||
-Added more parameters to log, exponential, polynomial
|
|
||||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
|
||||||
to train the scaling and shifting of sigmoids
|
|
||||||
|
|
||||||
1.0.0.001:
|
|
||||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
|
||||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
|
||||||
"""
|
|
||||||
|
|
||||||
__author__ = (
|
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
|
||||||
"Arthur Lu <learthurgo@gmail.com>"
|
|
||||||
)
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
'factorial',
|
|
||||||
'take_all_pwrs',
|
|
||||||
'num_poly_terms',
|
|
||||||
'set_device',
|
|
||||||
'LinearRegKernel',
|
|
||||||
'SigmoidalRegKernel',
|
|
||||||
'LogRegKernel',
|
|
||||||
'PolyRegKernel',
|
|
||||||
'ExpRegKernel',
|
|
||||||
'SigmoidalRegKernelArthur',
|
|
||||||
'SGDTrain',
|
|
||||||
'CustomTrain'
|
|
||||||
]
|
|
||||||
|
|
||||||
global device
|
|
||||||
|
|
||||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
|
||||||
|
|
||||||
#todo: document completely
|
|
||||||
|
|
||||||
def set_device(self, new_device):
|
|
||||||
device=new_device
|
|
||||||
|
|
||||||
class LinearRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return torch.matmul(self.weights,mtx)+long_bias
|
|
||||||
|
|
||||||
class SigmoidalRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
sigmoid=torch.nn.Sigmoid()
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
|
||||||
|
|
||||||
class SigmoidalRegKernelArthur():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
sigmoid=torch.nn.Sigmoid()
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class LogRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class ExpRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class PolyRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
power=None
|
|
||||||
def __init__(self, num_vars, power):
|
|
||||||
self.power=power
|
|
||||||
num_terms=self.num_poly_terms(num_vars, power)
|
|
||||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def num_poly_terms(self,num_vars, power):
|
|
||||||
if power == 0:
|
|
||||||
return 0
|
|
||||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
|
||||||
def factorial(self,n):
|
|
||||||
if n==0:
|
|
||||||
return 1
|
|
||||||
else:
|
|
||||||
return n*self.factorial(n-1)
|
|
||||||
def take_all_pwrs(self, vec, pwr):
|
|
||||||
#todo: vectorize (kinda)
|
|
||||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
||||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
|
||||||
for i in torch.t(combins).to(device).to(torch.float):
|
|
||||||
out *= i
|
|
||||||
if pwr == 1:
|
|
||||||
return out
|
|
||||||
else:
|
|
||||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
|
||||||
def forward(self,mtx):
|
|
||||||
#TODO: Vectorize the last part
|
|
||||||
cols=[]
|
|
||||||
for i in torch.t(mtx):
|
|
||||||
cols.append(self.take_all_pwrs(i,self.power))
|
|
||||||
new_mtx=torch.t(torch.stack(cols))
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
|
||||||
|
|
||||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
|
||||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
|
||||||
data_cuda=data.to(device)
|
|
||||||
ground_cuda=ground.to(device)
|
|
||||||
if (return_losses):
|
|
||||||
losses=[]
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
losses.append(ls.item())
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return [kernel,losses]
|
|
||||||
else:
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return kernel
|
|
||||||
|
|
||||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
|
||||||
data_cuda=data.to(device)
|
|
||||||
ground_cuda=ground.to(device)
|
|
||||||
if (return_losses):
|
|
||||||
losses=[]
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data)
|
|
||||||
ls=loss(pred,ground)
|
|
||||||
losses.append(ls.item())
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return [kernel,losses]
|
|
||||||
else:
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return kernel
|
|
||||||
|
|
||||||
class Glicko2:
|
|
||||||
|
|
||||||
_tau = 0.5
|
|
||||||
|
|
||||||
def getRating(self):
|
|
||||||
return (self.__rating * 173.7178) + 1500
|
|
||||||
|
|
||||||
def setRating(self, rating):
|
|
||||||
self.__rating = (rating - 1500) / 173.7178
|
|
||||||
|
|
||||||
rating = property(getRating, setRating)
|
|
||||||
|
|
||||||
def getRd(self):
|
|
||||||
return self.__rd * 173.7178
|
|
||||||
|
|
||||||
def setRd(self, rd):
|
|
||||||
self.__rd = rd / 173.7178
|
|
||||||
|
|
||||||
rd = property(getRd, setRd)
|
|
||||||
|
|
||||||
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
|
||||||
|
|
||||||
self.setRating(rating)
|
|
||||||
self.setRd(rd)
|
|
||||||
self.vol = vol
|
|
||||||
|
|
||||||
def _preRatingRD(self):
|
|
||||||
|
|
||||||
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
|
||||||
|
|
||||||
def update_player(self, rating_list, RD_list, outcome_list):
|
|
||||||
|
|
||||||
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
|
||||||
RD_list = [x / 173.7178 for x in RD_list]
|
|
||||||
|
|
||||||
v = self._v(rating_list, RD_list)
|
|
||||||
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
|
||||||
self._preRatingRD()
|
|
||||||
|
|
||||||
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempSum += self._g(RD_list[i]) * \
|
|
||||||
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
|
||||||
self.__rating += math.pow(self.__rd, 2) * tempSum
|
|
||||||
|
|
||||||
|
|
||||||
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
|
||||||
a = math.log(math.pow(self.vol, 2))
|
|
||||||
tau = self._tau
|
|
||||||
x0 = a
|
|
||||||
x1 = 0
|
|
||||||
|
|
||||||
while x0 != x1:
|
|
||||||
# New iteration, so x(i) becomes x(i-1)
|
|
||||||
x0 = x1
|
|
||||||
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
|
||||||
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
|
||||||
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
|
||||||
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
|
||||||
(math.pow(self.__rating, 2) + v) \
|
|
||||||
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
|
||||||
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
|
||||||
x1 = x0 - (h1 / h2)
|
|
||||||
|
|
||||||
return math.exp(x1 / 2)
|
|
||||||
|
|
||||||
def _delta(self, rating_list, RD_list, outcome_list, v):
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
|
||||||
return v * tempSum
|
|
||||||
|
|
||||||
def _v(self, rating_list, RD_list):
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempE = self._E(rating_list[i], RD_list[i])
|
|
||||||
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
|
||||||
return 1 / tempSum
|
|
||||||
|
|
||||||
def _E(self, p2rating, p2RD):
|
|
||||||
|
|
||||||
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
|
||||||
(self.__rating - p2rating)))
|
|
||||||
|
|
||||||
def _g(self, RD):
|
|
||||||
|
|
||||||
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
|
||||||
|
|
||||||
def did_not_compete(self):
|
|
||||||
|
|
||||||
self._preRatingRD()
|
|
99
analysis-master/analysis-amd64/build/lib/analysis/glicko2.py
Normal file
99
analysis-master/analysis-amd64/build/lib/analysis/glicko2.py
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
class Glicko2:
|
||||||
|
_tau = 0.5
|
||||||
|
|
||||||
|
def getRating(self):
|
||||||
|
return (self.__rating * 173.7178) + 1500
|
||||||
|
|
||||||
|
def setRating(self, rating):
|
||||||
|
self.__rating = (rating - 1500) / 173.7178
|
||||||
|
|
||||||
|
rating = property(getRating, setRating)
|
||||||
|
|
||||||
|
def getRd(self):
|
||||||
|
return self.__rd * 173.7178
|
||||||
|
|
||||||
|
def setRd(self, rd):
|
||||||
|
self.__rd = rd / 173.7178
|
||||||
|
|
||||||
|
rd = property(getRd, setRd)
|
||||||
|
|
||||||
|
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
||||||
|
|
||||||
|
self.setRating(rating)
|
||||||
|
self.setRd(rd)
|
||||||
|
self.vol = vol
|
||||||
|
|
||||||
|
def _preRatingRD(self):
|
||||||
|
|
||||||
|
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
||||||
|
|
||||||
|
def update_player(self, rating_list, RD_list, outcome_list):
|
||||||
|
|
||||||
|
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
||||||
|
RD_list = [x / 173.7178 for x in RD_list]
|
||||||
|
|
||||||
|
v = self._v(rating_list, RD_list)
|
||||||
|
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
||||||
|
self._preRatingRD()
|
||||||
|
|
||||||
|
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempSum += self._g(RD_list[i]) * \
|
||||||
|
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||||
|
self.__rating += math.pow(self.__rd, 2) * tempSum
|
||||||
|
|
||||||
|
|
||||||
|
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
||||||
|
a = math.log(math.pow(self.vol, 2))
|
||||||
|
tau = self._tau
|
||||||
|
x0 = a
|
||||||
|
x1 = 0
|
||||||
|
|
||||||
|
while x0 != x1:
|
||||||
|
# New iteration, so x(i) becomes x(i-1)
|
||||||
|
x0 = x1
|
||||||
|
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
||||||
|
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
||||||
|
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
||||||
|
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
||||||
|
(math.pow(self.__rating, 2) + v) \
|
||||||
|
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
||||||
|
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
||||||
|
x1 = x0 - (h1 / h2)
|
||||||
|
|
||||||
|
return math.exp(x1 / 2)
|
||||||
|
|
||||||
|
def _delta(self, rating_list, RD_list, outcome_list, v):
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||||
|
return v * tempSum
|
||||||
|
|
||||||
|
def _v(self, rating_list, RD_list):
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempE = self._E(rating_list[i], RD_list[i])
|
||||||
|
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
||||||
|
return 1 / tempSum
|
||||||
|
|
||||||
|
def _E(self, p2rating, p2RD):
|
||||||
|
|
||||||
|
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
||||||
|
(self.__rating - p2rating)))
|
||||||
|
|
||||||
|
def _g(self, RD):
|
||||||
|
|
||||||
|
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
||||||
|
|
||||||
|
def did_not_compete(self):
|
||||||
|
|
||||||
|
self._preRatingRD()
|
@@ -1,20 +1,23 @@
|
|||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
# Written by Arthur Lu & Jacob Levine
|
# Written by Arthur Lu & Jacob Levine
|
||||||
# Notes:
|
# Notes:
|
||||||
# this should be imported as a python module using 'import regression'
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||||
# this should be included in the local directory or environment variable
|
# this module is cuda-optimized and vectorized (except for one small part)
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.0.002"
|
__version__ = "1.0.0.004"
|
||||||
|
|
||||||
# changelog should be viewed using print(regression.__changelog__)
|
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||||
__changelog__ = """
|
__changelog__ = """
|
||||||
|
1.0.0.004:
|
||||||
|
- bug fixes
|
||||||
|
- fixed changelog
|
||||||
|
1.0.0.003:
|
||||||
|
- bug fixes
|
||||||
1.0.0.002:
|
1.0.0.002:
|
||||||
-Added more parameters to log, exponential, polynomial
|
-Added more parameters to log, exponential, polynomial
|
||||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||||
to train the scaling and shifting of sigmoids
|
to train the scaling and shifting of sigmoids
|
||||||
|
|
||||||
1.0.0.001:
|
1.0.0.001:
|
||||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||||
@@ -22,6 +25,7 @@ __changelog__ = """
|
|||||||
|
|
||||||
__author__ = (
|
__author__ = (
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
|
"Arthur Lu <learthurgo@gmail.com>"
|
||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
@@ -39,35 +43,15 @@ __all__ = [
|
|||||||
'CustomTrain'
|
'CustomTrain'
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
# imports (just one for now):
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
global device
|
||||||
|
|
||||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
#todo: document completely
|
#todo: document completely
|
||||||
|
|
||||||
def factorial(n):
|
def set_device(self, new_device):
|
||||||
if n==0:
|
|
||||||
return 1
|
|
||||||
else:
|
|
||||||
return n*factorial(n-1)
|
|
||||||
def num_poly_terms(num_vars, power):
|
|
||||||
if power == 0:
|
|
||||||
return 0
|
|
||||||
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
|
|
||||||
|
|
||||||
def take_all_pwrs(vec,pwr):
|
|
||||||
#todo: vectorize (kinda)
|
|
||||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
||||||
out=torch.ones(combins.size()[0])
|
|
||||||
for i in torch.t(combins):
|
|
||||||
out *= i
|
|
||||||
return torch.cat(out,take_all_pwrs(vec, pwr-1))
|
|
||||||
|
|
||||||
def set_device(new_device):
|
|
||||||
global device
|
|
||||||
device=new_device
|
device=new_device
|
||||||
|
|
||||||
class LinearRegKernel():
|
class LinearRegKernel():
|
||||||
@@ -154,20 +138,39 @@ class PolyRegKernel():
|
|||||||
power=None
|
power=None
|
||||||
def __init__(self, num_vars, power):
|
def __init__(self, num_vars, power):
|
||||||
self.power=power
|
self.power=power
|
||||||
num_terms=num_poly_terms(num_vars, power)
|
num_terms=self.num_poly_terms(num_vars, power)
|
||||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.parameters=[self.weights,self.bias]
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def num_poly_terms(self,num_vars, power):
|
||||||
|
if power == 0:
|
||||||
|
return 0
|
||||||
|
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||||
|
def factorial(self,n):
|
||||||
|
if n==0:
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
return n*self.factorial(n-1)
|
||||||
|
def take_all_pwrs(self, vec, pwr):
|
||||||
|
#todo: vectorize (kinda)
|
||||||
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||||
|
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||||
|
for i in torch.t(combins).to(device).to(torch.float):
|
||||||
|
out *= i
|
||||||
|
if pwr == 1:
|
||||||
|
return out
|
||||||
|
else:
|
||||||
|
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||||
def forward(self,mtx):
|
def forward(self,mtx):
|
||||||
#TODO: Vectorize the last part
|
#TODO: Vectorize the last part
|
||||||
cols=[]
|
cols=[]
|
||||||
for i in torch.t(mtx):
|
for i in torch.t(mtx):
|
||||||
cols.append(take_all_pwrs(i,self.power))
|
cols.append(self.take_all_pwrs(i,self.power))
|
||||||
new_mtx=torch.t(torch.stack(cols))
|
new_mtx=torch.t(torch.stack(cols))
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||||
|
|
||||||
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||||
data_cuda=data.to(device)
|
data_cuda=data.to(device)
|
||||||
ground_cuda=ground.to(device)
|
ground_cuda=ground.to(device)
|
||||||
@@ -192,7 +195,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
|
|||||||
optim.step()
|
optim.step()
|
||||||
return kernel
|
return kernel
|
||||||
|
|
||||||
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||||
data_cuda=data.to(device)
|
data_cuda=data.to(device)
|
||||||
ground_cuda=ground.to(device)
|
ground_cuda=ground.to(device)
|
||||||
if (return_losses):
|
if (return_losses):
|
||||||
@@ -214,4 +217,4 @@ def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations
|
|||||||
ls=loss(pred,ground_cuda)
|
ls=loss(pred,ground_cuda)
|
||||||
ls.backward()
|
ls.backward()
|
||||||
optim.step()
|
optim.step()
|
||||||
return kernel
|
return kernel
|
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.10-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.10-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.10.tar.gz
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.10.tar.gz
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.11-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.11-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.11.tar.gz
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.11.tar.gz
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.9-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.9-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.9.tar.gz
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.9.tar.gz
vendored
Normal file
Binary file not shown.
5
analysis-master/analysis-amd64/docker/Dockerfile
Normal file
5
analysis-master/analysis-amd64/docker/Dockerfile
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
FROM python
|
||||||
|
WORKDIR ~/
|
||||||
|
COPY ./ ./
|
||||||
|
RUN pip install -r requirements.txt
|
||||||
|
CMD ["bash"]
|
3
analysis-master/analysis-amd64/docker/start-docker.sh
Executable file
3
analysis-master/analysis-amd64/docker/start-docker.sh
Executable file
@@ -0,0 +1,3 @@
|
|||||||
|
cd ..
|
||||||
|
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
|
||||||
|
docker run -it tra-analysis-amd64-dev
|
6
analysis-master/analysis-amd64/requirements.txt
Normal file
6
analysis-master/analysis-amd64/requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
numba
|
||||||
|
numpy
|
||||||
|
scipy
|
||||||
|
scikit-learn
|
||||||
|
six
|
||||||
|
matplotlib
|
@@ -1,8 +1,14 @@
|
|||||||
import setuptools
|
import setuptools
|
||||||
|
|
||||||
|
requirements = []
|
||||||
|
|
||||||
|
with open("requirements.txt", 'r') as file:
|
||||||
|
for line in file:
|
||||||
|
requirements.append(line)
|
||||||
|
|
||||||
setuptools.setup(
|
setuptools.setup(
|
||||||
name="analysis", # Replace with your own username
|
name="analysis",
|
||||||
version="1.0.0.003",
|
version="1.0.0.011",
|
||||||
author="The Titan Scouting Team",
|
author="The Titan Scouting Team",
|
||||||
author_email="titanscout2022@gmail.com",
|
author_email="titanscout2022@gmail.com",
|
||||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||||
@@ -10,6 +16,7 @@ setuptools.setup(
|
|||||||
long_description_content_type="text/markdown",
|
long_description_content_type="text/markdown",
|
||||||
url="https://github.com/titanscout2022/tr2022-strategy",
|
url="https://github.com/titanscout2022/tr2022-strategy",
|
||||||
packages=setuptools.find_packages(),
|
packages=setuptools.find_packages(),
|
||||||
|
install_requires=requirements,
|
||||||
license = "GNU General Public License v3.0",
|
license = "GNU General Public License v3.0",
|
||||||
classifiers=[
|
classifiers=[
|
||||||
"Programming Language :: Python :: 3",
|
"Programming Language :: Python :: 3",
|
3
analysis-master/analysis-arm64/docker/start-docker.sh
Executable file
3
analysis-master/analysis-arm64/docker/start-docker.sh
Executable file
@@ -0,0 +1,3 @@
|
|||||||
|
cd ..
|
||||||
|
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
|
||||||
|
docker run -it tra-analysis-amd64-dev
|
@@ -1,952 +0,0 @@
|
|||||||
# Titan Robotics Team 2022: Data Analysis Module
|
|
||||||
# Written by Arthur Lu & Jacob Levine
|
|
||||||
# Notes:
|
|
||||||
# this should be imported as a python module using 'import analysis'
|
|
||||||
# this should be included in the local directory or environment variable
|
|
||||||
# this module has been optimized for multhreaded computing
|
|
||||||
# current benchmark of optimization: 1.33 times faster
|
|
||||||
# setup:
|
|
||||||
|
|
||||||
__version__ = "1.1.12.003"
|
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
|
||||||
__changelog__ = """changelog:
|
|
||||||
1.1.12.003:
|
|
||||||
- removed depreciated code
|
|
||||||
1.1.12.002:
|
|
||||||
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
|
||||||
1.1.12.001:
|
|
||||||
- improved readibility of regression outputs by stripping tensor data
|
|
||||||
- used map with lambda to acheive the improved readibility
|
|
||||||
- lost numba jit support with regression, and generated_jit hangs at execution
|
|
||||||
- TODO: reimplement correct numba integration in regression
|
|
||||||
1.1.12.000:
|
|
||||||
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
|
||||||
1.1.11.010:
|
|
||||||
- alphabeticaly ordered import lists
|
|
||||||
1.1.11.009:
|
|
||||||
- bug fixes
|
|
||||||
1.1.11.008:
|
|
||||||
- bug fixes
|
|
||||||
1.1.11.007:
|
|
||||||
- bug fixes
|
|
||||||
1.1.11.006:
|
|
||||||
- tested min and max
|
|
||||||
- bug fixes
|
|
||||||
1.1.11.005:
|
|
||||||
- added min and max in basic_stats
|
|
||||||
1.1.11.004:
|
|
||||||
- bug fixes
|
|
||||||
1.1.11.003:
|
|
||||||
- bug fixes
|
|
||||||
1.1.11.002:
|
|
||||||
- consolidated metrics
|
|
||||||
- fixed __all__
|
|
||||||
1.1.11.001:
|
|
||||||
- added test/train split to RandomForestClassifier and RandomForestRegressor
|
|
||||||
1.1.11.000:
|
|
||||||
- added RandomForestClassifier and RandomForestRegressor
|
|
||||||
- note: untested
|
|
||||||
1.1.10.000:
|
|
||||||
- added numba.jit to remaining functions
|
|
||||||
1.1.9.002:
|
|
||||||
- kernelized PCA and KNN
|
|
||||||
1.1.9.001:
|
|
||||||
- fixed bugs with SVM and NaiveBayes
|
|
||||||
1.1.9.000:
|
|
||||||
- added SVM class, subclasses, and functions
|
|
||||||
- note: untested
|
|
||||||
1.1.8.000:
|
|
||||||
- added NaiveBayes classification engine
|
|
||||||
- note: untested
|
|
||||||
1.1.7.000:
|
|
||||||
- added knn()
|
|
||||||
- added confusion matrix to decisiontree()
|
|
||||||
1.1.6.002:
|
|
||||||
- changed layout of __changelog to be vscode friendly
|
|
||||||
1.1.6.001:
|
|
||||||
- added additional hyperparameters to decisiontree()
|
|
||||||
1.1.6.000:
|
|
||||||
- fixed __version__
|
|
||||||
- fixed __all__ order
|
|
||||||
- added decisiontree()
|
|
||||||
1.1.5.003:
|
|
||||||
- added pca
|
|
||||||
1.1.5.002:
|
|
||||||
- reduced import list
|
|
||||||
- added kmeans clustering engine
|
|
||||||
1.1.5.001:
|
|
||||||
- simplified regression by using .to(device)
|
|
||||||
1.1.5.000:
|
|
||||||
- added polynomial regression to regression(); untested
|
|
||||||
1.1.4.000:
|
|
||||||
- added trueskill()
|
|
||||||
1.1.3.002:
|
|
||||||
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
|
|
||||||
1.1.3.001:
|
|
||||||
- changed glicko2() to return tuple instead of array
|
|
||||||
1.1.3.000:
|
|
||||||
- added glicko2_engine class and glicko()
|
|
||||||
- verified glicko2() accuracy
|
|
||||||
1.1.2.003:
|
|
||||||
- fixed elo()
|
|
||||||
1.1.2.002:
|
|
||||||
- added elo()
|
|
||||||
- elo() has bugs to be fixed
|
|
||||||
1.1.2.001:
|
|
||||||
- readded regrression import
|
|
||||||
1.1.2.000:
|
|
||||||
- integrated regression.py as regression class
|
|
||||||
- removed regression import
|
|
||||||
- fixed metadata for regression class
|
|
||||||
- fixed metadata for analysis class
|
|
||||||
1.1.1.001:
|
|
||||||
- regression_engine() bug fixes, now actaully regresses
|
|
||||||
1.1.1.000:
|
|
||||||
- added regression_engine()
|
|
||||||
- added all regressions except polynomial
|
|
||||||
1.1.0.007:
|
|
||||||
- updated _init_device()
|
|
||||||
1.1.0.006:
|
|
||||||
- removed useless try statements
|
|
||||||
1.1.0.005:
|
|
||||||
- removed impossible outcomes
|
|
||||||
1.1.0.004:
|
|
||||||
- added performance metrics (r^2, mse, rms)
|
|
||||||
1.1.0.003:
|
|
||||||
- resolved nopython mode for mean, median, stdev, variance
|
|
||||||
1.1.0.002:
|
|
||||||
- snapped (removed) majority of uneeded imports
|
|
||||||
- forced object mode (bad) on all jit
|
|
||||||
- TODO: stop numba complaining about not being able to compile in nopython mode
|
|
||||||
1.1.0.001:
|
|
||||||
- removed from sklearn import * to resolve uneeded wildcard imports
|
|
||||||
1.1.0.000:
|
|
||||||
- removed c_entities,nc_entities,obstacles,objectives from __all__
|
|
||||||
- applied numba.jit to all functions
|
|
||||||
- depreciated and removed stdev_z_split
|
|
||||||
- cleaned up histo_analysis to include numpy and numba.jit optimizations
|
|
||||||
- depreciated and removed all regression functions in favor of future pytorch optimizer
|
|
||||||
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
|
|
||||||
- optimized z_normalize using sklearn.preprocessing.normalize
|
|
||||||
- TODO: implement kernel/function based pytorch regression optimizer
|
|
||||||
1.0.9.000:
|
|
||||||
- refactored
|
|
||||||
- numpyed everything
|
|
||||||
- removed stats in favor of numpy functions
|
|
||||||
1.0.8.005:
|
|
||||||
- minor fixes
|
|
||||||
1.0.8.004:
|
|
||||||
- removed a few unused dependencies
|
|
||||||
1.0.8.003:
|
|
||||||
- added p_value function
|
|
||||||
1.0.8.002:
|
|
||||||
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
|
|
||||||
1.0.8.001:
|
|
||||||
- refactors
|
|
||||||
- bugfixes
|
|
||||||
1.0.8.000:
|
|
||||||
- depreciated histo_analysis_old
|
|
||||||
- depreciated debug
|
|
||||||
- altered basic_analysis to take array data instead of filepath
|
|
||||||
- refactor
|
|
||||||
- optimization
|
|
||||||
1.0.7.002:
|
|
||||||
- bug fixes
|
|
||||||
1.0.7.001:
|
|
||||||
- bug fixes
|
|
||||||
1.0.7.000:
|
|
||||||
- added tanh_regression (logistical regression)
|
|
||||||
- bug fixes
|
|
||||||
1.0.6.005:
|
|
||||||
- added z_normalize function to normalize dataset
|
|
||||||
- bug fixes
|
|
||||||
1.0.6.004:
|
|
||||||
- bug fixes
|
|
||||||
1.0.6.003:
|
|
||||||
- bug fixes
|
|
||||||
1.0.6.002:
|
|
||||||
- bug fixes
|
|
||||||
1.0.6.001:
|
|
||||||
- corrected __all__ to contain all of the functions
|
|
||||||
1.0.6.000:
|
|
||||||
- added calc_overfit, which calculates two measures of overfit, error and performance
|
|
||||||
- added calculating overfit to optimize_regression
|
|
||||||
1.0.5.000:
|
|
||||||
- added optimize_regression function, which is a sample function to find the optimal regressions
|
|
||||||
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
|
||||||
- planned addition: overfit detection in the optimize_regression function
|
|
||||||
1.0.4.002:
|
|
||||||
- added __changelog__
|
|
||||||
- updated debug function with log and exponential regressions
|
|
||||||
1.0.4.001:
|
|
||||||
- added log regressions
|
|
||||||
- added exponential regressions
|
|
||||||
- added log_regression and exp_regression to __all__
|
|
||||||
1.0.3.008:
|
|
||||||
- added debug function to further consolidate functions
|
|
||||||
1.0.3.007:
|
|
||||||
- added builtin benchmark function
|
|
||||||
- added builtin random (linear) data generation function
|
|
||||||
- added device initialization (_init_device)
|
|
||||||
1.0.3.006:
|
|
||||||
- reorganized the imports list to be in alphabetical order
|
|
||||||
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
|
||||||
1.0.3.005:
|
|
||||||
- major bug fixes
|
|
||||||
- updated historical analysis
|
|
||||||
- depreciated old historical analysis
|
|
||||||
1.0.3.004:
|
|
||||||
- added __version__, __author__, __all__
|
|
||||||
- added polynomial regression
|
|
||||||
- added root mean squared function
|
|
||||||
- added r squared function
|
|
||||||
1.0.3.003:
|
|
||||||
- bug fixes
|
|
||||||
- added c_entities
|
|
||||||
1.0.3.002:
|
|
||||||
- bug fixes
|
|
||||||
- added nc_entities, obstacles, objectives
|
|
||||||
- consolidated statistics.py to analysis.py
|
|
||||||
1.0.3.001:
|
|
||||||
- compiled 1d, column, and row basic stats into basic stats function
|
|
||||||
1.0.3.000:
|
|
||||||
- added historical analysis function
|
|
||||||
1.0.2.xxx:
|
|
||||||
- added z score test
|
|
||||||
1.0.1.xxx:
|
|
||||||
- major bug fixes
|
|
||||||
1.0.0.xxx:
|
|
||||||
- added loading csv
|
|
||||||
- added 1d, column, row basic stats
|
|
||||||
"""
|
|
||||||
|
|
||||||
__author__ = (
|
|
||||||
"Arthur Lu <learthurgo@gmail.com>",
|
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
|
||||||
)
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
'_init_device',
|
|
||||||
'load_csv',
|
|
||||||
'basic_stats',
|
|
||||||
'z_score',
|
|
||||||
'z_normalize',
|
|
||||||
'histo_analysis',
|
|
||||||
'regression',
|
|
||||||
'elo',
|
|
||||||
'gliko2',
|
|
||||||
'trueskill',
|
|
||||||
'RegressionMetrics',
|
|
||||||
'ClassificationMetrics',
|
|
||||||
'kmeans',
|
|
||||||
'pca',
|
|
||||||
'decisiontree',
|
|
||||||
'knn_classifier',
|
|
||||||
'knn_regressor',
|
|
||||||
'NaiveBayes',
|
|
||||||
'SVM',
|
|
||||||
'random_forest_classifier',
|
|
||||||
'random_forest_regressor',
|
|
||||||
'Regression',
|
|
||||||
'Gliko2',
|
|
||||||
# all statistics functions left out due to integration in other functions
|
|
||||||
]
|
|
||||||
|
|
||||||
# now back to your regularly scheduled programming:
|
|
||||||
|
|
||||||
# imports (now in alphabetical order! v 1.0.3.006):
|
|
||||||
|
|
||||||
import csv
|
|
||||||
import numba
|
|
||||||
from numba import jit
|
|
||||||
import numpy as np
|
|
||||||
import math
|
|
||||||
import sklearn
|
|
||||||
from sklearn import *
|
|
||||||
import torch
|
|
||||||
try:
|
|
||||||
from analysis import trueskill as Trueskill
|
|
||||||
except:
|
|
||||||
import trueskill as Trueskill
|
|
||||||
|
|
||||||
class error(ValueError):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def _init_device(): # initiates computation device for ANNs
|
|
||||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
||||||
return device
|
|
||||||
|
|
||||||
def load_csv(filepath):
|
|
||||||
with open(filepath, newline='') as csvfile:
|
|
||||||
file_array = np.array(list(csv.reader(csvfile)))
|
|
||||||
csvfile.close()
|
|
||||||
return file_array
|
|
||||||
|
|
||||||
# expects 1d array
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def basic_stats(data):
|
|
||||||
|
|
||||||
data_t = np.array(data).astype(float)
|
|
||||||
|
|
||||||
_mean = mean(data_t)
|
|
||||||
_median = median(data_t)
|
|
||||||
_stdev = stdev(data_t)
|
|
||||||
_variance = variance(data_t)
|
|
||||||
_min = npmin(data_t)
|
|
||||||
_max = npmax(data_t)
|
|
||||||
|
|
||||||
return _mean, _median, _stdev, _variance, _min, _max
|
|
||||||
|
|
||||||
# returns z score with inputs of point, mean and standard deviation of spread
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def z_score(point, mean, stdev):
|
|
||||||
score = (point - mean) / stdev
|
|
||||||
|
|
||||||
return score
|
|
||||||
|
|
||||||
# expects 2d array, normalizes across all axes
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def z_normalize(array, *args):
|
|
||||||
|
|
||||||
array = np.array(array)
|
|
||||||
for arg in args:
|
|
||||||
array = sklearn.preprocessing.normalize(array, axis = arg)
|
|
||||||
|
|
||||||
return array
|
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
# expects 2d array of [x,y]
|
|
||||||
def histo_analysis(hist_data):
|
|
||||||
|
|
||||||
hist_data = np.array(hist_data)
|
|
||||||
derivative = np.array(len(hist_data) - 1, dtype = float)
|
|
||||||
t = np.diff(hist_data)
|
|
||||||
derivative = t[1] / t[0]
|
|
||||||
np.sort(derivative)
|
|
||||||
|
|
||||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
|
||||||
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
|
||||||
|
|
||||||
regressions = []
|
|
||||||
Regression().set_device(ndevice)
|
|
||||||
|
|
||||||
if 'lin' in args: # formula: ax + b
|
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
|
||||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
|
||||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
|
||||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
|
||||||
|
|
||||||
plys = []
|
|
||||||
limit = len(outputs[0])
|
|
||||||
|
|
||||||
for i in range(2, limit):
|
|
||||||
|
|
||||||
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
|
|
||||||
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
|
|
||||||
model = model.fit(np.rot90(inputs), np.rot90(outputs))
|
|
||||||
|
|
||||||
params = model.steps[1][1].intercept_.tolist()
|
|
||||||
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
|
|
||||||
params.flatten()
|
|
||||||
params = params.tolist()
|
|
||||||
|
|
||||||
plys.append(params)
|
|
||||||
|
|
||||||
regressions.append(plys)
|
|
||||||
|
|
||||||
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
params = model[0].parameters
|
|
||||||
params[:] = map(lambda x: x.item(), params)
|
|
||||||
regressions.append((params, model[1][::-1][0]))
|
|
||||||
|
|
||||||
return regressions
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def elo(starting_score, opposing_score, observed, N, K):
|
|
||||||
|
|
||||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
|
||||||
|
|
||||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def gliko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
|
||||||
|
|
||||||
player = Gliko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
|
||||||
|
|
||||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
|
||||||
|
|
||||||
return (player.rating, player.rd, player.vol)
|
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
|
||||||
|
|
||||||
team_ratings = []
|
|
||||||
|
|
||||||
for team in teams_data:
|
|
||||||
team_temp = []
|
|
||||||
for player in team:
|
|
||||||
player = Trueskill.Rating(player[0], player[1])
|
|
||||||
team_temp.append(player)
|
|
||||||
team_ratings.append(team_temp)
|
|
||||||
|
|
||||||
return Trueskill.rate(teams_data, observations)
|
|
||||||
|
|
||||||
class RegressionMetrics():
|
|
||||||
|
|
||||||
def __new__(cls, predictions, targets):
|
|
||||||
|
|
||||||
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
|
||||||
|
|
||||||
def r_squared(self, predictions, targets): # assumes equal size inputs
|
|
||||||
|
|
||||||
return sklearn.metrics.r2_score(targets, predictions)
|
|
||||||
|
|
||||||
def mse(self, predictions, targets):
|
|
||||||
|
|
||||||
return sklearn.metrics.mean_squared_error(targets, predictions)
|
|
||||||
|
|
||||||
def rms(self, predictions, targets):
|
|
||||||
|
|
||||||
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
|
||||||
|
|
||||||
class ClassificationMetrics():
|
|
||||||
|
|
||||||
def __new__(cls, predictions, targets):
|
|
||||||
|
|
||||||
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
|
|
||||||
|
|
||||||
def cm(self, predictions, targets):
|
|
||||||
|
|
||||||
return sklearn.metrics.confusion_matrix(targets, predictions)
|
|
||||||
|
|
||||||
def cr(self, predictions, targets):
|
|
||||||
|
|
||||||
return sklearn.metrics.classification_report(targets, predictions)
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def mean(data):
|
|
||||||
|
|
||||||
return np.mean(data)
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def median(data):
|
|
||||||
|
|
||||||
return np.median(data)
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def stdev(data):
|
|
||||||
|
|
||||||
return np.std(data)
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def variance(data):
|
|
||||||
|
|
||||||
return np.var(data)
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def npmin(data):
|
|
||||||
|
|
||||||
return np.amin(data)
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
|
||||||
def npmax(data):
|
|
||||||
|
|
||||||
return np.amax(data)
|
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
|
||||||
|
|
||||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
|
||||||
kernel.fit(data)
|
|
||||||
predictions = kernel.predict(data)
|
|
||||||
centers = kernel.cluster_centers_
|
|
||||||
|
|
||||||
return centers, predictions
|
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
|
||||||
|
|
||||||
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
|
||||||
|
|
||||||
return kernel.fit_transform(data)
|
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
||||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
|
||||||
model = model.fit(data_train,labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
metrics = ClassificationMetrics(predictions, labels_test)
|
|
||||||
|
|
||||||
return model, metrics
|
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
||||||
model = sklearn.neighbors.KNeighborsClassifier()
|
|
||||||
model.fit(data_train, labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, ClassificationMetrics(predictions, labels_test)
|
|
||||||
|
|
||||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
|
||||||
|
|
||||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
|
||||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
|
||||||
model.fit(data_train, outputs_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, RegressionMetrics(predictions, outputs_test)
|
|
||||||
|
|
||||||
class NaiveBayes:
|
|
||||||
|
|
||||||
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
||||||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
|
||||||
model.fit(data_train, labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, ClassificationMetrics(predictions, labels_test)
|
|
||||||
|
|
||||||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
||||||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
|
||||||
model.fit(data_train, labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, ClassificationMetrics(predictions, labels_test)
|
|
||||||
|
|
||||||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
||||||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
|
||||||
model.fit(data_train, labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, ClassificationMetrics(predictions, labels_test)
|
|
||||||
|
|
||||||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
||||||
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
|
||||||
model.fit(data_train, labels_train)
|
|
||||||
predictions = model.predict(data_test)
|
|
||||||
|
|
||||||
return model, ClassificationMetrics(predictions, labels_test)
|
|
||||||
|
|
||||||
class SVM:
|
|
||||||
|
|
||||||
class CustomKernel:
|
|
||||||
|
|
||||||
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
|
||||||
|
|
||||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
|
||||||
|
|
||||||
class StandardKernel:
|
|
||||||
|
|
||||||
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
|
||||||
|
|
||||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
|
||||||
|
|
||||||
class PrebuiltKernel:
|
|
||||||
|
|
||||||
class Linear:
|
|
||||||
|
|
||||||
def __new__(cls):
|
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'linear')
|
|
||||||
|
|
||||||
class Polynomial:
|
|
||||||
|
|
||||||
def __new__(cls, power, r_bias):
|
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
|
||||||
|
|
||||||
class RBF:
|
|
||||||
|
|
||||||
def __new__(cls, gamma):
|
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
|
||||||
|
|
||||||
class Sigmoid:
|
|
||||||
|
|
||||||
def __new__(cls, r_bias):
|
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
|
||||||
|
|
||||||
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
|
|
||||||
|
|
||||||
return kernel.fit(train_data, train_outputs)
|
|
||||||
|
|
||||||
def eval_classification(self, kernel, test_data, test_outputs):
|
|
||||||
|
|
||||||
predictions = kernel.predict(test_data)
|
|
||||||
|
|
||||||
return ClassificationMetrics(predictions, test_outputs)
|
|
||||||
|
|
||||||
def eval_regression(self, kernel, test_data, test_outputs):
|
|
||||||
|
|
||||||
predictions = kernel.predict(test_data)
|
|
||||||
|
|
||||||
return RegressionMetrics(predictions, test_outputs)
|
|
||||||
|
|
||||||
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
||||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
|
||||||
kernel.fit(data_train, labels_train)
|
|
||||||
predictions = kernel.predict(data_test)
|
|
||||||
|
|
||||||
return kernel, ClassificationMetrics(predictions, labels_test)
|
|
||||||
|
|
||||||
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
|
||||||
|
|
||||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
|
||||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
|
||||||
kernel.fit(data_train, outputs_train)
|
|
||||||
predictions = kernel.predict(data_test)
|
|
||||||
|
|
||||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
|
||||||
|
|
||||||
class Regression:
|
|
||||||
|
|
||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
|
||||||
# Written by Arthur Lu & Jacob Levine
|
|
||||||
# Notes:
|
|
||||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
|
||||||
# setup:
|
|
||||||
|
|
||||||
__version__ = "1.0.0.003"
|
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
|
||||||
__changelog__ = """
|
|
||||||
1.0.0.003:
|
|
||||||
- bug fixes
|
|
||||||
1.0.0.002:
|
|
||||||
-Added more parameters to log, exponential, polynomial
|
|
||||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
|
||||||
to train the scaling and shifting of sigmoids
|
|
||||||
|
|
||||||
1.0.0.001:
|
|
||||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
|
||||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
|
||||||
"""
|
|
||||||
|
|
||||||
__author__ = (
|
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
|
||||||
"Arthur Lu <learthurgo@gmail.com>"
|
|
||||||
)
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
'factorial',
|
|
||||||
'take_all_pwrs',
|
|
||||||
'num_poly_terms',
|
|
||||||
'set_device',
|
|
||||||
'LinearRegKernel',
|
|
||||||
'SigmoidalRegKernel',
|
|
||||||
'LogRegKernel',
|
|
||||||
'PolyRegKernel',
|
|
||||||
'ExpRegKernel',
|
|
||||||
'SigmoidalRegKernelArthur',
|
|
||||||
'SGDTrain',
|
|
||||||
'CustomTrain'
|
|
||||||
]
|
|
||||||
|
|
||||||
global device
|
|
||||||
|
|
||||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
|
||||||
|
|
||||||
#todo: document completely
|
|
||||||
|
|
||||||
def set_device(self, new_device):
|
|
||||||
device=new_device
|
|
||||||
|
|
||||||
class LinearRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return torch.matmul(self.weights,mtx)+long_bias
|
|
||||||
|
|
||||||
class SigmoidalRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
sigmoid=torch.nn.Sigmoid()
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
|
||||||
|
|
||||||
class SigmoidalRegKernelArthur():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
sigmoid=torch.nn.Sigmoid()
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class LogRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class ExpRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
in_bias=None
|
|
||||||
scal_mult=None
|
|
||||||
out_bias=None
|
|
||||||
def __init__(self, num_vars):
|
|
||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
||||||
def forward(self,mtx):
|
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
||||||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
||||||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
||||||
|
|
||||||
class PolyRegKernel():
|
|
||||||
parameters= []
|
|
||||||
weights=None
|
|
||||||
bias=None
|
|
||||||
power=None
|
|
||||||
def __init__(self, num_vars, power):
|
|
||||||
self.power=power
|
|
||||||
num_terms=self.num_poly_terms(num_vars, power)
|
|
||||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
|
||||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
||||||
self.parameters=[self.weights,self.bias]
|
|
||||||
def num_poly_terms(self,num_vars, power):
|
|
||||||
if power == 0:
|
|
||||||
return 0
|
|
||||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
|
||||||
def factorial(self,n):
|
|
||||||
if n==0:
|
|
||||||
return 1
|
|
||||||
else:
|
|
||||||
return n*self.factorial(n-1)
|
|
||||||
def take_all_pwrs(self, vec, pwr):
|
|
||||||
#todo: vectorize (kinda)
|
|
||||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
||||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
|
||||||
for i in torch.t(combins).to(device).to(torch.float):
|
|
||||||
out *= i
|
|
||||||
if pwr == 1:
|
|
||||||
return out
|
|
||||||
else:
|
|
||||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
|
||||||
def forward(self,mtx):
|
|
||||||
#TODO: Vectorize the last part
|
|
||||||
cols=[]
|
|
||||||
for i in torch.t(mtx):
|
|
||||||
cols.append(self.take_all_pwrs(i,self.power))
|
|
||||||
new_mtx=torch.t(torch.stack(cols))
|
|
||||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
||||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
|
||||||
|
|
||||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
|
||||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
|
||||||
data_cuda=data.to(device)
|
|
||||||
ground_cuda=ground.to(device)
|
|
||||||
if (return_losses):
|
|
||||||
losses=[]
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
losses.append(ls.item())
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return [kernel,losses]
|
|
||||||
else:
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return kernel
|
|
||||||
|
|
||||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
|
||||||
data_cuda=data.to(device)
|
|
||||||
ground_cuda=ground.to(device)
|
|
||||||
if (return_losses):
|
|
||||||
losses=[]
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data)
|
|
||||||
ls=loss(pred,ground)
|
|
||||||
losses.append(ls.item())
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return [kernel,losses]
|
|
||||||
else:
|
|
||||||
for i in range(iterations):
|
|
||||||
with torch.set_grad_enabled(True):
|
|
||||||
optim.zero_grad()
|
|
||||||
pred=kernel.forward(data_cuda)
|
|
||||||
ls=loss(pred,ground_cuda)
|
|
||||||
ls.backward()
|
|
||||||
optim.step()
|
|
||||||
return kernel
|
|
||||||
|
|
||||||
class Gliko2:
|
|
||||||
|
|
||||||
_tau = 0.5
|
|
||||||
|
|
||||||
def getRating(self):
|
|
||||||
return (self.__rating * 173.7178) + 1500
|
|
||||||
|
|
||||||
def setRating(self, rating):
|
|
||||||
self.__rating = (rating - 1500) / 173.7178
|
|
||||||
|
|
||||||
rating = property(getRating, setRating)
|
|
||||||
|
|
||||||
def getRd(self):
|
|
||||||
return self.__rd * 173.7178
|
|
||||||
|
|
||||||
def setRd(self, rd):
|
|
||||||
self.__rd = rd / 173.7178
|
|
||||||
|
|
||||||
rd = property(getRd, setRd)
|
|
||||||
|
|
||||||
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
|
||||||
|
|
||||||
self.setRating(rating)
|
|
||||||
self.setRd(rd)
|
|
||||||
self.vol = vol
|
|
||||||
|
|
||||||
def _preRatingRD(self):
|
|
||||||
|
|
||||||
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
|
||||||
|
|
||||||
def update_player(self, rating_list, RD_list, outcome_list):
|
|
||||||
|
|
||||||
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
|
||||||
RD_list = [x / 173.7178 for x in RD_list]
|
|
||||||
|
|
||||||
v = self._v(rating_list, RD_list)
|
|
||||||
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
|
||||||
self._preRatingRD()
|
|
||||||
|
|
||||||
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempSum += self._g(RD_list[i]) * \
|
|
||||||
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
|
||||||
self.__rating += math.pow(self.__rd, 2) * tempSum
|
|
||||||
|
|
||||||
|
|
||||||
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
|
||||||
a = math.log(math.pow(self.vol, 2))
|
|
||||||
tau = self._tau
|
|
||||||
x0 = a
|
|
||||||
x1 = 0
|
|
||||||
|
|
||||||
while x0 != x1:
|
|
||||||
# New iteration, so x(i) becomes x(i-1)
|
|
||||||
x0 = x1
|
|
||||||
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
|
||||||
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
|
||||||
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
|
||||||
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
|
||||||
(math.pow(self.__rating, 2) + v) \
|
|
||||||
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
|
||||||
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
|
||||||
x1 = x0 - (h1 / h2)
|
|
||||||
|
|
||||||
return math.exp(x1 / 2)
|
|
||||||
|
|
||||||
def _delta(self, rating_list, RD_list, outcome_list, v):
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
|
||||||
return v * tempSum
|
|
||||||
|
|
||||||
def _v(self, rating_list, RD_list):
|
|
||||||
|
|
||||||
tempSum = 0
|
|
||||||
for i in range(len(rating_list)):
|
|
||||||
tempE = self._E(rating_list[i], RD_list[i])
|
|
||||||
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
|
||||||
return 1 / tempSum
|
|
||||||
|
|
||||||
def _E(self, p2rating, p2RD):
|
|
||||||
|
|
||||||
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
|
||||||
(self.__rating - p2rating)))
|
|
||||||
|
|
||||||
def _g(self, RD):
|
|
||||||
|
|
||||||
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
|
||||||
|
|
||||||
def did_not_compete(self):
|
|
||||||
|
|
||||||
self._preRatingRD()
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1 +0,0 @@
|
|||||||
python3 setup.py sdist bdist_wheel
|
|
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.1.tar.gz
vendored
BIN
analysis-master/dist/analysis-1.0.0.1.tar.gz
vendored
Binary file not shown.
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.2.tar.gz
vendored
BIN
analysis-master/dist/analysis-1.0.0.2.tar.gz
vendored
Binary file not shown.
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.3.tar.gz
vendored
BIN
analysis-master/dist/analysis-1.0.0.3.tar.gz
vendored
Binary file not shown.
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
@@ -1,6 +0,0 @@
|
|||||||
2020ilch
|
|
||||||
balls-blocked,basic_stats,historical_analysis
|
|
||||||
balls-collected,basic_stats,historical_analysis
|
|
||||||
balls-lower,basic_stats,historical_analysis
|
|
||||||
balls-started,basic_stats,historical_analysis
|
|
||||||
balls-upper,basic_stats,historical_analysis
|
|
|
1
data analysis/config/competition.config
Normal file
1
data analysis/config/competition.config
Normal file
@@ -0,0 +1 @@
|
|||||||
|
2020ilch
|
14
data analysis/config/stats.config
Normal file
14
data analysis/config/stats.config
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
wheel-mechanism
|
||||||
|
low-balls
|
||||||
|
high-balls
|
||||||
|
wheel-success
|
||||||
|
strategic-focus
|
||||||
|
climb-mechanism
|
||||||
|
attitude
|
@@ -8,7 +8,7 @@ def pull_new_tba_matches(apikey, competition, cutoff):
|
|||||||
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
|
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
|
||||||
out = []
|
out = []
|
||||||
for i in x.json():
|
for i in x.json():
|
||||||
if (i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
|
if (i["actual_time"] != None and i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
|
||||||
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
|
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
|
||||||
return out
|
return out
|
||||||
|
|
||||||
@@ -21,6 +21,13 @@ def get_team_match_data(apikey, competition, team_num):
|
|||||||
out[i['match']] = i['data']
|
out[i['match']] = i['data']
|
||||||
return pd.DataFrame(out)
|
return pd.DataFrame(out)
|
||||||
|
|
||||||
|
def get_team_pit_data(apikey, competition, team_num):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.pitdata
|
||||||
|
out = {}
|
||||||
|
return mdata.find_one({"competition" : competition, "team_scouted": team_num})["data"]
|
||||||
|
|
||||||
def get_team_metrics_data(apikey, competition, team_num):
|
def get_team_metrics_data(apikey, competition, team_num):
|
||||||
client = pymongo.MongoClient(apikey)
|
client = pymongo.MongoClient(apikey)
|
||||||
db = client.data_processing
|
db = client.data_processing
|
||||||
@@ -38,7 +45,7 @@ def unkeyify_2l(layered_dict):
|
|||||||
out[i] = list(map(lambda x: x[1], add))
|
out[i] = list(map(lambda x: x[1], add))
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def get_data_formatted(apikey, competition):
|
def get_match_data_formatted(apikey, competition):
|
||||||
client = pymongo.MongoClient(apikey)
|
client = pymongo.MongoClient(apikey)
|
||||||
db = client.data_scouting
|
db = client.data_scouting
|
||||||
mdata = db.teamlist
|
mdata = db.teamlist
|
||||||
@@ -51,6 +58,19 @@ def get_data_formatted(apikey, competition):
|
|||||||
pass
|
pass
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
def get_pit_data_formatted(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.teamlist
|
||||||
|
x=mdata.find_one({"competition":competition})
|
||||||
|
out = {}
|
||||||
|
for i in x:
|
||||||
|
try:
|
||||||
|
out[int(i)] = get_team_pit_data(apikey, competition, int(i))
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return out
|
||||||
|
|
||||||
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
|
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
|
||||||
client = pymongo.MongoClient(apikey)
|
client = pymongo.MongoClient(apikey)
|
||||||
db = client[dbname]
|
db = client[dbname]
|
||||||
@@ -63,6 +83,12 @@ def push_team_metrics_data(apikey, competition, team_num, data, dbname = "data_p
|
|||||||
mdata = db[colname]
|
mdata = db[colname]
|
||||||
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True)
|
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True)
|
||||||
|
|
||||||
|
def push_team_pit_data(apikey, competition, variable, data, dbname = "data_processing", colname = "team_pit"):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client[dbname]
|
||||||
|
mdata = db[colname]
|
||||||
|
mdata.replace_one({"competition" : competition, "variable": variable}, {"competition" : competition, "variable" : variable, "data" : data}, True)
|
||||||
|
|
||||||
def get_analysis_flags(apikey, flag):
|
def get_analysis_flags(apikey, flag):
|
||||||
client = pymongo.MongoClient(apikey)
|
client = pymongo.MongoClient(apikey)
|
||||||
db = client.data_processing
|
db = client.data_processing
|
||||||
|
59
data analysis/get_team_rankings.py
Normal file
59
data analysis/get_team_rankings.py
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
import data as d
|
||||||
|
from analysis import analysis as an
|
||||||
|
import pymongo
|
||||||
|
import operator
|
||||||
|
|
||||||
|
def load_config(file):
|
||||||
|
config_vector = {}
|
||||||
|
file = an.load_csv(file)
|
||||||
|
for line in file[1:]:
|
||||||
|
config_vector[line[0]] = line[1:]
|
||||||
|
|
||||||
|
return (file[0][0], config_vector)
|
||||||
|
|
||||||
|
def get_metrics_processed_formatted(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.teamlist
|
||||||
|
x=mdata.find_one({"competition":competition})
|
||||||
|
out = {}
|
||||||
|
for i in x:
|
||||||
|
try:
|
||||||
|
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return out
|
||||||
|
|
||||||
|
def main():
|
||||||
|
|
||||||
|
apikey = an.load_csv("keys.txt")[0][0]
|
||||||
|
tbakey = an.load_csv("keys.txt")[1][0]
|
||||||
|
|
||||||
|
competition, config = load_config("config.csv")
|
||||||
|
|
||||||
|
metrics = get_metrics_processed_formatted(apikey, competition)
|
||||||
|
|
||||||
|
elo = {}
|
||||||
|
gl2 = {}
|
||||||
|
|
||||||
|
for team in metrics:
|
||||||
|
|
||||||
|
elo[team] = metrics[team]["metrics"]["elo"]["score"]
|
||||||
|
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
|
||||||
|
|
||||||
|
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
|
||||||
|
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
|
||||||
|
|
||||||
|
for team in elo:
|
||||||
|
|
||||||
|
print("teams sorted by elo:")
|
||||||
|
print("" + str(team) + " | " + str(elo[team]))
|
||||||
|
|
||||||
|
print("*"*25)
|
||||||
|
|
||||||
|
for team in gl2:
|
||||||
|
|
||||||
|
print("teams sorted by glicko2:")
|
||||||
|
print("" + str(team) + " | " + str(gl2[team]))
|
||||||
|
|
||||||
|
main()
|
4
data analysis/requirements.txt
Normal file
4
data analysis/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
requests
|
||||||
|
pymongo
|
||||||
|
pandas
|
||||||
|
dnspython
|
@@ -3,10 +3,29 @@
|
|||||||
# Notes:
|
# Notes:
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "0.0.2.001"
|
__version__ = "0.0.5.002"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
0.0.5.002:
|
||||||
|
- made changes due to refactoring of analysis
|
||||||
|
0.0.5.001:
|
||||||
|
- text fixes
|
||||||
|
- removed matplotlib requirement
|
||||||
|
0.0.5.000:
|
||||||
|
- improved user interface
|
||||||
|
0.0.4.002:
|
||||||
|
- removed unessasary code
|
||||||
|
0.0.4.001:
|
||||||
|
- fixed bug where X range for regression was determined before sanitization
|
||||||
|
- better sanitized data
|
||||||
|
0.0.4.000:
|
||||||
|
- fixed spelling issue in __changelog__
|
||||||
|
- addressed nan bug in regression
|
||||||
|
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
|
||||||
|
- fixed errors in metrics computing
|
||||||
|
0.0.3.000:
|
||||||
|
- added analysis to pit data
|
||||||
0.0.2.001:
|
0.0.2.001:
|
||||||
- minor stability patches
|
- minor stability patches
|
||||||
- implemented db syncing for timestamps
|
- implemented db syncing for timestamps
|
||||||
@@ -69,22 +88,27 @@ __all__ = [
|
|||||||
|
|
||||||
from analysis import analysis as an
|
from analysis import analysis as an
|
||||||
import data as d
|
import data as d
|
||||||
|
import numpy as np
|
||||||
|
from os import system, name
|
||||||
|
from pathlib import Path
|
||||||
import time
|
import time
|
||||||
|
import warnings
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
warnings.filterwarnings("ignore")
|
||||||
while(True):
|
while(True):
|
||||||
|
|
||||||
current_time = time.time()
|
current_time = time.time()
|
||||||
print("time: " + str(current_time))
|
print("[OK] time: " + str(current_time))
|
||||||
|
|
||||||
print(" loading config")
|
start = time.time()
|
||||||
competition, config = load_config("config.csv")
|
config = load_config(Path("config/stats.config"))
|
||||||
print(" config loaded")
|
competition = an.load_csv(Path("config/competition.config"))[0][0]
|
||||||
|
print("[OK] configs loaded")
|
||||||
|
|
||||||
print(" loading database keys")
|
apikey = an.load_csv(Path("config/keys.config"))[0][0]
|
||||||
apikey = an.load_csv("keys.txt")[0][0]
|
tbakey = an.load_csv(Path("config/keys.config"))[1][0]
|
||||||
tbakey = an.load_csv("keys.txt")[1][0]
|
print("[OK] loaded keys")
|
||||||
print(" loaded keys")
|
|
||||||
|
|
||||||
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
||||||
|
|
||||||
@@ -97,33 +121,55 @@ def main():
|
|||||||
|
|
||||||
previous_time = previous_time["latest_update"]
|
previous_time = previous_time["latest_update"]
|
||||||
|
|
||||||
print(" analysis backtimed to: " + str(previous_time))
|
print("[OK] analysis backtimed to: " + str(previous_time))
|
||||||
|
|
||||||
print(" loading data")
|
print("[OK] loading data")
|
||||||
data = d.get_data_formatted(apikey, competition)
|
start = time.time()
|
||||||
print(" loaded data")
|
data = d.get_match_data_formatted(apikey, competition)
|
||||||
|
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
|
||||||
|
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
print(" running tests")
|
print("[OK] running tests")
|
||||||
|
start = time.time()
|
||||||
results = simpleloop(data, config)
|
results = simpleloop(data, config)
|
||||||
print(" finished tests")
|
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
print(" running metrics")
|
print("[OK] running metrics")
|
||||||
metrics = metricsloop(tbakey, apikey, competition, previous_time)
|
start = time.time()
|
||||||
print(" finished metrics")
|
metricsloop(tbakey, apikey, competition, previous_time)
|
||||||
|
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
|
print("[OK] running pit analysis")
|
||||||
|
start = time.time()
|
||||||
|
pit = pitloop(pit_data, config)
|
||||||
|
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
||||||
|
|
||||||
print(" pushing to database")
|
print("[OK] pushing to database")
|
||||||
push_to_database(apikey, competition, results, metrics)
|
start = time.time()
|
||||||
print(" pushed to database")
|
push_to_database(apikey, competition, results, pit)
|
||||||
|
print("[OK] pushed to database in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
|
clear()
|
||||||
|
|
||||||
|
def clear():
|
||||||
|
|
||||||
|
# for windows
|
||||||
|
if name == 'nt':
|
||||||
|
_ = system('cls')
|
||||||
|
|
||||||
|
# for mac and linux(here, os.name is 'posix')
|
||||||
|
else:
|
||||||
|
_ = system('clear')
|
||||||
|
|
||||||
def load_config(file):
|
def load_config(file):
|
||||||
config_vector = {}
|
config_vector = {}
|
||||||
file = an.load_csv(file)
|
file = an.load_csv(file)
|
||||||
for line in file[1:]:
|
for line in file:
|
||||||
config_vector[line[0]] = line[1:]
|
config_vector[line[0]] = line[1:]
|
||||||
|
|
||||||
return (file[0][0], config_vector)
|
return config_vector
|
||||||
|
|
||||||
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||||
|
|
||||||
@@ -145,36 +191,40 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
|||||||
|
|
||||||
def simplestats(data, test):
|
def simplestats(data, test):
|
||||||
|
|
||||||
|
data = np.array(data)
|
||||||
|
data = data[np.isfinite(data)]
|
||||||
|
ranges = list(range(len(data)))
|
||||||
|
|
||||||
if(test == "basic_stats"):
|
if(test == "basic_stats"):
|
||||||
return an.basic_stats(data)
|
return an.basic_stats(data)
|
||||||
|
|
||||||
if(test == "historical_analysis"):
|
if(test == "historical_analysis"):
|
||||||
return an.histo_analysis([list(range(len(data))), data])
|
return an.histo_analysis([ranges, data])
|
||||||
|
|
||||||
if(test == "regression_linear"):
|
if(test == "regression_linear"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['lin'], _iterations = 5000)
|
return an.regression(ranges, data, ['lin'])
|
||||||
|
|
||||||
if(test == "regression_logarithmic"):
|
if(test == "regression_logarithmic"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['log'], _iterations = 5000)
|
return an.regression(ranges, data, ['log'])
|
||||||
|
|
||||||
if(test == "regression_exponential"):
|
if(test == "regression_exponential"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['exp'], _iterations = 5000)
|
return an.regression(ranges, data, ['exp'])
|
||||||
|
|
||||||
if(test == "regression_polynomial"):
|
if(test == "regression_polynomial"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['ply'], _iterations = 5000)
|
return an.regression(ranges, data, ['ply'])
|
||||||
|
|
||||||
if(test == "regression_sigmoidal"):
|
if(test == "regression_sigmoidal"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['sig'], _iterations = 5000)
|
return an.regression(ranges, data, ['sig'])
|
||||||
|
|
||||||
def push_to_database(apikey, competition, results, metrics):
|
def push_to_database(apikey, competition, results, pit):
|
||||||
|
|
||||||
for team in results:
|
for team in results:
|
||||||
|
|
||||||
d.push_team_tests_data(apikey, competition, team, results[team])
|
d.push_team_tests_data(apikey, competition, team, results[team])
|
||||||
|
|
||||||
for team in metrics:
|
for variable in pit:
|
||||||
|
|
||||||
d.push_team_metrics_data(apikey, competition, team, metrics[team])
|
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
||||||
|
|
||||||
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
|
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
|
||||||
|
|
||||||
@@ -183,8 +233,6 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
|
|
||||||
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
||||||
|
|
||||||
return_vector = {}
|
|
||||||
|
|
||||||
red = {}
|
red = {}
|
||||||
blu = {}
|
blu = {}
|
||||||
|
|
||||||
@@ -192,7 +240,7 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
|
|
||||||
red = load_metrics(apikey, competition, match, "red")
|
red = load_metrics(apikey, competition, match, "red")
|
||||||
blu = load_metrics(apikey, competition, match, "blue")
|
blu = load_metrics(apikey, competition, match, "blue")
|
||||||
|
|
||||||
elo_red_total = 0
|
elo_red_total = 0
|
||||||
elo_blu_total = 0
|
elo_blu_total = 0
|
||||||
|
|
||||||
@@ -240,11 +288,11 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
|
|
||||||
observations = {"red": 0.5, "blu": 0.5}
|
observations = {"red": 0.5, "blu": 0.5}
|
||||||
|
|
||||||
red_elo_delta = an.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
red_elo_delta = an.Metrics.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
||||||
blu_elo_delta = an.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
blu_elo_delta = an.Metrics.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
||||||
|
|
||||||
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metrics.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
||||||
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metrics.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
||||||
|
|
||||||
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
||||||
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
||||||
@@ -265,36 +313,13 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
||||||
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
||||||
|
|
||||||
""" not functional for now
|
temp_vector = {}
|
||||||
red_trueskill = []
|
temp_vector.update(red)
|
||||||
blu_trueskill = []
|
temp_vector.update(blu)
|
||||||
|
|
||||||
red_ts_team_lookup = []
|
for team in temp_vector:
|
||||||
blu_ts_team_lookup = []
|
|
||||||
|
|
||||||
for team in red:
|
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
|
||||||
|
|
||||||
red_trueskill.append((red[team]["ts"]["mu"], red[team]["ts"]["sigma"]))
|
|
||||||
red_ts_team_lookup.append(team)
|
|
||||||
|
|
||||||
for team in blu:
|
|
||||||
|
|
||||||
blu_trueskill.append((blu[team]["ts"]["mu"], blu[team]["ts"]["sigma"]))
|
|
||||||
blu_ts_team_lookup.append(team)
|
|
||||||
|
|
||||||
print(red_trueskill)
|
|
||||||
print(blu_trueskill)
|
|
||||||
|
|
||||||
results = an.trueskill([red_trueskill, blu_trueskill], [observations["red"], observations["blu"]])
|
|
||||||
|
|
||||||
print(results)
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
return_vector.update(red)
|
|
||||||
return_vector.update(blu)
|
|
||||||
|
|
||||||
return return_vector
|
|
||||||
|
|
||||||
def load_metrics(apikey, competition, match, group_name):
|
def load_metrics(apikey, competition, match, group_name):
|
||||||
|
|
||||||
@@ -310,21 +335,34 @@ def load_metrics(apikey, competition, match, group_name):
|
|||||||
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
|
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
|
||||||
ts = {"mu": 25, "sigma": 25/3}
|
ts = {"mu": 25, "sigma": 25/3}
|
||||||
|
|
||||||
d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gliko2":gl2,"trueskill":ts})
|
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
|
||||||
|
|
||||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
|
||||||
metrics = db_data["metrics"]
|
metrics = db_data["metrics"]
|
||||||
|
|
||||||
elo = metrics["elo"]
|
elo = metrics["elo"]
|
||||||
gl2 = metrics["gliko2"]
|
gl2 = metrics["gl2"]
|
||||||
ts = metrics["trueskill"]
|
ts = metrics["ts"]
|
||||||
|
|
||||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||||
|
|
||||||
return group
|
return group
|
||||||
|
|
||||||
|
def pitloop(pit, tests):
|
||||||
|
|
||||||
|
return_vector = {}
|
||||||
|
for team in pit:
|
||||||
|
for variable in pit[team]:
|
||||||
|
if(variable in tests):
|
||||||
|
if(not variable in return_vector):
|
||||||
|
return_vector[variable] = []
|
||||||
|
return_vector[variable].append(pit[team][variable])
|
||||||
|
|
||||||
|
return return_vector
|
||||||
|
|
||||||
main()
|
main()
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
59
data analysis/visualize_pit.py
Normal file
59
data analysis/visualize_pit.py
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
# To add a new cell, type '# %%'
|
||||||
|
# To add a new markdown cell, type '# %% [markdown]'
|
||||||
|
# %%
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import data as d
|
||||||
|
import pymongo
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def get_pit_variable_data(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_processing
|
||||||
|
mdata = db.team_pit
|
||||||
|
out = {}
|
||||||
|
return mdata.find()
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def get_pit_variable_formatted(apikey, competition):
|
||||||
|
temp = get_pit_variable_data(apikey, competition)
|
||||||
|
out = {}
|
||||||
|
for i in temp:
|
||||||
|
out[i["variable"]] = i["data"]
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
pit = get_pit_variable_formatted("mongodb+srv://api-user-new:titanscout2022@2022-scouting-4vfuu.mongodb.net/test?authSource=admin&replicaSet=2022-scouting-shard-0&readPreference=primary&appname=MongoDB%20Compass&ssl=true", "2020ilch")
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(80,15))
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
|
||||||
|
for variable in pit:
|
||||||
|
|
||||||
|
ax[i].hist(pit[variable])
|
||||||
|
ax[i].invert_xaxis()
|
||||||
|
|
||||||
|
ax[i].set_xlabel('')
|
||||||
|
ax[i].set_ylabel('Frequency')
|
||||||
|
ax[i].set_title(variable)
|
||||||
|
|
||||||
|
plt.yticks(np.arange(len(pit[variable])))
|
||||||
|
|
||||||
|
i+=1
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
|
Reference in New Issue
Block a user