231 Commits

Author SHA1 Message Date
ltcptgeneral
9fb53f4297 Update titanlearn.py 2019-03-16 13:12:59 -05:00
ltcptgeneral
69ef08bfd4 1234567890 2019-03-10 11:42:43 -05:00
ltcptgeneral
0159f116c1 12345678 2019-03-09 16:27:36 -06:00
Jacob Levine
da6f2ce044 Merge branch 'master' of https://github.com/titanscout2022/tr2022-strategy 2019-03-09 14:08:38 -06:00
Jacob Levine
053001186e added frc elo notebook 2019-03-09 14:05:47 -06:00
jlevine18
177e8ad783 Delete pullmatches.py 2019-03-08 22:19:11 -06:00
Jacob Levine
047f682030 added scoreboard 2019-03-08 22:05:35 -06:00
Jacob Levine
041db246b1 Merge branch 'master' of https://github.com/titanscout2022/tr2022-strategy 2019-03-08 21:56:15 -06:00
Jacob Levine
54888a3988 added day 1 processing 2019-03-08 21:55:52 -06:00
ltcptgeneral
c726551ec7 Update superscript.py 2019-03-08 19:00:02 -06:00
ltcptgeneral
a36ba0413a superscript v 1.0.5.003
changelog:
- hotfix: actually pushes data correctly now
2019-03-08 17:43:38 -06:00
Jacob Levine
79d0bda1ef fix defaults 2019-03-08 12:54:41 -06:00
Jacob Levine
a7def3c367 reworked questions to comply with Ian's app 2019-03-08 12:48:10 -06:00
Jacob Levine
1ee9867ea6 fix typo 2019-03-08 10:54:14 -06:00
Jacob Levine
44f209f331 added strat options 2019-03-08 10:47:49 -06:00
Jacob Levine
274017806f sets timeout for reload 2019-03-07 23:37:54 -06:00
Jacob Levine
90adb6539a final fix for the night! 2019-03-07 23:33:58 -06:00
Jacob Levine
be4ec9ea51 bugfix 2019-03-07 23:30:33 -06:00
Jacob Levine
b89fab51c3 fix typo 2019-03-07 23:29:16 -06:00
Jacob Levine
6247c7997f added full functionality to scout 2019-03-07 23:26:30 -06:00
Jacob Levine
9baa4450b0 stylinh 2019-03-07 21:25:32 -06:00
Jacob Levine
2a449eba1a one of these times im going to actually catch it 2019-03-07 21:22:04 -06:00
Jacob Levine
dfd5366112 fix typo 2019-03-07 21:21:12 -06:00
Jacob Levine
dc180862df fix typo 2019-03-07 21:20:07 -06:00
Jacob Levine
9d9dcbbb71 fix typo 2019-03-07 21:18:13 -06:00
Jacob Levine
ed151f1707 sections 2019-03-07 21:16:54 -06:00
Jacob Levine
302f6b794d bugfix 2019-03-07 20:55:49 -06:00
Jacob Levine
1925943660 start scout 2019-03-07 20:54:55 -06:00
Jacob Levine
0e358a9a14 final fixes (hopefully this time) 2019-03-07 20:21:05 -06:00
Jacob Levine
2c9e553b57 fix typo 2019-03-07 20:19:58 -06:00
Jacob Levine
ee4ee316dd final page fix 2019-03-07 20:18:54 -06:00
Jacob Levine
12e39ecc84 fix typo 2019-03-07 20:17:10 -06:00
Jacob Levine
eb20ad907e fix mistake 2019-03-07 20:16:14 -06:00
Jacob Levine
61b286c258 Merge branch 'master' of https://github.com/titanscout2022/tr2022-strategy 2019-03-07 20:14:05 -06:00
Jacob Levine
77231d00cc now you can leave teams 2019-03-07 20:13:32 -06:00
jlevine18
4322396088 arthur don't be stupid 2019-03-07 20:03:20 -06:00
Jacob Levine
c5dc49f442 final profile fix 2019-03-07 19:57:20 -06:00
Jacob Levine
0684f982b7 fix structure 2019-03-07 19:55:30 -06:00
Jacob Levine
b5d8851c44 fix data structure 2019-03-07 19:48:50 -06:00
Jacob Levine
b0782ed74e test bugfix 2019-03-07 19:47:35 -06:00
Jacob Levine
3e76c55801 testing... 2019-03-07 19:46:01 -06:00
Jacob Levine
834068244e test bugfix 2019-03-07 19:43:50 -06:00
Jacob Levine
d833d0a183 fix typo 2019-03-07 19:38:05 -06:00
Jacob Levine
1f50c6dd16 test bugfix 2019-03-07 19:37:06 -06:00
Jacob Levine
9ca336934a Merge branch 'master' of https://github.com/titanscout2022/tr2022-strategy 2019-03-07 19:32:14 -06:00
Jacob Levine
251390fddf fixed teamlogic 2019-03-07 19:31:34 -06:00
ltcptgeneral
aaa548fb65 hotfix 2000 2019-03-07 09:14:20 -06:00
ltcptgeneral
7710da503b 12 2019-03-06 20:05:50 -06:00
ltcptgeneral
18969b4179 Update superscript.py 2019-03-05 13:36:47 -06:00
ltcptgeneral
ecb6400b06 lotta bug fixes 2019-03-04 16:38:40 -06:00
ltcptgeneral
67393e0e09 1 2019-03-03 22:50:29 -06:00
ltcptgeneral
442d9a9682 Update analysis.py 2019-03-02 20:18:51 -06:00
ltcptgeneral
7434263165 titanscouting app v 1.0.0.003
simple bug fix
2019-03-02 19:58:00 -06:00
ltcptgeneral
d20d0e4e7a titanscouting app v 1.0.0.002 2019-03-02 19:47:31 -06:00
ltcptgeneral
836abc427a ryiop 2019-03-02 16:34:48 -06:00
ltcptgeneral
8cc6b2774e Create README.md 2019-03-02 16:34:12 -06:00
jlevine18
e98e66bdf0 tl.py 2019-03-02 08:18:28 -06:00
ltcptgeneral
791c4e82a5 Merge branch 'master' of https://github.com/ltcptgeneral/tr2022-strategy 2019-03-01 13:49:36 -06:00
ltcptgeneral
110da31d50 Update titanlearn.py 2019-03-01 13:49:33 -06:00
jlevine18
0e9a706904 Update titanlearn.py 2019-03-01 12:25:41 -06:00
ltcptgeneral
28b5f9d6a2 dumb 2019-03-01 12:18:38 -06:00
ltcptgeneral
00af69a3f5 Update superscript.py 2019-02-28 13:39:35 -06:00
ltcptgeneral
e61403174d sfasf 2019-02-28 13:28:29 -06:00
ltcptgeneral
632a2472a2 bassbsabjasb 2019-02-28 13:13:52 -06:00
ltcptgeneral
d62a07a69e Update superscript.py 2019-02-28 09:04:37 -06:00
ltcptgeneral
85d4a29cf2 Update superscript.py 2019-02-27 14:01:25 -06:00
ltcptgeneral
6678e49cbf superscript.py - v 1.0.5.002
changelog:
- more information given
- performance improvements
2019-02-27 14:00:29 -06:00
ltcptgeneral
839c5d2943 superscript.py - v 1.0.5.001
changelog:
- grammar
2019-02-27 13:43:33 -06:00
ltcptgeneral
79b4cf1158 superscript.py - v 1.0.5.000
changelog:
- service now iterates forever
- ready for production other than pulling json data
2019-02-27 13:38:24 -06:00
ltcptgeneral
9b9d6bcd23 superscript.py - v 1.0.4.001
changelog:
- grammar fixes
2019-02-26 23:18:26 -06:00
ltcptgeneral
2b1dd3ed9b superscript.py - v 1.0.4.000
changelog:
- actually pushes to firebase
2019-02-26 19:39:56 -06:00
ltcptgeneral
7afe68e315 Update .gitignore 2019-02-26 19:10:53 -06:00
ltcptgeneral
0f58ce0fd7 security patch 2019-02-22 12:23:49 -06:00
ltcptgeneral
badcb373ae Update bdata.csv 2019-02-21 12:33:13 -06:00
ltcptgeneral
e5cf8a43d4 superscript.py - v 1.
changelog:
- processes data more efficiently
2019-02-20 22:59:17 -06:00
ltcptgeneral
aba4b44da4 superscript.py - v 1.0.3.000
changelog:
- actually processes data
2019-02-20 11:44:11 -06:00
ltcptgeneral
c4fa9c5f23 qwertyuiop 2019-02-19 13:21:06 -06:00
ltcptgeneral
22688de9e8 Merge branch 'master' of https://github.com/ltcptgeneral/tr2022-strategy 2019-02-19 09:44:55 -06:00
ltcptgeneral
042efb2b5a superscript.py - v 1.0.2.000
changelog:
- added data reading from folder
- nearly crashed computer reading from 20 GiB of data
2019-02-19 09:44:51 -06:00
Jacob Levine
060a77f4b7 fix more typos 2019-02-12 21:00:43 -06:00
Jacob Levine
ffd64eb3d2 fix typos 2019-02-12 21:00:00 -06:00
Jacob Levine
4822be0ece fix typos 2019-02-12 20:55:56 -06:00
Jacob Levine
d3b71287c4 squash bugh 2019-02-12 20:52:03 -06:00
Jacob Levine
67ac98b9ab fix more typos 2019-02-12 20:49:23 -06:00
Jacob Levine
9e0c6e36ee can i set the world record for most typos 2019-02-12 20:48:35 -06:00
Jacob Levine
d0d431fb54 fix even more typos 2019-02-12 20:46:23 -06:00
Jacob Levine
718ca83a1d fix more typos 2019-02-12 20:44:21 -06:00
Jacob Levine
e0c159de00 fix typos 2019-02-12 20:42:49 -06:00
Jacob Levine
6652918ae8 I apparently don't know how to js 2019-02-12 20:41:43 -06:00
Jacob Levine
4f3ecf4361 fix more typos 2019-02-12 20:37:50 -06:00
Jacob Levine
dd5da3b1e8 fix typos 2019-02-12 20:34:05 -06:00
Jacob Levine
45a4387c68 started teams page 2019-02-12 20:20:30 -06:00
Jacob Levine
c6b2840e07 last style fixed before i do something else, for real this time 2019-02-09 15:53:39 -06:00
Jacob Levine
6362f50fd3 last style fixed before i do something else, for real this time 2019-02-09 15:50:34 -06:00
Jacob Levine
d5622c8672 last style fixed before i do something eks 2019-02-09 15:49:21 -06:00
Jacob Levine
3abc50cf7a js dom terms aren't very consistent 2019-02-09 15:44:46 -06:00
Jacob Levine
0f68468f14 fix style inconsistencies 2019-02-09 15:42:16 -06:00
Jacob Levine
6d45200ca3 other style 2019-02-09 15:36:59 -06:00
Jacob Levine
80aee80548 other style 2019-02-09 15:30:27 -06:00
Jacob Levine
3d27f3c127 margins aren't for tables 2019-02-09 15:29:21 -06:00
Jacob Levine
9fd7966c55 other style updates 2019-02-09 15:27:17 -06:00
Jacob Levine
4529ee32e2 no but this ugly html hack should 2019-02-09 15:25:25 -06:00
Jacob Levine
3a5629f0ba does making everything auto fix it? 2019-02-09 15:19:14 -06:00
Jacob Levine
fe74aea4de maybe we can fix it in js 2019-02-09 15:12:17 -06:00
Jacob Levine
76ac58dbab maybe we can fix it in js 2019-02-09 15:10:24 -06:00
Jacob Levine
db0ddec2c6 overflow-x 2019-02-09 14:57:55 -06:00
Jacob Levine
c6980ff71d time to actually start making this look legit 2019-02-09 14:54:03 -06:00
Jacob Levine
a4840003f5 what was i thinking? 2019-02-09 14:46:59 -06:00
Jacob Levine
aad41e57a9 even more styling, if you can call it that 2019-02-09 14:43:14 -06:00
Jacob Levine
24a8500588 more styling, if you can call it that 2019-02-09 14:41:31 -06:00
Jacob Levine
63c69ecc14 styling, if you can call it that 2019-02-09 14:39:32 -06:00
Jacob Levine
1c775fca2c you can now actually see the profile update page 2019-02-09 14:34:01 -06:00
Jacob Levine
1073bc458a typo fix 2019-02-09 14:32:52 -06:00
Jacob Levine
f8dafe61f8 revamped profile page 2019-02-09 14:30:58 -06:00
Jacob Levine
c97e51d9bd even more bugfix 2019-02-09 14:01:32 -06:00
Jacob Levine
2e779a95d2 more bugfix 2019-02-09 14:00:50 -06:00
Jacob Levine
0c609064a6 bugfix 2019-02-09 13:59:23 -06:00
Jacob Levine
059509e018 revamped sign-in, now that we have working checks 2019-02-09 13:57:48 -06:00
Jacob Levine
2c9951d2c9 ok this should fix 2019-02-09 13:33:14 -06:00
Jacob Levine
290110274b even more of a last-ditch effort to make js not multithread everything 2019-02-09 13:32:06 -06:00
Jacob Levine
7d02c6373c even more of a last-ditch effort to make js not multithread everything 2019-02-09 13:04:12 -06:00
Jacob Levine
0b0d36d660 last-ditch effort to make js not multithread everything 2019-02-09 13:01:14 -06:00
Jacob Levine
807c66dd3a ok this should fix 2019-02-09 12:46:20 -06:00
Jacob Levine
f0c0d646b5 ok this should fix 2019-02-09 12:41:52 -06:00
Jacob Levine
390f3d9c4d rephrased check script. are you happy now, JS? 2019-02-09 12:31:25 -06:00
Jacob Levine
19a9995875 i apparently can't type 2019-02-09 12:17:47 -06:00
Jacob Levine
95eab24247 adding standalone profile page 2019-02-09 12:14:55 -06:00
Jacob Levine
3da5a0cbd7 adding timeout 2019-02-09 11:43:47 -06:00
Jacob Levine
447e3e12a3 apperently window loads too fast for firebase 2019-02-09 11:38:57 -06:00
Jacob Levine
5b922fc10b squashing bugs 2019-02-09 11:33:24 -06:00
Jacob Levine
e661af1add Merge branch 'master' of https://github.com/titanscout2022/tr2022-strategy 2019-02-09 11:29:03 -06:00
Jacob Levine
192d023325 testing signout logic 2019-02-09 11:27:46 -06:00
ltcptgeneral
6b91fe9819 fixed copy paste oppsie 2019-02-08 15:42:33 -06:00
Jacob Levine
82231cb04b styling fixes 2019-02-06 18:20:31 -06:00
Jacob Levine
39dc72add2 onload scripts 2019-02-06 18:19:18 -06:00
Jacob Levine
ac158bf0a9 bugfixes 2019-02-06 18:12:39 -06:00
Jacob Levine
7b2915f4f2 styling fixes 2019-02-06 18:09:47 -06:00
Jacob Levine
64354dbe19 Merge branch 'master' of https://github.com/titanscout2022/tr2022-strategy 2019-02-06 17:52:37 -06:00
Jacob Levine
901c8d25f8 added 3 other pages 2019-02-06 17:51:58 -06:00
ltcptgeneral
b346b01223 android app v 1.0.0.001 2019-02-06 17:43:38 -06:00
ltcptgeneral
73b419dfd6 android app v 1.0.0.000
finished android app
published source code
2019-02-06 17:06:25 -06:00
Jacob Levine
48f34f0472 revert some changes 2019-02-06 16:50:39 -06:00
Jacob Levine
e1769235f3 more styling 2019-02-06 16:45:56 -06:00
Jacob Levine
ac00138ca8 styling 2019-02-06 16:42:15 -06:00
Jacob Levine
28b5801bcc added sidebar 2019-02-06 16:21:41 -06:00
Jacob Levine
f2ed8ab04c sizing 2019-02-06 16:17:07 -06:00
Jacob Levine
781b4dc8b5 bugfix 2019-02-06 16:14:39 -06:00
Jacob Levine
19a236251a added sidebar 2019-02-06 16:08:28 -06:00
Jacob Levine
0d481b01df bugfix 2019-02-06 15:55:22 -06:00
jlevine18
5de2528d34 more bugfix 2019-02-06 15:37:27 -06:00
Jacob Levine
317ca72377 added info change functionality 2019-02-06 15:35:51 -06:00
Jacob Levine
c6e719240a bugfix 2019-02-06 15:25:15 -06:00
Jacob Levine
e554a1df99 reworked fix profile info 2019-02-06 15:22:09 -06:00
Jacob Levine
d9e7a1ed1e testing bugs 2019-02-06 15:04:31 -06:00
Jacob Levine
d968f10737 bugfix 2019-02-06 14:56:17 -06:00
Jacob Levine
dc80127dee bugfix 2019-02-06 14:51:31 -06:00
Jacob Levine
c591c84c75 added info change functionality 2019-02-06 14:46:41 -06:00
Jacob Levine
e290f5ae11 layout changes 2019-02-06 14:15:59 -06:00
Jacob Levine
b8d209b283 new fixes 2019-02-06 13:57:29 -06:00
Jacob Levine
f195b81974 added profile change functionality 2019-02-06 13:24:56 -06:00
ltcptgeneral
1293de346e analysis.py v 1.0.8.005, superscript.py v 1.0.1.000
changelog analysis.py:
- minor fixes
changelog superscript.py:
- added data reading from file
- added superstructure to code
2019-02-05 09:50:10 -06:00
ltcptgeneral
1b41c409cc created superscript.py, tbarequest.py v 1.0.1.000, edited repack_json.py
changelog tbarequest.py:
- fixed a simple error
2019-02-05 09:42:00 -06:00
ltcptgeneral
38d471113f Update .gitignore 2019-02-05 09:02:04 -06:00
ltcptgeneral
b31beb25be oof^2 2019-02-04 12:33:25 -06:00
ltcptgeneral
e3db22d262 Delete temp.txt 2019-02-04 10:50:43 -06:00
ltcptgeneral
e2d2e6687f oof 2019-02-04 10:50:07 -06:00
ltcptgeneral
b64ec05134 removed app bc jacob did fancy shit 2019-01-26 10:45:19 -06:00
ltcptgeneral
511e627899 Update workspace.xml 2019-01-26 10:40:35 -06:00
ltcptgeneral
ab0b2b9992 initialized app project 2019-01-26 10:32:00 -06:00
ltcptgeneral
0021eed5fb analysis.py - v 1.0.8.004
changelog
- removed a few unused dependencies
2019-01-26 10:11:54 -06:00
ltcptgeneral
8c35d8a3f6 yeeted histo_analysis_old() due to depreciation 2019-01-23 09:09:14 -06:00
ltcptgeneral
e5420844de yeeted useless comments 2019-01-22 22:42:37 -06:00
jlevine18
0fca5f58db ApiKey now changed and hidden-don't be stupid jake 2019-01-06 13:41:15 -06:00
Jacob Levine
07880038b0 folder move fix 2019-01-06 13:18:01 -06:00
Jacob Levine
d2d5d4c04e push all website files 2019-01-06 13:14:45 -06:00
jlevine18
d7301e26c3 Add files via upload 2019-01-06 13:02:35 -06:00
jlevine18
752b981e37 Rename website/functions/acorn to website/functions/node_modules/.bin/acorn 2019-01-06 12:57:46 -06:00
jlevine18
5f2db375f3 Add files via upload 2019-01-06 12:56:49 -06:00
jlevine18
cac1b4fba4 Add files via upload 2019-01-06 12:55:50 -06:00
jlevine18
236c4d02b6 Create index.js 2019-01-06 12:55:31 -06:00
jlevine18
8645eace5b Delete style.css 2019-01-06 12:54:41 -06:00
jlevine18
47cce54b3b Delete scripts.js 2019-01-06 12:54:35 -06:00
jlevine18
5a0fe35f86 Delete index.html 2019-01-06 12:54:29 -06:00
jlevine18
d3f8b474d0 upload website 2019-01-06 12:54:08 -06:00
ltcptgeneral
27145495e7 Update analysis.docs 2018-12-30 16:49:44 -06:00
ltcptgeneral
1a8da3fdd5 analysis.py - v 1.0.8.003
changelog:
- added p_value function
2018-12-29 16:28:41 -06:00
ltcptgeneral
444bfb5945 stuff 2018-12-26 17:08:04 -06:00
ltcptgeneral
cfee240e9c pineapple 2018-12-26 12:37:49 -06:00
ltcptgeneral
83a1dd5ced orange 2018-12-26 12:22:31 -06:00
ltcptgeneral
bf75e804cc bannana 2018-12-26 12:22:17 -06:00
ltcptgeneral
83e4f60a37 apple 2018-12-26 12:21:44 -06:00
bearacuda13
ae11605013 Add files via upload 2018-12-26 12:18:40 -06:00
bearacuda13
08b336cf15 Add files via upload 2018-12-26 12:14:05 -06:00
ltcptgeneral
eeeec86be6 temp 2018-12-26 12:06:42 -06:00
ltcptgeneral
9dbd897323 analysis.py - v 1.0.8.002
changelog:
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
2018-12-24 16:44:03 -06:00
jlevine18
71337c0fd5 fix other stupid mistakes 2018-12-24 14:50:04 -06:00
jlevine18
4e015180b6 fix syntax error 2018-12-24 14:42:54 -06:00
jlevine18
70591bc581 started ML module 2018-12-24 09:32:25 -06:00
jlevine18
288f97a3fd visualizer.py is now visualization.py 2018-12-21 11:10:18 -06:00
jlevine18
1126373bf2 Update tbarequest.py 2018-12-21 11:07:21 -06:00
jlevine18
fd0d43d29c added TBA requests module 2018-12-21 11:04:46 -06:00
jlevine18
cc6a7697cf Update visualization.py 2018-12-20 22:01:28 -06:00
jlevine18
2140ea8f77 started visualization module 2018-12-20 21:45:05 -06:00
ltcptgeneral
9dd5cc76f6 analysis.py - v 1.0.8.001
changelog:
- refactors
- bugfixes
2018-12-20 20:49:09 -06:00
ltcptgeneral
7b1e54eed8 refactor analysis.py 2018-12-20 15:05:43 -06:00
ltcptgeneral
188a7bbf1f Update data.csv 2018-12-20 12:21:26 -06:00
ltcptgeneral
b7a0c5286a analysis.py - v 1.0.8.000
changelog:
- depreciated histo_analysis_old
- depreciated debug
- altered basic_analysis to take array data instead of filepath
- refactor
- optimization
2018-12-20 12:21:22 -06:00
ltcptgeneral
32a2d6321c no change 2018-12-13 08:57:19 -06:00
ltcptgeneral
d2f6961693 Update analysis.cpython-37.pyc 2018-12-07 16:56:09 -06:00
ltcptgeneral
107076ac35 added visualizer.py, reorganized folders 2018-12-05 11:31:38 -06:00
ltcptgeneral
0b73460446 Update analysis.cpython-37.pyc 2018-12-04 19:05:13 -06:00
ltcptgeneral
39d5522650 Update analysis_docs.txt 2018-12-01 22:34:30 -06:00
ltcptgeneral
68d6c87589 Update analysis_docs.txt 2018-12-01 22:13:19 -06:00
ltcptgeneral
222c536631 created docs 2018-12-01 21:02:53 -06:00
ltcptgeneral
bd3f695938 a 2018-12-01 14:51:50 -06:00
ltcptgeneral
1b1a7c45bf Update analysis.cpython-37.pyc 2018-12-01 14:51:38 -06:00
ltcptgeneral
8a58fe28fa analysis.py - v 1.0.7.002
changelog:
	- bug fixes
2018-11-29 12:58:53 -06:00
ltcptgeneral
9c67e6f927 analysis.py - v 1.0.7.001
changelog:
	- bug fixes
2018-11-29 12:36:25 -06:00
ltcptgeneral
8d2dedc5a2 update analysis.py 2018-11-29 09:33:18 -06:00
ltcptgeneral
944cb31883 Update analysis.py
a quick update
2018-11-29 09:32:27 -06:00
ltcptgeneral
b38ffe1f08 Update requirements.txt 2018-11-29 09:31:55 -06:00
ltcptgeneral
19f89d3f35 updated stuff 2018-11-29 09:27:08 -06:00
ltcptgeneral
504fc92feb Create analysis.cpython-37.pyc 2018-11-29 09:04:17 -06:00
ltcptgeneral
5eb5e5ed8e removes stuff 2018-11-29 09:00:47 -06:00
ltcptgeneral
88be42de45 removed generate_data.py 2018-11-29 08:53:41 -06:00
ltcptgeneral
704a2d5808 analysis.py - v 1.0.7.000
changelog:
        - added tanh_regression (logistical regression)
	- bug fixes
2018-11-28 16:35:47 -06:00
ltcptgeneral
e915fe538e analysis.py - v 1.0.6.005
changelog:
        - added z_normalize function to normalize dataset
	- bug fixes
2018-11-28 14:29:32 -06:00
ltcptgeneral
5295bef18b Update analysis.cpython-37.pyc 2018-11-28 11:35:21 -06:00
ltcptgeneral
ae69eb7a40 Merge branch 'master' of https://github.com/ltcptgeneral/tr2022-strategy 2018-11-28 11:12:53 -06:00
jlevine18
46f434b815 started website 2018-11-28 11:10:38 -06:00
jlevine18
cce111bd6a Create index.html 2018-11-28 11:06:04 -06:00
15613 changed files with 2098367 additions and 5092 deletions

View File

@@ -1,6 +0,0 @@
FROM python:slim
WORKDIR /
RUN apt-get -y update; apt-get -y upgrade
RUN apt-get -y install git
COPY requirements.txt .
RUN pip install -r requirements.txt

View File

@@ -1,22 +0,0 @@
{
"name": "TRA Analysis Development Environment",
"build": {
"dockerfile": "Dockerfile",
},
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"python.pythonPath": "",
"python.linting.enabled": true,
"python.linting.pylintEnabled": true,
"python.linting.pylintPath": "",
"python.testing.pytestPath": "",
"editor.tabSize": 4,
"editor.insertSpaces": false
},
"extensions": [
"mhutchie.git-graph",
"ms-python.python",
"waderyan.gitblame"
],
"postCreateCommand": ""
}

View File

@@ -1,8 +0,0 @@
numpy
scipy
scikit-learn
six
pyparsing
pylint
pytest

4
.gitattributes vendored
View File

@@ -1,4 +1,2 @@
# Auto detect text files and perform LF normalization
* text=auto eol=lf
*.{cmd,[cC][mM][dD]} text eol=crlf
*.{bat,[bB][aA][tT]} text eol=crlf
* text=auto

View File

@@ -1,38 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. iOS]
- Browser [e.g. chrome, safari]
- Version [e.g. 22]
**Smartphone (please complete the following information):**
- Device: [e.g. iPhone6]
- OS: [e.g. iOS8.1]
- Browser [e.g. stock browser, safari]
- Version [e.g. 22]
**Additional context**
Add any other context about the problem here.

View File

@@ -1,20 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@@ -1,7 +0,0 @@
Fixes #
## Proposed Changes
-
-
-

View File

@@ -1,40 +0,0 @@
# This workflows will upload a Python Package using Twine when a release is created
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
name: Upload Analysis Package
on:
release:
types: [published, edited]
jobs:
deploy:
runs-on: ubuntu-latest
env:
working-directory: ./analysis-master/
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.x'
- name: Install dependencies
working-directory: ${{env.working-directory}}
run: |
python -m pip install --upgrade pip
pip install setuptools wheel twine
- name: Install package deps
working-directory: ${{env.working-directory}}
run: |
pip install -r requirements.txt
- name: Build package
working-directory: ${{env.working-directory}}
run: |
python setup.py sdist bdist_wheel
- name: Publish package to PyPI
uses: pypa/gh-action-pypi-publish@master
with:
user: __token__
password: ${{ secrets.PYPI_TOKEN }}
packages_dir: analysis-master/dist/

View File

@@ -1,38 +0,0 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Analysis Unit Tests
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
jobs:
unittest:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.7", "3.8", "3.9", "3.10"]
env:
working-directory: ./analysis-master/
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
working-directory: ${{ env.working-directory }}
- name: Test with pytest
run: |
pytest
working-directory: ${{ env.working-directory }}

13
.gitignore vendored
View File

@@ -1,9 +1,8 @@
/.vscode/
**/__pycache__/
**/.pytest_cache/
**/*.pyc
benchmark_data.csv
**/build/
**/*.egg-info/
**/dist/
data analysis/keys/keytemp.json
data analysis/__pycache__/analysis.cpython-37.pyc
apps/android/source/app/src/main/res/drawable-v24/uuh.png
apps/android/source/app/src/main/java/com/example/titanscouting/tits.java

View File

@@ -1,66 +0,0 @@
# Contributing Guidelines
This project accept contributions via GitHub pull requests.
This document outlines some of the
conventions on development workflow, commit message formatting, contact points,
and other resources to make it easier to get your contribution accepted.
## Certificate of Origin
By contributing to this project, you agree to the [Developer Certificate of
Origin (DCO)](https://developercertificate.org/). This document was created by the Linux Kernel community and is a
simple statement that you, as a contributor, have the legal right to make the
contribution.
In order to show your agreement with the DCO you should include at the end of the commit message,
the following line: `Signed-off-by: John Doe <john.doe@example.com>`, using your real name.
This can be done easily using the [`-s`](https://github.com/git/git/blob/b2c150d3aa82f6583b9aadfecc5f8fa1c74aca09/Documentation/git-commit.txt#L154-L161) flag on the `git commit`.
Visual Studio code also has a flag to enable signoff on commits
If you find yourself pushed a few commits without `Signed-off-by`, you can still add it afterwards. Read this for help: [fix-DCO.md](https://github.com/src-d/guide/blob/master/developer-community/fix-DCO.md).
## Support Channels
The official support channel, for both users and contributors, is:
- GitHub issues: each repository has its own list of issues.
*Before opening a new issue or submitting a new pull request, it's helpful to
search the project - it's likely that another user has already reported the
issue you're facing, or it's a known issue that we're already aware of.
## How to Contribute
In general, please use conventional approaches to development and contribution such as:
* Create branches for additions or deletions, and or side projects
* Do not commit to master!
* Use Pull Requests (PRs) to indicate that an addition is ready to merge.
PRs are the main and exclusive way to contribute code to source{d} projects.
In order for a PR to be accepted it needs to pass this list of requirements:
- The contribution must be correctly explained with natural language and providing a minimum working example that reproduces it.
- All PRs must be written idiomaticly:
- for Node: formatted according to [AirBnB standards](https://github.com/airbnb/javascript), and no warnings from `eslint` using the AirBnB style guide
- for other languages, similar constraints apply.
- They should in general include tests, and those shall pass.
- In any case, all the PRs have to pass the personal evaluation of at least one of the [maintainers](MAINTAINERS) of the project.
### Format of the commit message
Every commit message should describe what was changed, under which context and, if applicable, the issue it relates to (mentioning a GitHub issue number when applicable):
For small changes, or changes to a testing or personal branch, the commit message should be a short changelog entry
For larger changes or for changes on branches that are more widely used, the commit message should simply reference an entry to some other changelog system. It is encouraged to use some sort of versioning system to log changes. Example commit messages:
```
superscript.py v 2.0.5.006
```
The format can be described more formally as follows:
```
<package> v <version number>
```

View File

@@ -1,3 +0,0 @@
Arthur Lu <learthurgo@gmail.com>
Jacob Levine <jacoblevine18@gmail.com>
Dev Singh <dev@devksingh.com>

View File

@@ -1,70 +1,2 @@
# Red Alliance Analysis &middot; ![GitHub release (latest by date)](https://img.shields.io/github/v/release/titanscout2022/red-alliance-analysis)
Titan Robotics 2022 Strategy Team Repository for Data Analysis Tools. Included with these tools are the backend data analysis engine formatted as a python package, associated binaries for the analysis package, and premade scripts that can be pulled directly from this repository and will integrate with other Red Alliance applications to quickly deploy FRC scouting tools.
---
# `tra-analysis`
`tra-analysis` is a higher level package for data processing and analysis. It is a python library that combines popular data science tools like numpy, scipy, and sklearn along with other tools to create an easy-to-use data analysis engine. tra-analysis includes analysis in all ranges of complexity from basic statistics like mean, median, mode to complex kernel based classifiers and allows user to more quickly deploy these algorithms. The package also includes performance metrics for score based applications including elo, glicko2, and trueskill ranking systems.
At the core of the tra-analysis package is the modularity of each analytical tool. The package encapsulates the setup code for the included data science tools. For example, there are many packages that allow users to generate many different types of regressions. With the tra-analysis package, one function can be called to generate many regressions and sort them by accuracy.
## Prerequisites
---
* Python >= 3.6
* Pip which can be installed by running\
`curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py`\
`python get-pip.py`\
after installing python, or with a package manager on linux. Refer to the [pip installation instructions](https://pip.pypa.io/en/stable/installing/) for more information.
## Installing
---
#### Standard Platforms
For the latest version of tra-analysis, run `pip install tra-analysis` or `pip install tra_analysis`. The requirements for tra-analysis should be automatically installed.
#### Exotic Platforms (Android)
[Termux](https://termux.com/) is recommended for a linux environemnt on Android. Consult the [documentation](https://titanscouting.github.io/analysis/general/installation#exotic-platforms-android) for advice on installing the prerequisites. After installing the prerequisites, the package should be installed normally with `pip install tra-analysis` or `pip install tra_analysis`.
## Use
---
tra-analysis operates like any other python package. Consult the [documentation](https://titanscouting.github.io/analysis/tra_analysis/) for more information.
## Supported Platforms
---
Although any modern 64 bit platform should be supported, the following platforms have been tested to be working:
* AMD64 (Tested on Zen, Zen+, and Zen 2)
* Intel 64/x86_64/x64 (Tested on Kaby Lake, Ice Lake)
* ARM64 (Tested on Broadcom BCM2836 SoC, Broadcom BCM2711 SoC)
The following OSes have been tested to be working:
* Linux Kernel 3.16, 4.4, 4.15, 4.19, 5.4
* Ubuntu 16.04, 18.04, 20.04
* Debian (and Debian derivaives) Jessie, Buster
* Windows 7, 10
The following python versions are supported:
* python 3.6 (not tested)
* python 3.7
* python 3.8
---
# `data-analysis`
Data analysis has been separated into its own [repository](https://github.com/titanscouting/tra-data-analysis).
# Contributing
Read our included contributing guidelines (`CONTRIBUTING.md`) for more information and feel free to reach out to any current maintainer for more information.
# Build Statuses
![Analysis Unit Tests](https://github.com/titanscout2022/red-alliance-analysis/workflows/Analysis%20Unit%20Tests/badge.svg)
# tr2022-strategy
Titan Robotics 2022 Strategy Team Repository

View File

@@ -1,6 +0,0 @@
# Security Policy
## Reporting a Vulnerability
Please email `titanscout2022@gmail.com` to report a vulnerability.

View File

@@ -1 +0,0 @@
python setup.py sdist bdist_wheel || python3 setup.py sdist bdist_wheel

View File

@@ -1,8 +0,0 @@
numpy
scipy
scikit-learn
six
pyparsing
pylint
pytest

View File

@@ -1,28 +0,0 @@
import setuptools
import tra_analysis
requirements = []
with open("requirements.txt", 'r') as file:
for line in file:
requirements.append(line)
setuptools.setup(
name="tra_analysis",
version=tra_analysis.__version__,
author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com",
description="Analysis package developed by Titan Scouting for The Red Alliance",
long_description="../README.md",
long_description_content_type="text/markdown",
url="https://github.com/titanscout2022/tr2022-strategy",
packages=setuptools.find_packages(),
install_requires=requirements,
license = "BSD 3-Clause License",
classifiers=[
"Programming Language :: Python :: 3",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
keywords="data analysis tools"
)

View File

@@ -1,253 +0,0 @@
import numpy as np
import sklearn
from sklearn import metrics
from tra_analysis import Analysis as an
from tra_analysis import Array
from tra_analysis import ClassificationMetric
from tra_analysis import Clustering
from tra_analysis import CorrelationTest
from tra_analysis import Fit
from tra_analysis import KNN
from tra_analysis import metrics as m
from tra_analysis import NaiveBayes
from tra_analysis import RandomForest
from tra_analysis import RegressionMetric
from tra_analysis import Sort
from tra_analysis import StatisticalTest
from tra_analysis import SVM
from tra_analysis.equation.parser import BNF
test_data_linear = [1, 3, 6, 7, 9]
test_data_linear2 = [2, 2, 5, 7, 13]
test_data_linear3 = [2, 5, 8, 6, 14]
test_data_array = Array(test_data_linear)
x_data_circular = []
y_data_circular = []
y_data_ccu = [1, 3, 7, 14, 21]
y_data_ccd = [8.66, 8.5, 7, 5, 1]
test_data_scrambled = [-32, 34, 19, 72, -65, -11, -43, 6, 85, -17, -98, -26, 12, 20, 9, -92, -40, 98, -78, 17, -20, 49, 93, -27, -24, -66, 40, 84, 1, -64, -68, -25, -42, -46, -76, 43, -3, 30, -14, -34, -55, -13, 41, -30, 0, -61, 48, 23, 60, 87, 80, 77, 53, 73, 79, 24, -52, 82, 8, -44, 65, 47, -77, 94, 7, 37, -79, 36, -94, 91, 59, 10, 97, -38, -67, 83, 54, 31, -95, -63, 16, -45, 21, -12, 66, -48, -18, -96, -90, -21, -83, -74, 39, 64, 69, -97, 13, 55, 27, -39]
test_data_sorted = [-98, -97, -96, -95, -94, -92, -90, -83, -79, -78, -77, -76, -74, -68, -67, -66, -65, -64, -63, -61, -55, -52, -48, -46, -45, -44, -43, -42, -40, -39, -38, -34, -32, -30, -27, -26, -25, -24, -21, -20, -18, -17, -14, -13, -12, -11, -3, 0, 1, 6, 7, 8, 9, 10, 12, 13, 16, 17, 19, 20, 21, 23, 24, 27, 30, 31, 34, 36, 37, 39, 40, 41, 43, 47, 48, 49, 53, 54, 55, 59, 60, 64, 65, 66, 69, 72, 73, 77, 79, 80, 82, 83, 84, 85, 87, 91, 93, 94, 97, 98]
test_data_2D_pairs = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
test_data_2D_positive = np.array([[23, 51], [21, 32], [15, 25], [17, 31]])
test_output = np.array([1, 3, 4, 5])
test_labels_2D_pairs = np.array([1, 1, 2, 2])
validation_data_2D_pairs = np.array([[-0.8, -1], [0.8, 1.2]])
validation_labels_2D_pairs = np.array([1, 2])
def test_basicstats():
assert an.basic_stats(test_data_linear) == {"mean": 5.2, "median": 6.0, "standard-deviation": 2.85657137141714, "variance": 8.16, "minimum": 1.0, "maximum": 9.0}
assert an.z_score(3.2, 6, 1.5) == -1.8666666666666665
assert an.z_normalize([test_data_linear], 1).tolist() == [[0.07537783614444091, 0.22613350843332272, 0.45226701686664544, 0.5276448530110863, 0.6784005252999682]]
def test_regression():
assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["lin"])) == True
assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccd, ["log"])) == True
assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["exp"])) == True
assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["ply"])) == True
assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccd, ["sig"])) == True
def test_metrics():
assert an.Metric().elo(1500, 1500, [1, 0], 400, 24) == 1512.0
assert an.Metric().glicko2(1500, 250, 0.06, [1500, 1400], [250, 240], [1, 0]) == (1478.864307445517, 195.99122679202452, 0.05999602937563585)
e = [[(21.346, 7.875), (20.415, 7.808), (29.037, 7.170)], [(28.654, 7.875), (28.654, 7.875), (23.225, 6.287)]]
r = an.Metric().trueskill([[(25, 8.33), (24, 8.25), (32, 7.5)], [(25, 8.33), (25, 8.33), (21, 6.5)]], [1, 0])
i = 0
for group in r:
j = 0
for team in group:
assert abs(team.mu - e[i][j][0]) < 0.001
assert abs(team.sigma - e[i][j][1]) < 0.001
j+=1
i+=1
def test_array():
assert test_data_array.elementwise_mean() == 5.2
assert test_data_array.elementwise_median() == 6.0
assert test_data_array.elementwise_stdev() == 2.85657137141714
assert test_data_array.elementwise_variance() == 8.16
assert test_data_array.elementwise_npmin() == 1
assert test_data_array.elementwise_npmax() == 9
assert test_data_array.elementwise_stats() == (5.2, 6.0, 2.85657137141714, 8.16, 1, 9)
for i in range(len(test_data_array)):
assert test_data_array[i] == test_data_linear[i]
test_data_array[0] = 100
expected = [100, 3, 6, 7, 9]
for i in range(len(test_data_array)):
assert test_data_array[i] == expected[i]
def test_classifmetric():
classif_metric = ClassificationMetric(test_data_linear2, test_data_linear)
assert classif_metric[0].all() == metrics.confusion_matrix(test_data_linear, test_data_linear2).all()
assert classif_metric[1] == metrics.classification_report(test_data_linear, test_data_linear2)
def test_correlationtest():
assert all(np.isclose(list(CorrelationTest.anova_oneway(test_data_linear, test_data_linear2).values()), [0.05825242718446602, 0.8153507906592907], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.pearson(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.spearman(test_data_linear, test_data_linear2).values()), [0.9746794344808964, 0.004818230468198537], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.point_biserial(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.kendall(test_data_linear, test_data_linear2).values()), [0.9486832980505137, 0.022977401503206086], rtol=1e-10))
assert all(np.isclose(list(CorrelationTest.kendall_weighted(test_data_linear, test_data_linear2).values()), [0.9750538072369643, np.nan], rtol=1e-10, equal_nan=True))
def test_fit():
assert Fit.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0)
def test_knn():
model, metric = KNN.knn_classifier(test_data_2D_pairs, test_labels_2D_pairs, 2)
assert isinstance(model, sklearn.neighbors.KNeighborsClassifier)
assert np.array([[0,0], [2,0]]).all() == metric[0].all()
assert ' precision recall f1-score support\n\n 1 0.00 0.00 0.00 0.0\n 2 0.00 0.00 0.00 2.0\n\n accuracy 0.00 2.0\n macro avg 0.00 0.00 0.00 2.0\nweighted avg 0.00 0.00 0.00 2.0\n' == metric[1]
model, metric = KNN.knn_regressor(test_data_2D_pairs, test_output, 2)
assert isinstance(model, sklearn.neighbors.KNeighborsRegressor)
assert (-25.0, 6.5, 2.5495097567963922) == metric
def test_naivebayes():
model, metric = NaiveBayes.gaussian(test_data_2D_pairs, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.GaussianNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = NaiveBayes.multinomial(test_data_2D_positive, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.MultinomialNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = NaiveBayes.bernoulli(test_data_2D_pairs, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.BernoulliNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = NaiveBayes.complement(test_data_2D_positive, test_labels_2D_pairs)
assert isinstance(model, sklearn.naive_bayes.ComplementNB)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
def test_randomforest():
model, metric = RandomForest.random_forest_classifier(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2)
assert isinstance(model, sklearn.ensemble.RandomForestClassifier)
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
model, metric = RandomForest.random_forest_regressor(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2)
assert isinstance(model, sklearn.ensemble.RandomForestRegressor)
assert metric == (0.0, 1.0, 1.0)
def test_regressionmetric():
assert RegressionMetric(test_data_linear, test_data_linear2)== (0.7705314009661837, 3.8, 1.9493588689617927)
def test_sort():
sorts = [Sort.quicksort, Sort.mergesort, Sort.heapsort, Sort.introsort, Sort.insertionsort, Sort.timsort, Sort.selectionsort, Sort.shellsort, Sort.bubblesort, Sort.cyclesort, Sort.cocktailsort]
for sort in sorts:
assert all(a == b for a, b in zip(sort(test_data_scrambled), test_data_sorted))
def test_statisticaltest():
assert StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]) == \
{'group 1 and group 2': [0.32571517201527916, False], 'group 1 and group 3': [0.977145516045838, False], 'group 2 and group 3': [0.6514303440305589, False]}
def test_svm():
data = test_data_2D_pairs
labels = test_labels_2D_pairs
test_data = validation_data_2D_pairs
test_labels = validation_labels_2D_pairs
lin_kernel = SVM.PrebuiltKernel.Linear()
#ply_kernel = SVM.PrebuiltKernel.Polynomial(3, 0)
rbf_kernel = SVM.PrebuiltKernel.RBF('scale')
sig_kernel = SVM.PrebuiltKernel.Sigmoid(0)
lin_kernel = SVM.fit(lin_kernel, data, labels)
#ply_kernel = SVM.fit(ply_kernel, data, labels)
rbf_kernel = SVM.fit(rbf_kernel, data, labels)
sig_kernel = SVM.fit(sig_kernel, data, labels)
for i in range(len(test_data)):
assert lin_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
#for i in range(len(test_data)):
# assert ply_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
for i in range(len(test_data)):
assert rbf_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
for i in range(len(test_data)):
assert sig_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
def test_equation():
parser = BNF()
correctParse = {
"9": 9.0,
"-9": -9.0,
"--9": 9.0,
"-E": -2.718281828459045,
"9 + 3 + 6": 18.0,
"9 + 3 / 11": 9.272727272727273,
"(9 + 3)": 12.0,
"(9+3) / 11": 1.0909090909090908,
"9 - 12 - 6": -9.0,
"9 - (12 - 6)": 3.0,
"2*3.14159": 6.28318,
"3.1415926535*3.1415926535 / 10": 0.9869604400525172,
"PI * PI / 10": 0.9869604401089358,
"PI*PI/10": 0.9869604401089358,
"PI^2": 9.869604401089358,
"round(PI^2)": 10,
"6.02E23 * 8.048": 4.844896e+24,
"e / 3": 0.9060939428196817,
"sin(PI/2)": 1.0,
"10+sin(PI/4)^2": 10.5,
"trunc(E)": 2,
"trunc(-E)": -2,
"round(E)": 3,
"round(-E)": -3,
"E^PI": 23.140692632779263,
"exp(0)": 1.0,
"exp(1)": 2.718281828459045,
"2^3^2": 512.0,
"(2^3)^2": 64.0,
"2^3+2": 10.0,
"2^3+5": 13.0,
"2^9": 512.0,
"sgn(-2)": -1,
"sgn(0)": 0,
"sgn(0.1)": 1,
"sgn(cos(PI/4))": 1,
"sgn(cos(PI/2))": 0,
"sgn(cos(PI*3/4))": -1,
"+(sgn(cos(PI/4)))": 1,
"-(sgn(cos(PI/4)))": -1,
}
for key in list(correctParse.keys()):
assert parser.eval(key) == correctParse[key]
def test_clustering():
normalizer = sklearn.preprocessing.Normalizer()
data = X = np.array([[1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80]])
assert Clustering.dbscan(data, eps=3, min_samples=2).tolist() == [0, 0, 0, 1, 1, -1]
assert Clustering.dbscan(data, normalizer=normalizer, eps=3, min_samples=2).tolist() == [0, 0, 0, 0, 0, 0]
data = np.array([[1, 1], [2, 1], [1, 0], [4, 7], [3, 5], [3, 6]])
assert Clustering.spectral(data, n_clusters=2, assign_labels='discretize', random_state=0).tolist() == [1, 1, 1, 0, 0, 0]
assert Clustering.spectral(data, normalizer=normalizer, n_clusters=2, assign_labels='discretize', random_state=0).tolist() == [0, 1, 1, 0, 0, 0]

View File

@@ -1,704 +0,0 @@
# Titan Robotics Team 2022: Analysis Module
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import Analysis'
# this should be included in the local directory or environment variable
# this module has been optimized for multhreaded computing
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "3.0.6"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
3.0.6:
- added docstrings
3.0.5:
- removed extra submodule imports
- fixed/optimized header
3.0.4:
- removed -_obj imports
3.0.3:
- fixed spelling of deprecate
3.0.2:
- fixed __all__
3.0.1:
- removed numba dependency and calls
3.0.0:
- exported several submodules to their own files while preserving backwards compatibility:
- Array
- ClassificationMetric
- CorrelationTest
- KNN
- NaiveBayes
- RandomForest
- RegressionMetric
- Sort
- StatisticalTest
- SVM
- note: above listed submodules will not be supported in the future
- future changes to all submodules will be held in their respective changelogs
- future changes altering the parent package will be held in the __changelog__ of the parent package (in __init__.py)
- changed reference to module name to Analysis
2.3.1:
- fixed bugs in Array class
2.3.0:
- overhauled Array class
2.2.3:
- fixed spelling of RandomForest
- made n_neighbors required for KNN
- made n_classifiers required for SVM
2.2.2:
- fixed 2.2.1 changelog entry
- changed regression to return dictionary
2.2.1:
- changed all references to parent package analysis to tra_analysis
2.2.0:
- added Sort class
- added several array sorting functions to Sort class including:
- quick sort
- merge sort
- intro(spective) sort
- heap sort
- insertion sort
- tim sort
- selection sort
- bubble sort
- cycle sort
- cocktail sort
- tested all sorting algorithms with both lists and numpy arrays
- deprecated sort function from Array class
- added warnings as an import
2.1.4:
- added sort and search functions to Array class
2.1.3:
- changed output of basic_stats and histo_analysis to libraries
- fixed __all__
2.1.2:
- renamed ArrayTest class to Array
2.1.1:
- added add, mul, neg, and inv functions to ArrayTest class
- added normalize function to ArrayTest class
- added dot and cross functions to ArrayTest class
2.1.0:
- added ArrayTest class
- added elementwise mean, median, standard deviation, variance, min, max functions to ArrayTest class
- added elementwise_stats to ArrayTest which encapsulates elementwise statistics
- appended to __all__ to reflect changes
2.0.6:
- renamed func functions in regression to lin, log, exp, and sig
2.0.5:
- moved random_forrest_regressor and random_forrest_classifier to RandomForrest class
- renamed Metrics to Metric
- renamed RegressionMetrics to RegressionMetric
- renamed ClassificationMetrics to ClassificationMetric
- renamed CorrelationTests to CorrelationTest
- renamed StatisticalTests to StatisticalTest
- reflected rafactoring to all mentions of above classes/functions
2.0.4:
- fixed __all__ to reflected the correct functions and classes
- fixed CorrelationTests and StatisticalTests class functions to require self invocation
- added missing math import
- fixed KNN class functions to require self invocation
- fixed Metrics class functions to require self invocation
- various spelling fixes in CorrelationTests and StatisticalTests
2.0.3:
- bug fixes with CorrelationTests and StatisticalTests
- moved glicko2 and trueskill to the metrics subpackage
- moved elo to a new metrics subpackage
2.0.2:
- fixed docs
2.0.1:
- fixed docs
2.0.0:
- cleaned up wild card imports with scipy and sklearn
- added CorrelationTests class
- added StatisticalTests class
- added several correlation tests to CorrelationTests
- added several statistical tests to StatisticalTests
1.13.9:
- moved elo, glicko2, trueskill functions under class Metrics
1.13.8:
- moved Glicko2 to a seperate package
1.13.7:
- fixed bug with trueskill
1.13.6:
- cleaned up imports
1.13.5:
- cleaned up package
1.13.4:
- small fixes to regression to improve performance
1.13.3:
- filtered nans from regression
1.13.2:
- removed torch requirement, and moved Regression back to regression.py
1.13.1:
- bug fix with linear regression not returning a proper value
- cleaned up regression
- fixed bug with polynomial regressions
1.13.0:
- fixed all regressions to now properly work
1.12.6:
- fixed bg with a division by zero in histo_analysis
1.12.5:
- fixed numba issues by removing numba from elo, glicko2 and trueskill
1.12.4:
- renamed gliko to glicko
1.12.3:
- removed deprecated code
1.12.2:
- removed team first time trueskill instantiation in favor of integration in superscript.py
1.12.1:
- improved readibility of regression outputs by stripping tensor data
- used map with lambda to acheive the improved readibility
- lost numba jit support with regression, and generated_jit hangs at execution
- TODO: reimplement correct numba integration in regression
1.12.0:
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
1.11.010:
- alphabeticaly ordered import lists
1.11.9:
- bug fixes
1.11.8:
- bug fixes
1.11.7:
- bug fixes
1.11.6:
- tested min and max
- bug fixes
1.11.5:
- added min and max in basic_stats
1.11.4:
- bug fixes
1.11.3:
- bug fixes
1.11.2:
- consolidated metrics
- fixed __all__
1.11.1:
- added test/train split to RandomForestClassifier and RandomForestRegressor
1.11.0:
- added RandomForestClassifier and RandomForestRegressor
- note: untested
1.10.0:
- added numba.jit to remaining functions
1.9.2:
- kernelized PCA and KNN
1.9.1:
- fixed bugs with SVM and NaiveBayes
1.9.0:
- added SVM class, subclasses, and functions
- note: untested
1.8.0:
- added NaiveBayes classification engine
- note: untested
1.7.0:
- added knn()
- added confusion matrix to decisiontree()
1.6.2:
- changed layout of __changelog to be vscode friendly
1.6.1:
- added additional hyperparameters to decisiontree()
1.6.0:
- fixed __version__
- fixed __all__ order
- added decisiontree()
1.5.3:
- added pca
1.5.2:
- reduced import list
- added kmeans clustering engine
1.5.1:
- simplified regression by using .to(device)
1.5.0:
- added polynomial regression to regression(); untested
1.4.0:
- added trueskill()
1.3.2:
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
1.3.1:
- changed glicko2() to return tuple instead of array
1.3.0:
- added glicko2_engine class and glicko()
- verified glicko2() accuracy
1.2.3:
- fixed elo()
1.2.2:
- added elo()
- elo() has bugs to be fixed
1.2.1:
- readded regrression import
1.2.0:
- integrated regression.py as regression class
- removed regression import
- fixed metadata for regression class
- fixed metadata for analysis class
1.1.1:
- regression_engine() bug fixes, now actaully regresses
1.1.0:
- added regression_engine()
- added all regressions except polynomial
1.0.7:
- updated _init_device()
1.0.6:
- removed useless try statements
1.0.5:
- removed impossible outcomes
1.0.4:
- added performance metrics (r^2, mse, rms)
1.0.3:
- resolved nopython mode for mean, median, stdev, variance
1.0.2:
- snapped (removed) majority of uneeded imports
- forced object mode (bad) on all jit
- TODO: stop numba complaining about not being able to compile in nopython mode
1.0.1:
- removed from sklearn import * to resolve uneeded wildcard imports
1.0.0:
- removed c_entities,nc_entities,obstacles,objectives from __all__
- applied numba.jit to all functions
- deprecated and removed stdev_z_split
- cleaned up histo_analysis to include numpy and numba.jit optimizations
- deprecated and removed all regression functions in favor of future pytorch optimizer
- deprecated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
- optimized z_normalize using sklearn.preprocessing.normalize
- TODO: implement kernel/function based pytorch regression optimizer
0.9.0:
- refactored
- numpyed everything
- removed stats in favor of numpy functions
0.8.5:
- minor fixes
0.8.4:
- removed a few unused dependencies
0.8.3:
- added p_value function
0.8.2:
- updated __all__ correctly to contain changes made in v 0.8.0 and v 0.8.1
0.8.1:
- refactors
- bugfixes
0.8.0:
- deprecated histo_analysis_old
- deprecated debug
- altered basic_analysis to take array data instead of filepath
- refactor
- optimization
0.7.2:
- bug fixes
0.7.1:
- bug fixes
0.7.0:
- added tanh_regression (logistical regression)
- bug fixes
0.6.5:
- added z_normalize function to normalize dataset
- bug fixes
0.6.4:
- bug fixes
0.6.3:
- bug fixes
0.6.2:
- bug fixes
0.6.1:
- corrected __all__ to contain all of the functions
0.6.0:
- added calc_overfit, which calculates two measures of overfit, error and performance
- added calculating overfit to optimize_regression
0.5.0:
- added optimize_regression function, which is a sample function to find the optimal regressions
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
- planned addition: overfit detection in the optimize_regression function
0.4.2:
- added __changelog__
- updated debug function with log and exponential regressions
0.4.1:
- added log regressions
- added exponential regressions
- added log_regression and exp_regression to __all__
0.3.8:
- added debug function to further consolidate functions
0.3.7:
- added builtin benchmark function
- added builtin random (linear) data generation function
- added device initialization (_init_device)
0.3.6:
- reorganized the imports list to be in alphabetical order
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
0.3.5:
- major bug fixes
- updated historical analysis
- deprecated old historical analysis
0.3.4:
- added __version__, __author__, __all__
- added polynomial regression
- added root mean squared function
- added r squared function
0.3.3:
- bug fixes
- added c_entities
0.3.2:
- bug fixes
- added nc_entities, obstacles, objectives
- consolidated statistics.py to analysis.py
0.3.1:
- compiled 1d, column, and row basic stats into basic stats function
0.3.0:
- added historical analysis function
0.2.x:
- added z score test
0.1.x:
- major bug fixes
0.0.x:
- added loading csv
- added 1d, column, row basic stats
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'load_csv',
'basic_stats',
'z_score',
'z_normalize',
'histo_analysis',
'regression',
'Metric',
'pca',
'decisiontree',
# all statistics functions left out due to integration in other functions
]
# now back to your regularly scheduled programming:
# imports (now in alphabetical order! v 0.3.006):
import csv
from tra_analysis.metrics import elo as Elo
from tra_analysis.metrics import glicko2 as Glicko2
import numpy as np
import scipy
import sklearn, sklearn.cluster, sklearn.pipeline
from tra_analysis.metrics import trueskill as Trueskill
# import submodules
from .ClassificationMetric import ClassificationMetric
class error(ValueError):
pass
def load_csv(filepath):
"""
Loads csv file into 2D numpy array. Does not check csv file validity.
parameters:
filepath: String path to the csv file
return:
2D numpy array of values stored in csv file
"""
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
csvfile.close()
return file_array
def basic_stats(data):
"""
Calculates mean, median, standard deviation, variance, minimum, maximum of a simple set of elements.
parameters:
data: List representing set of unordered elements
return:
Dictionary with (mean, median, standard-deviation, variance, minimum, maximum) as keys and corresponding values
"""
data_t = np.array(data).astype(float)
_mean = mean(data_t)
_median = median(data_t)
_stdev = stdev(data_t)
_variance = variance(data_t)
_min = npmin(data_t)
_max = npmax(data_t)
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
def z_score(point, mean, stdev):
"""
Calculates z score of a specific point given mean and standard deviation of data.
parameters:
point: Real value corresponding to a single point of data
mean: Real value corresponding to the mean of the dataset
stdev: Real value corresponding to the standard deviation of the dataset
return:
Real value that is the point's z score
"""
score = (point - mean) / stdev
return score
def z_normalize(array, *args):
"""
Applies sklearn.normalize(array, axis = args) on any arraylike parseable by numpy.
parameters:
array: array like structure of reals aka nested indexables
*args: arguments relating to axis normalized against
return:
numpy array of normalized values from ArrayLike input
"""
array = np.array(array)
for arg in args:
array = sklearn.preprocessing.normalize(array, axis = arg)
return array
def histo_analysis(hist_data):
"""
Calculates the mean and standard deviation of derivatives of (x,y) points. Requires at least 2 points to compute.
parameters:
hist_data: list of real coordinate point data (x, y)
return:
Dictionary with (mean, deviation) as keys to corresponding values
"""
if len(hist_data[0]) > 2:
hist_data = np.array(hist_data)
derivative = np.array(len(hist_data) - 1, dtype = float)
t = np.diff(hist_data)
derivative = t[1] / t[0]
np.sort(derivative)
return {"mean": basic_stats(derivative)["mean"], "deviation": basic_stats(derivative)["standard-deviation"]}
else:
return None
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
"""
Applies specified regression kernels onto input, output data pairs.
parameters:
inputs: List of Reals representing independent variable values of each point
outputs: List of Reals representing dependent variable values of each point
args: List of Strings from values (lin, log, exp, ply, sig)
return:
Dictionary with keys (lin, log, exp, ply, sig) as keys to correspondiong regression models
"""
X = np.array(inputs)
y = np.array(outputs)
regressions = {}
if 'lin' in args: # formula: ax + b
try:
def lin(x, a, b):
return a * x + b
popt, pcov = scipy.optimize.curve_fit(lin, X, y)
coeffs = popt.flatten().tolist()
regressions["lin"] = (str(coeffs[0]) + "*x+" + str(coeffs[1]))
except Exception as e:
pass
if 'log' in args: # formula: a log (b(x + c)) + d
try:
def log(x, a, b, c, d):
return a * np.log(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(log, X, y)
coeffs = popt.flatten().tolist()
regressions["log"] = (str(coeffs[0]) + "*log(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
except Exception as e:
pass
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
try:
def exp(x, a, b, c, d):
return a * np.exp(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(exp, X, y)
coeffs = popt.flatten().tolist()
regressions["exp"] = (str(coeffs[0]) + "*e^(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
except Exception as e:
pass
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = np.array([inputs])
outputs = np.array([outputs])
plys = {}
limit = len(outputs[0])
for i in range(2, limit):
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
model = model.fit(np.rot90(inputs), np.rot90(outputs))
params = model.steps[1][1].intercept_.tolist()
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
params = params.flatten().tolist()
temp = ""
counter = 0
for param in params:
temp += "(" + str(param) + "*x^" + str(counter) + ")"
counter += 1
plys["x^" + str(i)] = (temp)
regressions["ply"] = (plys)
if 'sig' in args: # formula: a tanh (b(x + c)) + d
try:
def sig(x, a, b, c, d):
return a * np.tanh(b*(x + c)) + d
popt, pcov = scipy.optimize.curve_fit(sig, X, y)
coeffs = popt.flatten().tolist()
regressions["sig"] = (str(coeffs[0]) + "*tanh(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
except Exception as e:
pass
return regressions
class Metric:
"""
The metric class wraps the metrics models. Call without instantiation as Metric.<method>(...)
"""
def elo(self, starting_score, opposing_score, observed, N, K):
"""
Calculates an elo adjusted ELO score given a player's current score, opponent's score, and outcome of match.
reference: https://en.wikipedia.org/wiki/Elo_rating_system
parameters:
starting_score: Real value representing player's ELO score before a match
opposing_score: Real value representing opponent's score before the match
observed: Array of Real values representing multiple sequential match outcomes against the same opponent. 1 for match win, 0.5 for tie, 0 for loss.
N: Real value representing the normal or mean score expected (usually 1200)
K: R eal value representing a system constant, determines how quickly players will change scores (usually 24)
return:
Real value representing the player's new ELO score
"""
return Elo.calculate(starting_score, opposing_score, observed, N, K)
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
"""
Calculates an adjusted Glicko-2 score given a player's current score, multiple opponent's score, and outcome of several matches.
reference: http://www.glicko.net/glicko/glicko2.pdf
parameters:
starting_score: Real value representing the player's Glicko-2 score
starting_rd: Real value representing the player's RD
starting_vol: Real value representing the player's volatility
opposing_score: List of Real values representing multiple opponent's Glicko-2 scores
opposing_rd: List of Real values representing multiple opponent's RD
opposing_vol: List of Real values representing multiple opponent's volatility
observations: List of Real values representing the outcome of several matches, where each match's opponent corresponds with the opposing_score, opposing_rd, opposing_vol values of the same indesx. Outcomes can be a score, presuming greater score is better.
return:
Tuple of 3 Real values representing the player's new score, rd, and vol
"""
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
return (player.rating, player.rd, player.vol)
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
"""
Calculates the score changes for multiple teams playing in a single match accoding to the trueskill algorithm.
reference: https://trueskill.org/
parameters:
teams_data: List of List of Tuples of 2 Real values representing multiple player ratings. List of teams, which is a List of players. Each player rating is a Tuple of 2 Real values (mu, sigma).
observations: List of Real values representing the match outcome. Each value in the List is the score corresponding to the team at the same index in teams_data.
return:
List of List of Tuples of 2 Real values representing new player ratings. Same structure as teams_data.
"""
team_ratings = []
for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
def mean(data):
return np.mean(data)
def median(data):
return np.median(data)
def stdev(data):
return np.std(data)
def variance(data):
return np.var(data)
def npmin(data):
return np.amin(data)
def npmax(data):
return np.amax(data)
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
"""
Performs a principle component analysis on the input data.
reference: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
parameters:
data: Arraylike of Reals representing the set of data to perform PCA on
* : refer to reference for usage, parameters follow same usage
return:
Arraylike of Reals representing the set of data that has had PCA performed. The dimensionality of the Arraylike may be smaller or equal.
"""
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
return kernel.fit_transform(data)
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
"""
Generates a decision tree classifier fitted to the given data.
reference: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
parameters:
data: List of values representing each data point of multiple axes
labels: List of values represeing the labels corresponding to the same index at data
* : refer to reference for usage, parameters follow same usage
return:
DecisionTreeClassifier model and corresponding classification accuracy metrics
"""
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
model = model.fit(data_train,labels_train)
predictions = model.predict(data_test)
metrics = ClassificationMetric(predictions, labels_test)
return model, metrics

View File

@@ -1,166 +0,0 @@
# Titan Robotics Team 2022: Array submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import Array'
# setup:
__version__ = "1.0.4"
__changelog__ = """changelog:
1.0.4:
- fixed spelling of deprecate
1.0.3:
- fixed __all__
1.0.2:
- fixed several implementation bugs with magic methods
1.0.1:
- removed search and __search functions
1.0.0:
- ported analysis.Array() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"Array",
]
import numpy as np
import warnings
class Array(): # tests on nd arrays independent of basic_stats
def __init__(self, narray):
self.array = np.array(narray)
def __str__(self):
return str(self.array)
def __repr__(self):
return str(self.array)
def elementwise_mean(self, axis = 0): # expects arrays that are size normalized
return np.mean(self.array, axis = axis)
def elementwise_median(self, axis = 0):
return np.median(self.array, axis = axis)
def elementwise_stdev(self, axis = 0):
return np.std(self.array, axis = axis)
def elementwise_variance(self, axis = 0):
return np.var(self.array, axis = axis)
def elementwise_npmin(self, axis = 0):
return np.amin(self.array, axis = axis)
def elementwise_npmax(self, axis = 0):
return np.amax(self.array, axis = axis)
def elementwise_stats(self, axis = 0):
_mean = self.elementwise_mean(axis = axis)
_median = self.elementwise_median(axis = axis)
_stdev = self.elementwise_stdev(axis = axis)
_variance = self.elementwise_variance(axis = axis)
_min = self.elementwise_npmin(axis = axis)
_max = self.elementwise_npmax(axis = axis)
return _mean, _median, _stdev, _variance, _min, _max
def __getitem__(self, key):
return self.array[key]
def __setitem__(self, key, value):
self.array[key] = value
def __len__(self):
return len(self.array)
def normalize(self):
a = np.atleast_1d(np.linalg.norm(self.array))
a[a==0] = 1
return Array(self.array / np.expand_dims(a, -1))
def __add__(self, other):
return Array(self.array + other.array)
def __sub__(self, other):
return Array(self.array - other.array)
def __neg__(self):
return Array(-self.array)
def __abs__(self):
return Array(abs(self.array))
def __invert__(self):
return Array(1/self.array)
def __mul__(self, other):
if(isinstance(other, Array)):
return Array(self.array.dot(other.array))
elif(isinstance(other, int)):
return Array(other * self.array)
else:
raise Exception("unsupported multiplication between Array and " + str(type(other)))
def __rmul__(self, other):
return self.__mul__(other)
def cross(self, other):
return np.cross(self.array, other.array)
def transpose(self):
return Array(np.transpose(self.array))
def sort(self, array): # deprecated
warnings.warn("Array.sort has been deprecated in favor of Sort")
array_length = len(array)
if array_length <= 1:
return array
middle_index = int(array_length / 2)
left = array[0:middle_index]
right = array[middle_index:]
left = self.sort(left)
right = self.sort(right)
return self.__merge(left, right)
def __merge(self, left, right):
sorted_list = []
left = left[:]
right = right[:]
while len(left) > 0 or len(right) > 0:
if len(left) > 0 and len(right) > 0:
if left[0] <= right[0]:
sorted_list.append(left.pop(0))
else:
sorted_list.append(right.pop(0))
elif len(left) > 0:
sorted_list.append(left.pop(0))
elif len(right) > 0:
sorted_list.append(right.pop(0))
return sorted_list

View File

@@ -1,40 +0,0 @@
# Titan Robotics Team 2022: ClassificationMetric submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
# setup:
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- optimized imports
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.ClassificationMetric() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"ClassificationMetric",
]
import sklearn
class ClassificationMetric():
def __new__(cls, predictions, targets):
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
def cm(self, predictions, targets):
return sklearn.metrics.confusion_matrix(targets, predictions)
def cr(self, predictions, targets):
return sklearn.metrics.classification_report(targets, predictions)

View File

@@ -1,63 +0,0 @@
# Titan Robotics Team 2022: Clustering submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import Clustering'
# setup:
__version__ = "2.0.2"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
2.0.2:
- generalized optional args to **kwargs
2.0.1:
- added normalization preprocessing to clustering, expects instance of sklearn.preprocessing.Normalizer()
2.0.0:
- added dbscan clustering algo
- added spectral clustering algo
1.0.0:
- created this submodule
- copied kmeans clustering from Analysis
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"kmeans",
"dbscan",
"spectral",
]
import sklearn
def kmeans(data, normalizer = None, **kwargs):
if normalizer != None:
data = normalizer.transform(data)
kernel = sklearn.cluster.KMeans(**kwargs)
kernel.fit(data)
predictions = kernel.predict(data)
centers = kernel.cluster_centers_
return centers, predictions
def dbscan(data, normalizer=None, **kwargs):
if normalizer != None:
data = normalizer.transform(data)
model = sklearn.cluster.DBSCAN(**kwargs).fit(data)
return model.labels_
def spectral(data, normalizer=None, **kwargs):
if normalizer != None:
data = normalizer.transform(data)
model = sklearn.cluster.SpectralClustering(**kwargs).fit(data)
return model.labels_

View File

@@ -1,70 +0,0 @@
# Titan Robotics Team 2022: CorrelationTest submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
# setup:
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- generalized optional args to **kwargs
1.0.2:
- optimized imports
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.CorrelationTest() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"anova_oneway",
"pearson",
"spearman",
"point_biserial",
"kendall",
"kendall_weighted",
"mgc",
]
import scipy
def anova_oneway(*args): #expects arrays of samples
results = scipy.stats.f_oneway(*args)
return {"f-value": results[0], "p-value": results[1]}
def pearson(x, y):
results = scipy.stats.pearsonr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def spearman(a, b = None, **kwargs):
results = scipy.stats.spearmanr(a, b = b, **kwargs)
return {"r-value": results[0], "p-value": results[1]}
def point_biserial(x, y):
results = scipy.stats.pointbiserialr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def kendall(x, y, **kwargs):
results = scipy.stats.kendalltau(x, y, **kwargs)
return {"tau": results[0], "p-value": results[1]}
def kendall_weighted(x, y, **kwargs):
results = scipy.stats.weightedtau(x, y, **kwargs)
return {"tau": results[0], "p-value": results[1]}
def mgc(x, y, **kwargs):
results = scipy.stats.multiscale_graphcorr(x, y, **kwargs)
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value

View File

@@ -1,87 +0,0 @@
# Titan Robotics Team 2022: CPU fitting models
# Written by Dev Singh
# Notes:
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
# setup:
__version__ = "0.0.2"
# changelog should be viewed using print(analysis.fits.__changelog__)
__changelog__ = """changelog:
0.0.2:
- renamed module to Fit
0.0.1:
- initial release, add circle fitting with LSC
"""
__author__ = (
"Dev Singh <dev@devksingh.com>"
)
__all__ = [
'CircleFit'
]
import numpy as np
class CircleFit:
"""Class to fit data to a circle using the Least Square Circle (LSC) method"""
# For more information on the LSC method, see:
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
def __init__(self, x, y, xy=None):
self.ournp = np #todo: implement cupy correctly
if type(x) == list:
x = np.array(x)
if type(y) == list:
y = np.array(y)
if type(xy) == list:
xy = np.array(xy)
if xy != None:
self.coords = xy
else:
# following block combines x and y into one array if not already done
self.coords = self.ournp.vstack(([x.T], [y.T])).T
def calc_R(x, y, xc, yc):
"""Returns distance between center and point"""
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
def f(c, x, y):
"""Returns distance between point and circle at c"""
Ri = calc_R(x, y, *c)
return Ri - Ri.mean()
def LSC(self):
"""Fits given data to a circle and returns the center, radius, and variance"""
x = self.coords[:, 0]
y = self.coords[:, 1]
# guessing at a center
x_m = self.ournp.mean(x)
y_m = self.ournp.mean(y)
# calculation of the reduced coordinates
u = x - x_m
v = y - y_m
# linear system defining the center (uc, vc) in reduced coordinates:
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
Suv = self.ournp.sum(u*v)
Suu = self.ournp.sum(u**2)
Svv = self.ournp.sum(v**2)
Suuv = self.ournp.sum(u**2 * v)
Suvv = self.ournp.sum(u * v**2)
Suuu = self.ournp.sum(u**3)
Svvv = self.ournp.sum(v**3)
# Solving the linear system
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
uc, vc = self.ournp.linalg.solve(A, B)
xc_1 = x_m + uc
yc_1 = y_m + vc
# Calculate the distances from center (xc_1, yc_1)
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
R_1 = self.ournp.mean(Ri_1)
# calculate residual error
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
return (xc_1, yc_1, R_1, residu_1)

View File

@@ -1,48 +0,0 @@
# Titan Robotics Team 2022: KNN submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import KNN'
# setup:
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- generalized optional args to **kwargs
1.0.1:
- optimized imports
1.0.0:
- ported analysis.KNN() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>"
)
__all__ = [
'knn_classifier',
'knn_regressor'
]
import sklearn
from . import ClassificationMetric, RegressionMetric
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, **kwargs): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier(n_neighbors = n_neighbors, **kwargs)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def knn_regressor(data, outputs, n_neighbors = 5, test_size = 0.3, **kwargs):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, **kwargs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetric.RegressionMetric(predictions, outputs_test)

View File

@@ -1,67 +0,0 @@
# Titan Robotics Team 2022: NaiveBayes submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
# setup:
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- generalized optional args to **kwargs
1.0.1:
- optimized imports
1.0.0:
- ported analysis.NaiveBayes() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'gaussian',
'multinomial',
'bernoulli',
'complement',
]
import sklearn
from . import ClassificationMetric
def gaussian(data, labels, test_size = 0.3, **kwargs):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.GaussianNB(**kwargs)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def multinomial(data, labels, test_size = 0.3, **kwargs):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.MultinomialNB(**kwargs)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def bernoulli(data, labels, test_size = 0.3, **kwargs):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.BernoulliNB(**kwargs)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def complement(data, labels, test_size = 0.3, **kwargs):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.ComplementNB(**kwargs)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)

View File

@@ -1,50 +0,0 @@
# Titan Robotics Team 2022: RandomForest submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import RandomForest'
# setup:
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- updated RandomForestClassifier and RandomForestRegressor parameters to match sklearn v 1.0.2
- changed default values for kwargs to rely on sklearn
1.0.2:
- optimized imports
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.RandomFores() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"random_forest_classifier",
"random_forest_regressor",
]
import sklearn, sklearn.ensemble, sklearn.naive_bayes
from . import ClassificationMetric, RegressionMetric
def random_forest_classifier(data, labels, test_size, n_estimators, **kwargs):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, **kwargs)
kernel.fit(data_train, labels_train)
predictions = kernel.predict(data_test)
return kernel, ClassificationMetric(predictions, labels_test)
def random_forest_regressor(data, outputs, test_size, n_estimators, **kwargs):
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, **kwargs)
kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test)
return kernel, RegressionMetric.RegressionMetric(predictions, outputs_test)

View File

@@ -1,43 +0,0 @@
# Titan Robotics Team 2022: RegressionMetric submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
# setup:
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- optimized imports
1.0.0:
- ported analysis.RegressionMetric() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'RegressionMetric'
]
import numpy as np
import sklearn
class RegressionMetric():
def __new__(cls, predictions, targets):
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
def r_squared(self, predictions, targets): # assumes equal size inputs
return sklearn.metrics.r2_score(targets, predictions)
def mse(self, predictions, targets):
return sklearn.metrics.mean_squared_error(targets, predictions)
def rms(self, predictions, targets):
return np.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))

View File

@@ -1,89 +0,0 @@
# Titan Robotics Team 2022: SVM submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import SVM'
# setup:
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- optimized imports
1.0.2:
- fixed __all__
1.0.1:
- removed unessasary self calls
- removed classness
1.0.0:
- ported analysis.SVM() here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"CustomKernel",
"StandardKernel",
"PrebuiltKernel",
"fit",
"eval_classification",
"eval_regression",
]
import sklearn
from . import ClassificationMetric, RegressionMetric
class CustomKernel:
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class StandardKernel:
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
class PrebuiltKernel:
class Linear:
def __new__(cls):
return sklearn.svm.SVC(kernel = 'linear')
class Polynomial:
def __new__(cls, power, r_bias):
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
class RBF:
def __new__(cls, gamma):
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
class Sigmoid:
def __new__(cls, r_bias):
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
def fit(kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
return kernel.fit(train_data, train_outputs)
def eval_classification(kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return ClassificationMetric(predictions, test_outputs)
def eval_regression(kernel, test_data, test_outputs):
predictions = kernel.predict(test_data)
return RegressionMetric(predictions, test_outputs)

View File

@@ -1,424 +0,0 @@
# Titan Robotics Team 2022: Sort submodule
# Written by Arthur Lu and James Pan
# Notes:
# this should be imported as a python module using 'from tra_analysis import Sort'
# setup:
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.Sort() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>",
)
__all__ = [
"quicksort",
"mergesort",
"introsort",
"heapsort",
"insertionsort",
"timsort",
"selectionsort",
"shellsort",
"bubblesort",
"cyclesort",
"cocktailsort",
]
import numpy as np
def quicksort(a):
def sort(array):
less = []
equal = []
greater = []
if len(array) > 1:
pivot = array[0]
for x in array:
if x < pivot:
less.append(x)
elif x == pivot:
equal.append(x)
elif x > pivot:
greater.append(x)
return sort(less)+equal+sort(greater)
else:
return array
return np.array(sort(a))
def mergesort(a):
def sort(array):
array = array
if len(array) >1:
middle = len(array) // 2
L = array[:middle]
R = array[middle:]
sort(L)
sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
array[k] = L[i]
i+= 1
else:
array[k] = R[j]
j+= 1
k+= 1
while i < len(L):
array[k] = L[i]
i+= 1
k+= 1
while j < len(R):
array[k] = R[j]
j+= 1
k+= 1
return array
return sort(a)
def introsort(a):
def sort(array, start, end, maxdepth):
array = array
if end - start <= 1:
return
elif maxdepth == 0:
heapsort(array, start, end)
else:
p = partition(array, start, end)
sort(array, start, p + 1, maxdepth - 1)
sort(array, p + 1, end, maxdepth - 1)
return array
def partition(array, start, end):
pivot = array[start]
i = start - 1
j = end
while True:
i = i + 1
while array[i] < pivot:
i = i + 1
j = j - 1
while array[j] > pivot:
j = j - 1
if i >= j:
return j
swap(array, i, j)
def swap(array, i, j):
array[i], array[j] = array[j], array[i]
def heapsort(array, start, end):
build_max_heap(array, start, end)
for i in range(end - 1, start, -1):
swap(array, start, i)
max_heapify(array, index=0, start=start, end=i)
def build_max_heap(array, start, end):
def parent(i):
return (i - 1)//2
length = end - start
index = parent(length - 1)
while index >= 0:
max_heapify(array, index, start, end)
index = index - 1
def max_heapify(array, index, start, end):
def left(i):
return 2*i + 1
def right(i):
return 2*i + 2
size = end - start
l = left(index)
r = right(index)
if (l < size and array[start + l] > array[start + index]):
largest = l
else:
largest = index
if (r < size and array[start + r] > array[start + largest]):
largest = r
if largest != index:
swap(array, start + largest, start + index)
max_heapify(array, largest, start, end)
maxdepth = (len(a).bit_length() - 1)*2
return sort(a, 0, len(a), maxdepth)
def heapsort(a):
def sort(array):
array = array
n = len(array)
for i in range(n//2 - 1, -1, -1):
heapify(array, n, i)
for i in range(n-1, 0, -1):
array[i], array[0] = array[0], array[i]
heapify(array, i, 0)
return array
def heapify(array, n, i):
array = array
largest = i
l = 2 * i + 1
r = 2 * i + 2
if l < n and array[i] < array[l]:
largest = l
if r < n and array[largest] < array[r]:
largest = r
if largest != i:
array[i],array[largest] = array[largest],array[i]
heapify(array, n, largest)
return array
return sort(a)
def insertionsort(a):
def sort(array):
array = array
for i in range(1, len(array)):
key = array[i]
j = i-1
while j >=0 and key < array[j] :
array[j+1] = array[j]
j -= 1
array[j+1] = key
return array
return sort(a)
def timsort(a, block = 32):
BLOCK = block
def sort(array, n):
array = array
for i in range(0, n, BLOCK):
insertionsort(array, i, min((i+31), (n-1)))
size = BLOCK
while size < n:
for left in range(0, n, 2*size):
mid = left + size - 1
right = min((left + 2*size - 1), (n-1))
merge(array, left, mid, right)
size = 2*size
return array
def insertionsort(array, left, right):
array = array
for i in range(left + 1, right+1):
temp = array[i]
j = i - 1
while j >= left and array[j] > temp :
array[j+1] = array[j]
j -= 1
array[j+1] = temp
return array
def merge(array, l, m, r):
len1, len2 = m - l + 1, r - m
left, right = [], []
for i in range(0, len1):
left.append(array[l + i])
for i in range(0, len2):
right.append(array[m + 1 + i])
i, j, k = 0, 0, l
while i < len1 and j < len2:
if left[i] <= right[j]:
array[k] = left[i]
i += 1
else:
array[k] = right[j]
j += 1
k += 1
while i < len1:
array[k] = left[i]
k += 1
i += 1
while j < len2:
array[k] = right[j]
k += 1
j += 1
return sort(a, len(a))
def selectionsort(a):
array = a
for i in range(len(array)):
min_idx = i
for j in range(i+1, len(array)):
if array[min_idx] > array[j]:
min_idx = j
array[i], array[min_idx] = array[min_idx], array[i]
return array
def shellsort(a):
array = a
n = len(array)
gap = n//2
while gap > 0:
for i in range(gap,n):
temp = array[i]
j = i
while j >= gap and array[j-gap] >temp:
array[j] = array[j-gap]
j -= gap
array[j] = temp
gap //= 2
return array
def bubblesort(a):
def sort(array):
for i, num in enumerate(array):
try:
if array[i+1] < num:
array[i] = array[i+1]
array[i+1] = num
sort(array)
except IndexError:
pass
return array
return sort(a)
def cyclesort(a):
def sort(array):
array = array
writes = 0
for cycleStart in range(0, len(array) - 1):
item = array[cycleStart]
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
if pos == cycleStart:
continue
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
writes += 1
while pos != cycleStart:
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
writes += 1
return array
return sort(a)
def cocktailsort(a):
def sort(array):
array = array
n = len(array)
swapped = True
start = 0
end = n-1
while (swapped == True):
swapped = False
for i in range (start, end):
if (array[i] > array[i + 1]) :
array[i], array[i + 1]= array[i + 1], array[i]
swapped = True
if (swapped == False):
break
swapped = False
end = end-1
for i in range(end-1, start-1, -1):
if (array[i] > array[i + 1]):
array[i], array[i + 1] = array[i + 1], array[i]
swapped = True
start = start + 1
return array
return sort(a)

View File

@@ -1,315 +0,0 @@
# Titan Robotics Team 2022: StatisticalTest submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import StatisticalTest'
# setup:
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- optimized imports
1.0.2:
- added tukey_multicomparison
- fixed styling
1.0.1:
- fixed typo in __all__
1.0.0:
- ported analysis.StatisticalTest() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>",
)
__all__ = [
'ttest_onesample',
'ttest_independent',
'ttest_statistic',
'ttest_related',
'ks_fitness',
'chisquare',
'powerdivergence'
'ks_twosample',
'es_twosample',
'mw_rank',
'mw_tiecorrection',
'rankdata',
'wilcoxon_ranksum',
'wilcoxon_signedrank',
'kw_htest',
'friedman_chisquare',
'bm_wtest',
'combine_pvalues',
'jb_fitness',
'ab_equality',
'bartlett_variance',
'levene_variance',
'sw_normality',
'shapiro',
'ad_onesample',
'ad_ksample',
'binomial',
'fk_variance',
'mood_mediantest',
'mood_equalscale',
'skewtest',
'kurtosistest',
'normaltest',
'tukey_multicomparison'
]
import numpy as np
import scipy
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ttest_independent(a, b, equal = True, nan_policy = 'propagate'):
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ttest_statistic(o1, o2, equal = True):
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
return {"t-value": results[0], "p-value": results[1]}
def ttest_related(a, b, axis = 0, nan_policy='propagate'):
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
return {"t-value": results[0], "p-value": results[1]}
def ks_fitness(rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
return {"ks-value": results[0], "p-value": results[1]}
def chisquare(f_obs, f_exp = None, ddof = None, axis = 0):
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
return {"chisquared-value": results[0], "p-value": results[1]}
def powerdivergence(f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
return {"powerdivergence-value": results[0], "p-value": results[1]}
def ks_twosample(x, y, alternative = 'two_sided', mode = 'auto'):
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
return {"ks-value": results[0], "p-value": results[1]}
def es_twosample(x, y, t = (0.4, 0.8)):
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
return {"es-value": results[0], "p-value": results[1]}
def mw_rank(x, y, use_continuity = True, alternative = None):
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
return {"u-value": results[0], "p-value": results[1]}
def mw_tiecorrection(rank_values):
results = scipy.stats.tiecorrect(rank_values)
return {"correction-factor": results}
def rankdata(a, method = 'average'):
results = scipy.stats.rankdata(a, method = method)
return results
def wilcoxon_ranksum(a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
results = scipy.stats.ranksums(a, b)
return {"u-value": results[0], "p-value": results[1]}
def wilcoxon_signedrank(x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
return {"t-value": results[0], "p-value": results[1]}
def kw_htest(*args, nan_policy = 'propagate'):
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
return {"h-value": results[0], "p-value": results[1]}
def friedman_chisquare(*args):
results = scipy.stats.friedmanchisquare(*args)
return {"chisquared-value": results[0], "p-value": results[1]}
def bm_wtest(x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
return {"w-value": results[0], "p-value": results[1]}
def combine_pvalues(pvalues, method = 'fisher', weights = None):
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
return {"combined-statistic": results[0], "p-value": results[1]}
def jb_fitness(x):
results = scipy.stats.jarque_bera(x)
return {"jb-value": results[0], "p-value": results[1]}
def ab_equality(x, y):
results = scipy.stats.ansari(x, y)
return {"ab-value": results[0], "p-value": results[1]}
def bartlett_variance(*args):
results = scipy.stats.bartlett(*args)
return {"t-value": results[0], "p-value": results[1]}
def levene_variance(*args, center = 'median', proportiontocut = 0.05):
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
return {"w-value": results[0], "p-value": results[1]}
def sw_normality(x):
results = scipy.stats.shapiro(x)
return {"w-value": results[0], "p-value": results[1]}
def shapiro(x):
return "destroyed by facts and logic"
def ad_onesample(x, dist = 'norm'):
results = scipy.stats.anderson(x, dist = dist)
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
def ad_ksample(samples, midrank = True):
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
def binomial(x, n = None, p = 0.5, alternative = 'two-sided'):
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
return {"p-value": results}
def fk_variance(*args, center = 'median', proportiontocut = 0.05):
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
def mood_mediantest(*args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
def mood_equalscale(x, y, axis = 0):
results = scipy.stats.mood(x, y, axis = axis)
return {"z-score": results[0], "p-value": results[1]}
def skewtest(a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def kurtosistest(a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def normaltest(a, axis = 0, nan_policy = 'propogate'):
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
return {"z-score": results[0], "p-value": results[1]}
def get_tukeyQcrit(k, df, alpha=0.05):
'''
From statsmodels.sandbox.stats.multicomp
return critical values for Tukey's HSD (Q)
Parameters
----------
k : int in {2, ..., 10}
number of tests
df : int
degrees of freedom of error term
alpha : {0.05, 0.01}
type 1 error, 1-confidence level
not enough error checking for limitations
'''
# qtable from statsmodels.sandbox.stats.multicomp
qcrit = '''
2 3 4 5 6 7 8 9 10
5 3.64 5.70 4.60 6.98 5.22 7.80 5.67 8.42 6.03 8.91 6.33 9.32 6.58 9.67 6.80 9.97 6.99 10.24
6 3.46 5.24 4.34 6.33 4.90 7.03 5.30 7.56 5.63 7.97 5.90 8.32 6.12 8.61 6.32 8.87 6.49 9.10
7 3.34 4.95 4.16 5.92 4.68 6.54 5.06 7.01 5.36 7.37 5.61 7.68 5.82 7.94 6.00 8.17 6.16 8.37
8 3.26 4.75 4.04 5.64 4.53 6.20 4.89 6.62 5.17 6.96 5.40 7.24 5.60 7.47 5.77 7.68 5.92 7.86
9 3.20 4.60 3.95 5.43 4.41 5.96 4.76 6.35 5.02 6.66 5.24 6.91 5.43 7.13 5.59 7.33 5.74 7.49
10 3.15 4.48 3.88 5.27 4.33 5.77 4.65 6.14 4.91 6.43 5.12 6.67 5.30 6.87 5.46 7.05 5.60 7.21
11 3.11 4.39 3.82 5.15 4.26 5.62 4.57 5.97 4.82 6.25 5.03 6.48 5.20 6.67 5.35 6.84 5.49 6.99
12 3.08 4.32 3.77 5.05 4.20 5.50 4.51 5.84 4.75 6.10 4.95 6.32 5.12 6.51 5.27 6.67 5.39 6.81
13 3.06 4.26 3.73 4.96 4.15 5.40 4.45 5.73 4.69 5.98 4.88 6.19 5.05 6.37 5.19 6.53 5.32 6.67
14 3.03 4.21 3.70 4.89 4.11 5.32 4.41 5.63 4.64 5.88 4.83 6.08 4.99 6.26 5.13 6.41 5.25 6.54
15 3.01 4.17 3.67 4.84 4.08 5.25 4.37 5.56 4.59 5.80 4.78 5.99 4.94 6.16 5.08 6.31 5.20 6.44
16 3.00 4.13 3.65 4.79 4.05 5.19 4.33 5.49 4.56 5.72 4.74 5.92 4.90 6.08 5.03 6.22 5.15 6.35
17 2.98 4.10 3.63 4.74 4.02 5.14 4.30 5.43 4.52 5.66 4.70 5.85 4.86 6.01 4.99 6.15 5.11 6.27
18 2.97 4.07 3.61 4.70 4.00 5.09 4.28 5.38 4.49 5.60 4.67 5.79 4.82 5.94 4.96 6.08 5.07 6.20
19 2.96 4.05 3.59 4.67 3.98 5.05 4.25 5.33 4.47 5.55 4.65 5.73 4.79 5.89 4.92 6.02 5.04 6.14
20 2.95 4.02 3.58 4.64 3.96 5.02 4.23 5.29 4.45 5.51 4.62 5.69 4.77 5.84 4.90 5.97 5.01 6.09
24 2.92 3.96 3.53 4.55 3.90 4.91 4.17 5.17 4.37 5.37 4.54 5.54 4.68 5.69 4.81 5.81 4.92 5.92
30 2.89 3.89 3.49 4.45 3.85 4.80 4.10 5.05 4.30 5.24 4.46 5.40 4.60 5.54 4.72 5.65 4.82 5.76
40 2.86 3.82 3.44 4.37 3.79 4.70 4.04 4.93 4.23 5.11 4.39 5.26 4.52 5.39 4.63 5.50 4.73 5.60
60 2.83 3.76 3.40 4.28 3.74 4.59 3.98 4.82 4.16 4.99 4.31 5.13 4.44 5.25 4.55 5.36 4.65 5.45
120 2.80 3.70 3.36 4.20 3.68 4.50 3.92 4.71 4.10 4.87 4.24 5.01 4.36 5.12 4.47 5.21 4.56 5.30
infinity 2.77 3.64 3.31 4.12 3.63 4.40 3.86 4.60 4.03 4.76 4.17 4.88 4.29 4.99 4.39 5.08 4.47 5.16
'''
res = [line.split() for line in qcrit.replace('infinity','9999').split('\n')]
c=np.array(res[2:-1]).astype(float)
#c[c==9999] = np.inf
ccols = np.arange(2,11)
crows = c[:,0]
cv005 = c[:, 1::2]
cv001 = c[:, 2::2]
if alpha == 0.05:
intp = scipy.interpolate.interp1d(crows, cv005[:,k-2])
elif alpha == 0.01:
intp = scipy.interpolate.interp1d(crows, cv001[:,k-2])
else:
raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
return intp(df)
def tukey_multicomparison(groups, alpha=0.05):
#formulas according to https://astatsa.com/OneWay_Anova_with_TukeyHSD/
k = len(groups)
df = 0
means = []
MSE = 0
for group in groups:
df+= len(group)
mean = sum(group)/len(group)
means.append(mean)
MSE += sum([(i-mean)**2 for i in group])
df -= k
MSE /= df
q_dict = {}
crit_q = get_tukeyQcrit(k, df, alpha)
for i in range(k-1):
for j in range(i+1, k):
numerator = abs(means[i] - means[j])
denominator = np.sqrt( MSE / ( 2/(1/len(groups[i]) + 1/len(groups[j])) ))
q = numerator/denominator
q_dict["group "+ str(i+1) + " and group " + str(j+1)] = [q, q>crit_q]
return q_dict

View File

@@ -1,76 +0,0 @@
# Titan Robotics Team 2022: tra_analysis package
# Written by Arthur Lu, Jacob Levine, Dev Singh, and James Pan
# Notes:
# this should be imported as a python package using 'import tra_analysis'
# this should be included in the local directory or environment variable
# this module has been optimized for multhreaded computing
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "4.0.0"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
4.0.0:
- deprecated all *_obj.py compatibility modules
- deprecated titanlearn.py
- deprecated visualization.py
- removed matplotlib from requirements
- removed extra submodule imports in Analysis
- added typehinting, docstrings for each function
3.0.0:
- incremented version to release 3.0.0
3.0.0-rc2:
- fixed __changelog__
- fixed __all__ of Analysis, Array, ClassificationMetric, CorrelationTest, RandomForest, Sort, SVM
- populated __all__
3.0.0-alpha.4:
- changed version to 3 because of significant changes
- added backwards compatibility import of analysis
2.1.0-alpha.3:
- fixed indentation in meta data
2.1.0-alpha.2:
- updated SVM import
2.1.0-alpha.1:
- moved multiple submodules under analysis to their own modules/files
- added header, __version__, __changelog__, __author__, __all__ (unpopulated)
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@imsa.edu>",
"Dev Singh <dev@devksingh.com>",
"James Pan <zpan@imsa.edu>"
)
__all__ = [
"Analysis",
"Array",
"ClassificationMetric",
"Clustering",
"CorrelationTest",
"Expression",
"Fit",
"KNN",
"NaiveBayes",
"RandomForest",
"RegressionMetric",
"Sort",
"StatisticalTest",
"SVM"
]
from . import Analysis as Analysis
from .Array import Array
from .ClassificationMetric import ClassificationMetric
from . import Clustering
from . import CorrelationTest
from .equation import Expression
from . import Fit
from . import KNN
from . import NaiveBayes
from . import RandomForest
from .RegressionMetric import RegressionMetric
from . import Sort
from . import StatisticalTest
from . import SVM

View File

@@ -1,37 +0,0 @@
# Titan Robotics Team 2022: Expression submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis.Equation import Expression'
# TODO:
# - add option to pick parser backend
# - fix unit tests
# setup:
__version__ = "0.0.1-alpha"
__changelog__ = """changelog:
0.0.1-alpha:
- used the HybridExpressionParser as backend for Expression
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = {
"Expression"
}
import re
from .parser import BNF, RegexInplaceParser, HybridExpressionParser, Core, equation_base
class Expression(HybridExpressionParser):
expression = None
core = None
def __init__(self,expression,argorder=[],*args,**kwargs):
self.core = Core()
equation_base.equation_extend(self.core)
self.core.recalculateFMatch()
super().__init__(self.core, expression, argorder=[],*args,**kwargs)

View File

@@ -1,22 +0,0 @@
# Titan Robotics Team 2022: Expression submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import Equation'
# setup:
__version__ = "0.0.1-alpha"
__changelog__ = """changelog:
0.0.1-alpha:
- made first prototype of Expression
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = {
"Expression"
}
from .Expression import Expression

View File

@@ -1,97 +0,0 @@
from __future__ import division
from pyparsing import (Literal, CaselessLiteral, Word, Combine, Group, Optional, ZeroOrMore, Forward, nums, alphas, oneOf)
from . import py2
import math
import operator
class BNF(object):
def pushFirst(self, strg, loc, toks):
self.exprStack.append(toks[0])
def pushUMinus(self, strg, loc, toks):
if toks and toks[0] == '-':
self.exprStack.append('unary -')
def __init__(self):
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
point = Literal(".")
e = CaselessLiteral("E")
fnumber = Combine(Word("+-" + nums, nums) +
Optional(point + Optional(Word(nums))) +
Optional(e + Word("+-" + nums, nums)))
ident = Word(alphas, alphas + nums + "_$")
plus = Literal("+")
minus = Literal("-")
mult = Literal("*")
div = Literal("/")
lpar = Literal("(").suppress()
rpar = Literal(")").suppress()
addop = plus | minus
multop = mult | div
expop = Literal("^")
pi = CaselessLiteral("PI")
expr = Forward()
atom = ((Optional(oneOf("- +")) +
(ident + lpar + expr + rpar | pi | e | fnumber).setParseAction(self.pushFirst))
| Optional(oneOf("- +")) + Group(lpar + expr + rpar)
).setParseAction(self.pushUMinus)
factor = Forward()
factor << atom + \
ZeroOrMore((expop + factor).setParseAction(self.pushFirst))
term = factor + \
ZeroOrMore((multop + factor).setParseAction(self.pushFirst))
expr << term + \
ZeroOrMore((addop + term).setParseAction(self.pushFirst))
self.bnf = expr
epsilon = 1e-12
self.opn = {"+": operator.add,
"-": operator.sub,
"*": operator.mul,
"/": operator.truediv,
"^": operator.pow}
self.fn = {"sin": math.sin,
"cos": math.cos,
"tan": math.tan,
"exp": math.exp,
"abs": abs,
"trunc": lambda a: int(a),
"round": round,
"sgn": lambda a: abs(a) > epsilon and py2.cmp(a, 0) or 0}
def evaluateStack(self, s):
op = s.pop()
if op == 'unary -':
return -self.evaluateStack(s)
if op in "+-*/^":
op2 = self.evaluateStack(s)
op1 = self.evaluateStack(s)
return self.opn[op](op1, op2)
elif op == "PI":
return math.pi
elif op == "E":
return math.e
elif op in self.fn:
return self.fn[op](self.evaluateStack(s))
elif op[0].isalpha():
return 0
else:
return float(op)
def eval(self, num_string, parseAll=True):
self.exprStack = []
results = self.bnf.parseString(num_string, parseAll)
val = self.evaluateStack(self.exprStack[:])
return val

View File

@@ -1,521 +0,0 @@
from .Hybrid_Utils import Core, ExpressionFunction, ExpressionVariable, ExpressionValue
import sys
if sys.version_info >= (3,):
xrange = range
basestring = str
class HybridExpressionParser(object):
def __init__(self,core,expression,argorder=[],*args,**kwargs):
super(HybridExpressionParser,self).__init__(*args,**kwargs)
if isinstance(expression,type(self)): # clone the object
self.core = core
self.__args = list(expression.__args)
self.__vars = dict(expression.__vars) # intenral array of preset variables
self.__argsused = set(expression.__argsused)
self.__expr = list(expression.__expr)
self.variables = {} # call variables
else:
self.__expression = expression
self.__args = argorder;
self.__vars = {} # intenral array of preset variables
self.__argsused = set()
self.__expr = [] # compiled equation tokens
self.variables = {} # call variables
self.__compile()
del self.__expression
def __getitem__(self, name):
if name in self.__argsused:
if name in self.__vars:
return self.__vars[name]
else:
return None
else:
raise KeyError(name)
def __setitem__(self,name,value):
if name in self.__argsused:
self.__vars[name] = value
else:
raise KeyError(name)
def __delitem__(self,name):
if name in self.__argsused:
if name in self.__vars:
del self.__vars[name]
else:
raise KeyError(name)
def __contains__(self, name):
return name in self.__argsused
def __call__(self,*args,**kwargs):
if len(self.__expr) == 0:
return None
self.variables = {}
self.variables.update(self.core.constants)
self.variables.update(self.__vars)
if len(args) > len(self.__args):
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() takes at most {4:d} arguments ({5:d} given)".format(
type(self).__module__,type(self).__name__,repr(self),id(self),len(self.__args),len(args)))
for i in xrange(len(args)):
if i < len(self.__args):
if self.__args[i] in kwargs:
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() got multiple values for keyword argument '{4:s}'".format(
type(self).__module__,type(self).__name__,repr(self),id(self),self.__args[i]))
self.variables[self.__args[i]] = args[i]
self.variables.update(kwargs)
for arg in self.__argsused:
if arg not in self.variables:
min_args = len(self.__argsused - (set(self.__vars.keys()) | set(self.core.constants.keys())))
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() takes at least {4:d} arguments ({5:d} given) '{6:s}' not defined".format(
type(self).__module__,type(self).__name__,repr(self),id(self),min_args,len(args)+len(kwargs),arg))
expr = self.__expr[::-1]
args = []
while len(expr) > 0:
t = expr.pop()
r = t(args,self)
args.append(r)
if len(args) > 1:
return args
else:
return args[0]
def __next(self,__expect_op):
if __expect_op:
m = self.core.gematch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'CLOSE'
m = self.core.smatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
return ",",'SEP'
m = self.core.omatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'OP'
else:
m = self.core.gsmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'OPEN'
m = self.core.vmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groupdict(0)
if g['dec']:
if g["ivalue"]:
return complex(int(g["rsign"]+"1")*float(g["rvalue"])*10**int(g["rexpoent"]),int(g["isign"]+"1")*float(g["ivalue"])*10**int(g["iexpoent"])),'VALUE'
elif g["rexpoent"] or g["rvalue"].find('.')>=0:
return int(g["rsign"]+"1")*float(g["rvalue"])*10**int(g["rexpoent"]),'VALUE'
else:
return int(g["rsign"]+"1")*int(g["rvalue"]),'VALUE'
elif g["hex"]:
return int(g["hexsign"]+"1")*int(g["hexvalue"],16),'VALUE'
elif g["oct"]:
return int(g["octsign"]+"1")*int(g["octvalue"],8),'VALUE'
elif g["bin"]:
return int(g["binsign"]+"1")*int(g["binvalue"],2),'VALUE'
else:
raise NotImplemented("'{0:s}' Values Not Implemented Yet".format(m.string))
m = self.core.nmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'NAME'
m = self.core.fmatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'FUNC'
m = self.core.umatch.match(self.__expression)
if m != None:
self.__expression = self.__expression[m.end():]
g = m.groups()
return g[0],'UNARY'
return None
def show(self):
"""Show RPN tokens
This will print out the internal token list (RPN) of the expression
one token perline.
"""
for expr in self.__expr:
print(expr)
def __str__(self):
"""str(fn)
Generates a Printable version of the Expression
Returns
-------
str
Latex String respresation of the Expression, suitable for rendering the equation
"""
expr = self.__expr[::-1]
if len(expr) == 0:
return ""
args = [];
while len(expr) > 0:
t = expr.pop()
r = t.toStr(args,self)
args.append(r)
if len(args) > 1:
return args
else:
return args[0]
def __repr__(self):
"""repr(fn)
Generates a String that correctrly respresents the equation
Returns
-------
str
Convert the Expression to a String that passed to the constructor, will constuct
an identical equation object (in terms of sequence of tokens, and token type/value)
"""
expr = self.__expr[::-1]
if len(expr) == 0:
return ""
args = [];
while len(expr) > 0:
t = expr.pop()
r = t.toRepr(args,self)
args.append(r)
if len(args) > 1:
return args
else:
return args[0]
def __iter__(self):
return iter(self.__argsused)
def __lt__(self, other):
if isinstance(other, Expression):
return repr(self) < repr(other)
else:
raise TypeError("{0:s} is not an {1:s} Object, and can't be compared to an Expression Object".format(repr(other), type(other)))
def __eq__(self, other):
if isinstance(other, Expression):
return repr(self) == repr(other)
else:
raise TypeError("{0:s} is not an {1:s} Object, and can't be compared to an Expression Object".format(repr(other), type(other)))
def __combine(self,other,op):
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
return NotImplemented
else:
obj = type(self)(self)
if isinstance(other,(int,float,complex)):
obj.__expr.append(ExpressionValue(other))
else:
if isinstance(other,basestring):
try:
other = type(self)(other)
except:
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
obj.__expr += other.__expr
obj.__argsused |= other.__argsused
for v in other.__args:
if v not in obj.__args:
obj.__args.append(v)
for k,v in other.__vars.items():
if k not in obj.__vars:
obj.__vars[k] = v
elif v != obj.__vars[k]:
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
fn = self.core.ops[op]
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
return obj
def __rcombine(self,other,op):
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
return NotImplemented
else:
obj = type(self)(self)
if isinstance(other,(int,float,complex)):
obj.__expr.insert(0,ExpressionValue(other))
else:
if isinstance(other,basestring):
try:
other = type(self)(other)
except:
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
obj.__expr = other.__expr + self.__expr
obj.__argsused = other.__argsused | self.__expr
__args = other.__args
for v in obj.__args:
if v not in __args:
__args.append(v)
obj.__args = __args
for k,v in other.__vars.items():
if k not in obj.__vars:
obj.__vars[k] = v
elif v != obj.__vars[k]:
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
fn = self.core.ops[op]
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
return obj
def __icombine(self,other,op):
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
return NotImplemented
else:
obj = self
if isinstance(other,(int,float,complex)):
obj.__expr.append(ExpressionValue(other))
else:
if isinstance(other,basestring):
try:
other = type(self)(other)
except:
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
obj.__expr += other.__expr
obj.__argsused |= other.__argsused
for v in other.__args:
if v not in obj.__args:
obj.__args.append(v)
for k,v in other.__vars.items():
if k not in obj.__vars:
obj.__vars[k] = v
elif v != obj.__vars[k]:
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
fn = self.core.ops[op]
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
return obj
def __apply(self,op):
fn = self.core.unary_ops[op]
obj = type(self)(self)
obj.__expr.append(ExpressionFunction(fn['func'],1,fn['str'],fn['latex'],op,False))
return obj
def __applycall(self,op):
fn = self.core.functions[op]
if 1 not in fn['args'] or '*' not in fn['args']:
raise RuntimeError("Can't Apply {0:s} function, dosen't accept only 1 argument".format(op))
obj = type(self)(self)
obj.__expr.append(ExpressionFunction(fn['func'],1,fn['str'],fn['latex'],op,False))
return obj
def __add__(self,other):
return self.__combine(other,'+')
def __sub__(self,other):
return self.__combine(other,'-')
def __mul__(self,other):
return self.__combine(other,'*')
def __div__(self,other):
return self.__combine(other,'/')
def __truediv__(self,other):
return self.__combine(other,'/')
def __pow__(self,other):
return self.__combine(other,'^')
def __mod__(self,other):
return self.__combine(other,'%')
def __and__(self,other):
return self.__combine(other,'&')
def __or__(self,other):
return self.__combine(other,'|')
def __xor__(self,other):
return self.__combine(other,'</>')
def __radd__(self,other):
return self.__rcombine(other,'+')
def __rsub__(self,other):
return self.__rcombine(other,'-')
def __rmul__(self,other):
return self.__rcombine(other,'*')
def __rdiv__(self,other):
return self.__rcombine(other,'/')
def __rtruediv__(self,other):
return self.__rcombine(other,'/')
def __rpow__(self,other):
return self.__rcombine(other,'^')
def __rmod__(self,other):
return self.__rcombine(other,'%')
def __rand__(self,other):
return self.__rcombine(other,'&')
def __ror__(self,other):
return self.__rcombine(other,'|')
def __rxor__(self,other):
return self.__rcombine(other,'</>')
def __iadd__(self,other):
return self.__icombine(other,'+')
def __isub__(self,other):
return self.__icombine(other,'-')
def __imul__(self,other):
return self.__icombine(other,'*')
def __idiv__(self,other):
return self.__icombine(other,'/')
def __itruediv__(self,other):
return self.__icombine(other,'/')
def __ipow__(self,other):
return self.__icombine(other,'^')
def __imod__(self,other):
return self.__icombine(other,'%')
def __iand__(self,other):
return self.__icombine(other,'&')
def __ior__(self,other):
return self.__icombine(other,'|')
def __ixor__(self,other):
return self.__icombine(other,'</>')
def __neg__(self):
return self.__apply('-')
def __invert__(self):
return self.__apply('!')
def __abs__(self):
return self.__applycall('abs')
def __getfunction(self,op):
if op[1] == 'FUNC':
fn = self.core.functions[op[0]]
fn['type'] = 'FUNC'
elif op[1] == 'UNARY':
fn = self.core.unary_ops[op[0]]
fn['type'] = 'UNARY'
fn['args'] = 1
elif op[1] == 'OP':
fn = self.core.ops[op[0]]
fn['type'] = 'OP'
return fn
def __compile(self):
self.__expr = []
stack = []
argc = []
__expect_op = False
v = self.__next(__expect_op)
while v != None:
if not __expect_op and v[1] == "OPEN":
stack.append(v)
__expect_op = False
elif __expect_op and v[1] == "CLOSE":
op = stack.pop()
while op[1] != "OPEN":
fs = self.__getfunction(op)
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
op = stack.pop()
if len(stack) > 0 and stack[-1][0] in self.core.functions:
op = stack.pop()
fs = self.core.functions[op[0]]
args = argc.pop()
if fs['args'] != '+' and (args != fs['args'] and args not in fs['args']):
raise SyntaxError("Invalid number of arguments for {0:s} function".format(op[0]))
self.__expr.append(ExpressionFunction(fs['func'],args,fs['str'],fs['latex'],op[0],True))
__expect_op = True
elif __expect_op and v[0] == ",":
argc[-1] += 1
op = stack.pop()
while op[1] != "OPEN":
fs = self.__getfunction(op)
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
op = stack.pop()
stack.append(op)
__expect_op = False
elif __expect_op and v[0] in self.core.ops:
fn = self.core.ops[v[0]]
if len(stack) == 0:
stack.append(v)
__expect_op = False
v = self.__next(__expect_op)
continue
op = stack.pop()
if op[0] == "(":
stack.append(op)
stack.append(v)
__expect_op = False
v = self.__next(__expect_op)
continue
fs = self.__getfunction(op)
while True:
if (fn['prec'] >= fs['prec']):
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
if len(stack) == 0:
stack.append(v)
break
op = stack.pop()
if op[0] == "(":
stack.append(op)
stack.append(v)
break
fs = self.__getfunction(op)
else:
stack.append(op)
stack.append(v)
break
__expect_op = False
elif not __expect_op and v[0] in self.core.unary_ops:
fn = self.core.unary_ops[v[0]]
stack.append(v)
__expect_op = False
elif not __expect_op and v[0] in self.core.functions:
stack.append(v)
argc.append(1)
__expect_op = False
elif not __expect_op and v[1] == 'NAME':
self.__argsused.add(v[0])
if v[0] not in self.__args:
self.__args.append(v[0])
self.__expr.append(ExpressionVariable(v[0]))
__expect_op = True
elif not __expect_op and v[1] == 'VALUE':
self.__expr.append(ExpressionValue(v[0]))
__expect_op = True
else:
raise SyntaxError("Invalid Token \"{0:s}\" in Expression, Expected {1:s}".format(v,"Op" if __expect_op else "Value"))
v = self.__next(__expect_op)
if len(stack) > 0:
op = stack.pop()
while op != "(":
fs = self.__getfunction(op)
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
if len(stack) > 0:
op = stack.pop()
else:
break

View File

@@ -1,237 +0,0 @@
import math
import sys
import re
if sys.version_info >= (3,):
xrange = range
basestring = str
class ExpressionObject(object):
def __init__(self,*args,**kwargs):
super(ExpressionObject,self).__init__(*args,**kwargs)
def toStr(self,args,expression):
return ""
def toRepr(self,args,expression):
return ""
def __call__(self,args,expression):
pass
class ExpressionValue(ExpressionObject):
def __init__(self,value,*args,**kwargs):
super(ExpressionValue,self).__init__(*args,**kwargs)
self.value = value
def toStr(self,args,expression):
if (isinstance(self.value,complex)):
V = [self.value.real,self.value.imag]
E = [0,0]
B = [0,0]
out = ["",""]
for i in xrange(2):
if V[i] == 0:
E[i] = 0
B[i] = 0
else:
E[i] = int(math.floor(math.log10(abs(V[i]))))
B[i] = V[i]*10**-E[i]
if E[i] in [0,1,2,3] and str(V[i])[-2:] == ".0":
B[i] = int(V[i])
E[i] = 0
if E[i] in [-1,-2] and len(str(V[i])) <= 7:
B[i] = V[i]
E[i] = 0
if i == 1:
fmt = "{{0:+{0:s}}}"
else:
fmt = "{{0:-{0:s}}}"
if type(B[i]) == int:
out[i] += fmt.format('d').format(B[i])
else:
out[i] += fmt.format('.5f').format(B[i]).rstrip("0.")
if i == 1:
out[i] += "\\imath"
if E[i] != 0:
out[i] += "\\times10^{{{0:d}}}".format(E[i])
return "\\left(" + ''.join(out) + "\\right)"
elif (isinstance(self.value,float)):
V = self.value
E = 0
B = 0
out = ""
if V == 0:
E = 0
B = 0
else:
E = int(math.floor(math.log10(abs(V))))
B = V*10**-E
if E in [0,1,2,3] and str(V)[-2:] == ".0":
B = int(V)
E = 0
if E in [-1,-2] and len(str(V)) <= 7:
B = V
E = 0
if type(B) == int:
out += "{0:-d}".format(B)
else:
out += "{0:-.5f}".format(B).rstrip("0.")
if E != 0:
out += "\\times10^{{{0:d}}}".format(E)
return "\\left(" + out + "\\right)"
else:
return out
else:
return str(self.value)
def toRepr(self,args,expression):
return str(self.value)
def __call__(self,args,expression):
return self.value
def __repr__(self):
return "<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.value),id(self))
class ExpressionFunction(ExpressionObject):
def __init__(self,function,nargs,form,display,id,isfunc,*args,**kwargs):
super(ExpressionFunction,self).__init__(*args,**kwargs)
self.function = function
self.nargs = nargs
self.form = form
self.display = display
self.id = id
self.isfunc = isfunc
def toStr(self,args,expression):
params = []
for i in xrange(self.nargs):
params.append(args.pop())
if self.isfunc:
return str(self.display.format(','.join(params[::-1])))
else:
return str(self.display.format(*params[::-1]))
def toRepr(self,args,expression):
params = []
for i in xrange(self.nargs):
params.append(args.pop())
if self.isfunc:
return str(self.form.format(','.join(params[::-1])))
else:
return str(self.form.format(*params[::-1]))
def __call__(self,args,expression):
params = []
for i in xrange(self.nargs):
params.append(args.pop())
return self.function(*params[::-1])
def __repr__(self):
return "<{0:s}.{1:s}({2:s},{3:d}) object at {4:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.id),self.nargs,id(self))
class ExpressionVariable(ExpressionObject):
def __init__(self,name,*args,**kwargs):
super(ExpressionVariable,self).__init__(*args,**kwargs)
self.name = name
def toStr(self,args,expression):
return str(self.name)
def toRepr(self,args,expression):
return str(self.name)
def __call__(self,args,expression):
if self.name in expression.variables:
return expression.variables[self.name]
else:
return 0 # Default variables to return 0
def __repr__(self):
return "<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.name),id(self))
class Core():
constants = {}
unary_ops = {}
ops = {}
functions = {}
smatch = re.compile(r"\s*,")
vmatch = re.compile(r"\s*"
"(?:"
"(?P<oct>"
"(?P<octsign>[+-]?)"
r"\s*0o"
"(?P<octvalue>[0-7]+)"
")|(?P<hex>"
"(?P<hexsign>[+-]?)"
r"\s*0x"
"(?P<hexvalue>[0-9a-fA-F]+)"
")|(?P<bin>"
"(?P<binsign>[+-]?)"
r"\s*0b"
"(?P<binvalue>[01]+)"
")|(?P<dec>"
"(?P<rsign>[+-]?)"
r"\s*"
r"(?P<rvalue>(?:\d+\.\d+|\d+\.|\.\d+|\d+))"
"(?:"
"[Ee]"
r"(?P<rexpoent>[+-]?\d+)"
")?"
"(?:"
r"\s*"
r"(?P<sep>(?(rvalue)\+|))?"
r"\s*"
"(?P<isign>(?(rvalue)(?(sep)[+-]?|[+-])|[+-]?)?)"
r"\s*"
r"(?P<ivalue>(?:\d+\.\d+|\d+\.|\.\d+|\d+))"
"(?:"
"[Ee]"
r"(?P<iexpoent>[+-]?\d+)"
")?"
"[ij]"
")?"
")"
")")
nmatch = re.compile(r"\s*([a-zA-Z_][a-zA-Z0-9_]*)")
gsmatch = re.compile(r'\s*(\()')
gematch = re.compile(r'\s*(\))')
def recalculateFMatch(self):
fks = sorted(self.functions.keys(), key=len, reverse=True)
oks = sorted(self.ops.keys(), key=len, reverse=True)
uks = sorted(self.unary_ops.keys(), key=len, reverse=True)
self.fmatch = re.compile(r'\s*(' + '|'.join(map(re.escape,fks)) + ')')
self.omatch = re.compile(r'\s*(' + '|'.join(map(re.escape,oks)) + ')')
self.umatch = re.compile(r'\s*(' + '|'.join(map(re.escape,uks)) + ')')
def addFn(self,id,str,latex,args,func):
self.functions[id] = {
'str': str,
'latex': latex,
'args': args,
'func': func}
def addOp(self,id,str,latex,single,prec,func):
if single:
raise RuntimeError("Single Ops Not Yet Supported")
self.ops[id] = {
'str': str,
'latex': latex,
'args': 2,
'prec': prec,
'func': func}
def addUnaryOp(self,id,str,latex,func):
self.unary_ops[id] = {
'str': str,
'latex': latex,
'args': 1,
'prec': 0,
'func': func}
def addConst(self,name,value):
self.constants[name] = value

View File

@@ -1,2 +0,0 @@
from . import equation_base as equation_base
from .ExpressionCore import ExpressionValue, ExpressionFunction, ExpressionVariable, Core

View File

@@ -1,106 +0,0 @@
try:
import numpy as np
has_numpy = True
except ImportError:
import math
has_numpy = False
try:
import scipy.constants
has_scipy = True
except ImportError:
has_scipy = False
import operator as op
from .similar import sim, nsim, gsim, lsim
def equation_extend(core):
def product(*args):
if len(args) == 1 and has_numpy:
return np.prod(args[0])
else:
return reduce(op.mul,args,1)
def sumargs(*args):
if len(args) == 1:
return sum(args[0])
else:
return sum(args)
core.addOp('+',"({0:s} + {1:s})","\\left({0:s} + {1:s}\\right)",False,3,op.add)
core.addOp('-',"({0:s} - {1:s})","\\left({0:s} - {1:s}\\right)",False,3,op.sub)
core.addOp('*',"({0:s} * {1:s})","\\left({0:s} \\times {1:s}\\right)",False,2,op.mul)
core.addOp('/',"({0:s} / {1:s})","\\frac{{{0:s}}}{{{1:s}}}",False,2,op.truediv)
core.addOp('%',"({0:s} % {1:s})","\\left({0:s} \\bmod {1:s}\\right)",False,2,op.mod)
core.addOp('^',"({0:s} ^ {1:s})","{0:s}^{{{1:s}}}",False,1,op.pow)
core.addOp('**',"({0:s} ^ {1:s})","{0:s}^{{{1:s}}}",False,1,op.pow)
core.addOp('&',"({0:s} & {1:s})","\\left({0:s} \\land {1:s}\\right)",False,4,op.and_)
core.addOp('|',"({0:s} | {1:s})","\\left({0:s} \\lor {1:s}\\right)",False,4,op.or_)
core.addOp('</>',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
core.addOp('&|',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
core.addOp('|&',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
core.addOp('==',"({0:s} == {1:s})","\\left({0:s} = {1:s}\\right)",False,5,op.eq)
core.addOp('=',"({0:s} == {1:s})","\\left({0:s} = {1:s}\\right)",False,5,op.eq)
core.addOp('~',"({0:s} ~ {1:s})","\\left({0:s} \\approx {1:s}\\right)",False,5,sim)
core.addOp('!~',"({0:s} !~ {1:s})","\\left({0:s} \\not\\approx {1:s}\\right)",False,5,nsim)
core.addOp('!=',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
core.addOp('<>',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
core.addOp('><',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
core.addOp('<',"({0:s} < {1:s})","\\left({0:s} < {1:s}\\right)",False,5,op.lt)
core.addOp('>',"({0:s} > {1:s})","\\left({0:s} > {1:s}\\right)",False,5,op.gt)
core.addOp('<=',"({0:s} <= {1:s})","\\left({0:s} \\leq {1:s}\\right)",False,5,op.le)
core.addOp('>=',"({0:s} >= {1:s})","\\left({0:s} \\geq {1:s}\\right)",False,5,op.ge)
core.addOp('=<',"({0:s} <= {1:s})","\\left({0:s} \\leq {1:s}\\right)",False,5,op.le)
core.addOp('=>',"({0:s} >= {1:s})","\\left({0:s} \\geq {1:s}\\right)",False,5,op.ge)
core.addOp('<~',"({0:s} <~ {1:s})","\\left({0:s} \lessapprox {1:s}\\right)",False,5,lsim)
core.addOp('>~',"({0:s} >~ {1:s})","\\left({0:s} \\gtrapprox {1:s}\\right)",False,5,gsim)
core.addOp('~<',"({0:s} <~ {1:s})","\\left({0:s} \lessapprox {1:s}\\right)",False,5,lsim)
core.addOp('~>',"({0:s} >~ {1:s})","\\left({0:s} \\gtrapprox {1:s}\\right)",False,5,gsim)
core.addUnaryOp('!',"(!{0:s})","\\neg{0:s}",op.not_)
core.addUnaryOp('-',"-{0:s}","-{0:s}",op.neg)
core.addFn('abs',"abs({0:s})","\\left|{0:s}\\right|",1,op.abs)
core.addFn('sum',"sum({0:s})","\\sum\\left({0:s}\\right)",'+',sumargs)
core.addFn('prod',"prod({0:s})","\\prod\\left({0:s}\\right)",'+',product)
if has_numpy:
core.addFn('floor',"floor({0:s})","\\lfloor {0:s} \\rfloor",1,np.floor)
core.addFn('ceil',"ceil({0:s})","\\lceil {0:s} \\rceil",1,np.ceil)
core.addFn('round',"round({0:s})","\\lfloor {0:s} \\rceil",1,np.round)
core.addFn('sin',"sin({0:s})","\\sin\\left({0:s}\\right)",1,np.sin)
core.addFn('cos',"cos({0:s})","\\cos\\left({0:s}\\right)",1,np.cos)
core.addFn('tan',"tan({0:s})","\\tan\\left({0:s}\\right)",1,np.tan)
core.addFn('re',"re({0:s})","\\Re\\left({0:s}\\right)",1,np.real)
core.addFn('im',"re({0:s})","\\Im\\left({0:s}\\right)",1,np.imag)
core.addFn('sqrt',"sqrt({0:s})","\\sqrt{{{0:s}}}",1,np.sqrt)
core.addConst("pi",np.pi)
core.addConst("e",np.e)
core.addConst("Inf",np.Inf)
core.addConst("NaN",np.NaN)
else:
core.addFn('floor',"floor({0:s})","\\lfloor {0:s} \\rfloor",1,math.floor)
core.addFn('ceil',"ceil({0:s})","\\lceil {0:s} \\rceil",1,math.ceil)
core.addFn('round',"round({0:s})","\\lfloor {0:s} \\rceil",1,round)
core.addFn('sin',"sin({0:s})","\\sin\\left({0:s}\\right)",1,math.sin)
core.addFn('cos',"cos({0:s})","\\cos\\left({0:s}\\right)",1,math.cos)
core.addFn('tan',"tan({0:s})","\\tan\\left({0:s}\\right)",1,math.tan)
core.addFn('re',"re({0:s})","\\Re\\left({0:s}\\right)",1,complex.real)
core.addFn('im',"re({0:s})","\\Im\\left({0:s}\\right)",1,complex.imag)
core.addFn('sqrt',"sqrt({0:s})","\\sqrt{{{0:s}}}",1,math.sqrt)
core.addConst("pi",math.pi)
core.addConst("e",math.e)
core.addConst("Inf",float("Inf"))
core.addConst("NaN",float("NaN"))
if has_scipy:
core.addConst("h",scipy.constants.h)
core.addConst("hbar",scipy.constants.hbar)
core.addConst("m_e",scipy.constants.m_e)
core.addConst("m_p",scipy.constants.m_p)
core.addConst("m_n",scipy.constants.m_n)
core.addConst("c",scipy.constants.c)
core.addConst("N_A",scipy.constants.N_A)
core.addConst("mu_0",scipy.constants.mu_0)
core.addConst("eps_0",scipy.constants.epsilon_0)
core.addConst("k",scipy.constants.k)
core.addConst("G",scipy.constants.G)
core.addConst("g",scipy.constants.g)
core.addConst("q",scipy.constants.e)
core.addConst("R",scipy.constants.R)
core.addConst("sigma",scipy.constants.e)
core.addConst("Rb",scipy.constants.Rydberg)

View File

@@ -1,49 +0,0 @@
_tol = 1e-5
def sim(a,b):
if (a==b):
return True
elif a == 0 or b == 0:
return False
if (a<b):
return (1-a/b)<=_tol
else:
return (1-b/a)<=_tol
def nsim(a,b):
if (a==b):
return False
elif a == 0 or b == 0:
return True
if (a<b):
return (1-a/b)>_tol
else:
return (1-b/a)>_tol
def gsim(a,b):
if a >= b:
return True
return (1-a/b)<=_tol
def lsim(a,b):
if a <= b:
return True
return (1-b/a)<=_tol
def set_tol(value=1e-5):
r"""Set Error Tolerance
Set the tolerance for detriming if two numbers are simliar, i.e
:math:`\left|\frac{a}{b}\right| = 1 \pm tolerance`
Parameters
----------
value: float
The Value to set the tolerance to show be very small as it respresents the
percentage of acceptable error in detriming if two values are the same.
"""
global _tol
if isinstance(value,float):
_tol = value
else:
raise TypeError(type(value))

View File

@@ -1,51 +0,0 @@
import re
from decimal import Decimal
from functools import reduce
class RegexInplaceParser(object):
def __init__(self, string):
self.string = string
def add(self, string):
while(len(re.findall("[+]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[+]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x + y), [Decimal(i) for i in re.split("[+]{1}", re.search("[-]?\d+[.]?\d*[+]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def sub(self, string):
while(len(re.findall("\d+[.]?\d*[-]{1,2}\d+[.]?\d*", string)) != 0):
g = re.search("\d+[.]?\d*[-]{1,2}\d+[.]?\d*", string).group()
if(re.search("[-]{1,2}", g).group() == "-"):
r = re.sub("[-]{1}", "+-", g, 1)
string = re.sub(g, r, string, 1)
elif(re.search("[-]{1,2}", g).group() == "--"):
r = re.sub("[-]{2}", "+", g, 1)
string = re.sub(g, r, string, 1)
else:
pass
return string
def mul(self, string):
while(len(re.findall("[*]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[*]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x * y), [Decimal(i) for i in re.split("[*]{1}", re.search("[-]?\d+[.]?\d*[*]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def div(self, string):
while(len(re.findall("[/]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[/]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x / y), [Decimal(i) for i in re.split("[/]{1}", re.search("[-]?\d+[.]?\d*[/]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def exp(self, string):
while(len(re.findall("[\^]{1}[-]?", string)) != 0):
string = re.sub("[-]?\d+[.]?\d*[\^]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x ** y), [Decimal(i) for i in re.split("[\^]{1}", re.search("[-]?\d+[.]?\d*[\^]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
return string
def evaluate(self):
string = self.string
string = self.exp(string)
string = self.div(string)
string = self.mul(string)
string = self.sub(string)
string = self.add(string)
return string

View File

@@ -1,34 +0,0 @@
# Titan Robotics Team 2022: Expression submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis.Equation import parser'
# setup:
__version__ = "0.0.4-alpha"
__changelog__ = """changelog:
0.0.4-alpha:
- moved individual parsers to their own files
0.0.3-alpha:
- readded old regex based parser as RegexInplaceParser
0.0.2-alpha:
- wrote BNF using pyparsing and uses a BNF metasyntax
- renamed this submodule parser
0.0.1-alpha:
- took items from equation.ipynb and ported here
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = {
"BNF",
"RegexInplaceParser",
"HybridExpressionParser"
}
from .BNF import BNF as BNF
from .RegexInplaceParser import RegexInplaceParser as RegexInplaceParser
from .Hybrid import HybridExpressionParser
from .Hybrid_Utils import equation_base, Core

View File

@@ -1,21 +0,0 @@
# Titan Robotics Team 2022: py2 module
# Written by Arthur Lu
# Notes:
# this module should only be used internally, contains old python 2.X functions that have been removed.
# setup:
from __future__ import division
__version__ = "1.0.0"
__changelog__ = """changelog:
1.0.0:
- added cmp function
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
def cmp(a, b):
return (a > b) - (a < b)

View File

@@ -1,24 +0,0 @@
# Titan Robotics Team 2022: Metrics submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import metrics'
# setup:
__version__ = "1.0.0"
__changelog__ = """changelog:
1.0.0:
- implemented elo, glicko2, trueskill
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = {
"Expression"
}
from . import elo
from . import glicko2
from . import trueskill

View File

@@ -1,7 +0,0 @@
import numpy as np
def calculate(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
return starting_score + K*(np.sum(observed) - np.sum(expected))

View File

@@ -1,99 +0,0 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -1,907 +0,0 @@
from __future__ import absolute_import
from itertools import chain
import math
from six import iteritems
from six.moves import map, range, zip
from six import iterkeys
import copy
try:
from numbers import Number
except ImportError:
Number = (int, long, float, complex)
inf = float('inf')
class Gaussian(object):
#: Precision, the inverse of the variance.
pi = 0
#: Precision adjusted mean, the precision multiplied by the mean.
tau = 0
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
if mu is not None:
if sigma is None:
raise TypeError('sigma argument is needed')
elif sigma == 0:
raise ValueError('sigma**2 should be greater than 0')
pi = sigma ** -2
tau = pi * mu
self.pi = pi
self.tau = tau
@property
def mu(self):
return self.pi and self.tau / self.pi
@property
def sigma(self):
return math.sqrt(1 / self.pi) if self.pi else inf
def __mul__(self, other):
pi, tau = self.pi + other.pi, self.tau + other.tau
return Gaussian(pi=pi, tau=tau)
def __truediv__(self, other):
pi, tau = self.pi - other.pi, self.tau - other.tau
return Gaussian(pi=pi, tau=tau)
__div__ = __truediv__ # for Python 2
def __eq__(self, other):
return self.pi == other.pi and self.tau == other.tau
def __lt__(self, other):
return self.mu < other.mu
def __le__(self, other):
return self.mu <= other.mu
def __gt__(self, other):
return self.mu > other.mu
def __ge__(self, other):
return self.mu >= other.mu
def __repr__(self):
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
def _repr_latex_(self):
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
return '$%s$' % latex
class Matrix(list):
def __init__(self, src, height=None, width=None):
if callable(src):
f, src = src, {}
size = [height, width]
if not height:
def set_height(height):
size[0] = height
size[0] = set_height
if not width:
def set_width(width):
size[1] = width
size[1] = set_width
try:
for (r, c), val in f(*size):
src[r, c] = val
except TypeError:
raise TypeError('A callable src must return an interable '
'which generates a tuple containing '
'coordinate and value')
height, width = tuple(size)
if height is None or width is None:
raise TypeError('A callable src must call set_height and '
'set_width if the size is non-deterministic')
if isinstance(src, list):
is_number = lambda x: isinstance(x, Number)
unique_col_sizes = set(map(len, src))
everything_are_number = filter(is_number, sum(src, []))
if len(unique_col_sizes) != 1 or not everything_are_number:
raise ValueError('src must be a rectangular array of numbers')
two_dimensional_array = src
elif isinstance(src, dict):
if not height or not width:
w = h = 0
for r, c in iterkeys(src):
if not height:
h = max(h, r + 1)
if not width:
w = max(w, c + 1)
if not height:
height = h
if not width:
width = w
two_dimensional_array = []
for r in range(height):
row = []
two_dimensional_array.append(row)
for c in range(width):
row.append(src.get((r, c), 0))
else:
raise TypeError('src must be a list or dict or callable')
super(Matrix, self).__init__(two_dimensional_array)
@property
def height(self):
return len(self)
@property
def width(self):
return len(self[0])
def transpose(self):
height, width = self.height, self.width
src = {}
for c in range(width):
for r in range(height):
src[c, r] = self[r][c]
return type(self)(src, height=width, width=height)
def minor(self, row_n, col_n):
height, width = self.height, self.width
if not (0 <= row_n < height):
raise ValueError('row_n should be between 0 and %d' % height)
elif not (0 <= col_n < width):
raise ValueError('col_n should be between 0 and %d' % width)
two_dimensional_array = []
for r in range(height):
if r == row_n:
continue
row = []
two_dimensional_array.append(row)
for c in range(width):
if c == col_n:
continue
row.append(self[r][c])
return type(self)(two_dimensional_array)
def determinant(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can calculate a determinant')
tmp, rv = copy.deepcopy(self), 1.
for c in range(width - 1, 0, -1):
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
pivot = tmp[r][c]
if not pivot:
return 0.
tmp[r], tmp[c] = tmp[c], tmp[r]
if r != c:
rv = -rv
rv *= pivot
fact = -1. / pivot
for r in range(c):
f = fact * tmp[r][c]
for x in range(c):
tmp[r][x] += f * tmp[c][x]
return rv * tmp[0][0]
def adjugate(self):
height, width = self.height, self.width
if height != width:
raise ValueError('Only square matrix can be adjugated')
if height == 2:
a, b = self[0][0], self[0][1]
c, d = self[1][0], self[1][1]
return type(self)([[d, -b], [-c, a]])
src = {}
for r in range(height):
for c in range(width):
sign = -1 if (r + c) % 2 else 1
src[r, c] = self.minor(r, c).determinant() * sign
return type(self)(src, height, width)
def inverse(self):
if self.height == self.width == 1:
return type(self)([[1. / self[0][0]]])
return (1. / self.determinant()) * self.adjugate()
def __add__(self, other):
height, width = self.height, self.width
if (height, width) != (other.height, other.width):
raise ValueError('Must be same size')
src = {}
for r in range(height):
for c in range(width):
src[r, c] = self[r][c] + other[r][c]
return type(self)(src, height, width)
def __mul__(self, other):
if self.width != other.height:
raise ValueError('Bad size')
height, width = self.height, other.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = sum(self[r][x] * other[x][c]
for x in range(self.width))
return type(self)(src, height, width)
def __rmul__(self, other):
if not isinstance(other, Number):
raise TypeError('The operand should be a number')
height, width = self.height, self.width
src = {}
for r in range(height):
for c in range(width):
src[r, c] = other * self[r][c]
return type(self)(src, height, width)
def __repr__(self):
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
def _repr_latex_(self):
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
return '$%s$' % latex
def _gen_erfcinv(erfc, math=math):
def erfcinv(y):
"""The inverse function of erfc."""
if y >= 2:
return -100.
elif y <= 0:
return 100.
zero_point = y < 1
if not zero_point:
y = 2 - y
t = math.sqrt(-2 * math.log(y / 2.))
x = -0.70711 * \
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
for i in range(2):
err = erfc(x) - y
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
return x if zero_point else -x
return erfcinv
def _gen_ppf(erfc, math=math):
erfcinv = _gen_erfcinv(erfc, math)
def ppf(x, mu=0, sigma=1):
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
return ppf
def erfc(x):
z = abs(x)
t = 1. / (1. + z / 2.)
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
-0.82215223 + t * 0.17087277
)))
)))
)))
return 2. - r if x < 0 else r
def cdf(x, mu=0, sigma=1):
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
def pdf(x, mu=0, sigma=1):
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
ppf = _gen_ppf(erfc)
def choose_backend(backend):
if backend is None: # fallback
return cdf, pdf, ppf
elif backend == 'mpmath':
try:
import mpmath
except ImportError:
raise ImportError('Install "mpmath" to use this backend')
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
elif backend == 'scipy':
try:
from scipy.stats import norm
except ImportError:
raise ImportError('Install "scipy" to use this backend')
return norm.cdf, norm.pdf, norm.ppf
raise ValueError('%r backend is not defined' % backend)
def available_backends():
backends = [None]
for backend in ['mpmath', 'scipy']:
try:
__import__(backend)
except ImportError:
continue
backends.append(backend)
return backends
class Node(object):
pass
class Variable(Node, Gaussian):
def __init__(self):
self.messages = {}
super(Variable, self).__init__()
def set(self, val):
delta = self.delta(val)
self.pi, self.tau = val.pi, val.tau
return delta
def delta(self, other):
pi_delta = abs(self.pi - other.pi)
if pi_delta == inf:
return 0.
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
def update_message(self, factor, pi=0, tau=0, message=None):
message = message or Gaussian(pi=pi, tau=tau)
old_message, self[factor] = self[factor], message
return self.set(self / old_message * message)
def update_value(self, factor, pi=0, tau=0, value=None):
value = value or Gaussian(pi=pi, tau=tau)
old_message = self[factor]
self[factor] = value * old_message / self
return self.set(value)
def __getitem__(self, factor):
return self.messages[factor]
def __setitem__(self, factor, message):
self.messages[factor] = message
def __repr__(self):
args = (type(self).__name__, super(Variable, self).__repr__(),
len(self.messages), '' if len(self.messages) == 1 else 's')
return '<%s %s with %d connection%s>' % args
class Factor(Node):
def __init__(self, variables):
self.vars = variables
for var in variables:
var[self] = Gaussian()
def down(self):
return 0
def up(self):
return 0
@property
def var(self):
assert len(self.vars) == 1
return self.vars[0]
def __repr__(self):
args = (type(self).__name__, len(self.vars),
'' if len(self.vars) == 1 else 's')
return '<%s with %d connection%s>' % args
class PriorFactor(Factor):
def __init__(self, var, val, dynamic=0):
super(PriorFactor, self).__init__([var])
self.val = val
self.dynamic = dynamic
def down(self):
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
value = Gaussian(self.val.mu, sigma)
return self.var.update_value(self, value=value)
class LikelihoodFactor(Factor):
def __init__(self, mean_var, value_var, variance):
super(LikelihoodFactor, self).__init__([mean_var, value_var])
self.mean = mean_var
self.value = value_var
self.variance = variance
def calc_a(self, var):
return 1. / (1. + self.variance * var.pi)
def down(self):
# update value.
msg = self.mean / self.mean[self]
a = self.calc_a(msg)
return self.value.update_message(self, a * msg.pi, a * msg.tau)
def up(self):
# update mean.
msg = self.value / self.value[self]
a = self.calc_a(msg)
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
class SumFactor(Factor):
def __init__(self, sum_var, term_vars, coeffs):
super(SumFactor, self).__init__([sum_var] + term_vars)
self.sum = sum_var
self.terms = term_vars
self.coeffs = coeffs
def down(self):
vals = self.terms
msgs = [var[self] for var in vals]
return self.update(self.sum, vals, msgs, self.coeffs)
def up(self, index=0):
coeff = self.coeffs[index]
coeffs = []
for x, c in enumerate(self.coeffs):
try:
if x == index:
coeffs.append(1. / coeff)
else:
coeffs.append(-c / coeff)
except ZeroDivisionError:
coeffs.append(0.)
vals = self.terms[:]
vals[index] = self.sum
msgs = [var[self] for var in vals]
return self.update(self.terms[index], vals, msgs, coeffs)
def update(self, var, vals, msgs, coeffs):
pi_inv = 0
mu = 0
for val, msg, coeff in zip(vals, msgs, coeffs):
div = val / msg
mu += coeff * div.mu
if pi_inv == inf:
continue
try:
# numpy.float64 handles floating-point error by different way.
# For example, it can just warn RuntimeWarning on n/0 problem
# instead of throwing ZeroDivisionError. So div.pi, the
# denominator has to be a built-in float.
pi_inv += coeff ** 2 / float(div.pi)
except ZeroDivisionError:
pi_inv = inf
pi = 1. / pi_inv
tau = pi * mu
return var.update_message(self, pi, tau)
class TruncateFactor(Factor):
def __init__(self, var, v_func, w_func, draw_margin):
super(TruncateFactor, self).__init__([var])
self.v_func = v_func
self.w_func = w_func
self.draw_margin = draw_margin
def up(self):
val = self.var
msg = self.var[self]
div = val / msg
sqrt_pi = math.sqrt(div.pi)
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
v = self.v_func(*args)
w = self.w_func(*args)
denom = (1. - w)
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
return val.update_value(self, pi, tau)
#: Default initial mean of ratings.
MU = 25.
#: Default initial standard deviation of ratings.
SIGMA = MU / 3
#: Default distance that guarantees about 76% chance of winning.
BETA = SIGMA / 2
#: Default dynamic factor.
TAU = SIGMA / 100
#: Default draw probability of the game.
DRAW_PROBABILITY = .10
#: A basis to check reliability of the result.
DELTA = 0.0001
def calc_draw_probability(draw_margin, size, env=None):
if env is None:
env = global_env()
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
def calc_draw_margin(draw_probability, size, env=None):
if env is None:
env = global_env()
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
def _team_sizes(rating_groups):
team_sizes = [0]
for group in rating_groups:
team_sizes.append(len(group) + team_sizes[-1])
del team_sizes[0]
return team_sizes
def _floating_point_error(env):
if env.backend == 'mpmath':
msg = 'Set "mpmath.mp.dps" to higher'
else:
msg = 'Cannot calculate correctly, set backend to "mpmath"'
return FloatingPointError(msg)
class Rating(Gaussian):
def __init__(self, mu=None, sigma=None):
if isinstance(mu, tuple):
mu, sigma = mu
elif isinstance(mu, Gaussian):
mu, sigma = mu.mu, mu.sigma
if mu is None:
mu = global_env().mu
if sigma is None:
sigma = global_env().sigma
super(Rating, self).__init__(mu, sigma)
def __int__(self):
return int(self.mu)
def __long__(self):
return long(self.mu)
def __float__(self):
return float(self.mu)
def __iter__(self):
return iter((self.mu, self.sigma))
def __repr__(self):
c = type(self)
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
return '%s(mu=%.3f, sigma=%.3f)' % args
class TrueSkill(object):
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None):
self.mu = mu
self.sigma = sigma
self.beta = beta
self.tau = tau
self.draw_probability = draw_probability
self.backend = backend
if isinstance(backend, tuple):
self.cdf, self.pdf, self.ppf = backend
else:
self.cdf, self.pdf, self.ppf = choose_backend(backend)
def create_rating(self, mu=None, sigma=None):
if mu is None:
mu = self.mu
if sigma is None:
sigma = self.sigma
return Rating(mu, sigma)
def v_win(self, diff, draw_margin):
x = diff - draw_margin
denom = self.cdf(x)
return (self.pdf(x) / denom) if denom else -x
def v_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
numer = self.pdf(b) - self.pdf(a)
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
def w_win(self, diff, draw_margin):
x = diff - draw_margin
v = self.v_win(diff, draw_margin)
w = v * (v + x)
if 0 < w < 1:
return w
raise _floating_point_error(self)
def w_draw(self, diff, draw_margin):
abs_diff = abs(diff)
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
denom = self.cdf(a) - self.cdf(b)
if not denom:
raise _floating_point_error(self)
v = self.v_draw(abs_diff, draw_margin)
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
def validate_rating_groups(self, rating_groups):
# check group sizes
if len(rating_groups) < 2:
raise ValueError('Need multiple rating groups')
elif not all(rating_groups):
raise ValueError('Each group must contain multiple ratings')
# check group types
group_types = set(map(type, rating_groups))
if len(group_types) != 1:
raise TypeError('All groups should be same type')
elif group_types.pop() is Rating:
raise TypeError('Rating cannot be a rating group')
# normalize rating_groups
if isinstance(rating_groups[0], dict):
dict_rating_groups = rating_groups
rating_groups = []
keys = []
for dict_rating_group in dict_rating_groups:
rating_group, key_group = [], []
for key, rating in iteritems(dict_rating_group):
rating_group.append(rating)
key_group.append(key)
rating_groups.append(tuple(rating_group))
keys.append(tuple(key_group))
else:
rating_groups = list(rating_groups)
keys = None
return rating_groups, keys
def validate_weights(self, weights, rating_groups, keys=None):
if weights is None:
weights = [(1,) * len(g) for g in rating_groups]
elif isinstance(weights, dict):
weights_dict, weights = weights, []
for x, group in enumerate(rating_groups):
w = []
weights.append(w)
for y, rating in enumerate(group):
if keys is not None:
y = keys[x][y]
w.append(weights_dict.get((x, y), 1))
return weights
def factor_graph_builders(self, rating_groups, ranks, weights):
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
size = len(flatten_ratings)
group_size = len(rating_groups)
# create variables
rating_vars = [Variable() for x in range(size)]
perf_vars = [Variable() for x in range(size)]
team_perf_vars = [Variable() for x in range(group_size)]
team_diff_vars = [Variable() for x in range(group_size - 1)]
team_sizes = _team_sizes(rating_groups)
# layer builders
def build_rating_layer():
for rating_var, rating in zip(rating_vars, flatten_ratings):
yield PriorFactor(rating_var, rating, self.tau)
def build_perf_layer():
for rating_var, perf_var in zip(rating_vars, perf_vars):
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
def build_team_perf_layer():
for team, team_perf_var in enumerate(team_perf_vars):
if team > 0:
start = team_sizes[team - 1]
else:
start = 0
end = team_sizes[team]
child_perf_vars = perf_vars[start:end]
coeffs = flatten_weights[start:end]
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
def build_team_diff_layer():
for team, team_diff_var in enumerate(team_diff_vars):
yield SumFactor(team_diff_var,
team_perf_vars[team:team + 2], [+1, -1])
def build_trunc_layer():
for x, team_diff_var in enumerate(team_diff_vars):
if callable(self.draw_probability):
# dynamic draw probability
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
args = (Rating(team_perf1), Rating(team_perf2), self)
draw_probability = self.draw_probability(*args)
else:
# static draw probability
draw_probability = self.draw_probability
size = sum(map(len, rating_groups[x:x + 2]))
draw_margin = calc_draw_margin(draw_probability, size, self)
if ranks[x] == ranks[x + 1]: # is a tie?
v_func, w_func = self.v_draw, self.w_draw
else:
v_func, w_func = self.v_win, self.w_win
yield TruncateFactor(team_diff_var,
v_func, w_func, draw_margin)
# build layers
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
build_team_diff_layer, build_trunc_layer)
def run_schedule(self, build_rating_layer, build_perf_layer,
build_team_perf_layer, build_team_diff_layer,
build_trunc_layer, min_delta=DELTA):
if min_delta <= 0:
raise ValueError('min_delta must be greater than 0')
layers = []
def build(builders):
layers_built = [list(build()) for build in builders]
layers.extend(layers_built)
return layers_built
# gray arrows
layers_built = build([build_rating_layer,
build_perf_layer,
build_team_perf_layer])
rating_layer, perf_layer, team_perf_layer = layers_built
for f in chain(*layers_built):
f.down()
# arrow #1, #2, #3
team_diff_layer, trunc_layer = build([build_team_diff_layer,
build_trunc_layer])
team_diff_len = len(team_diff_layer)
for x in range(10):
if team_diff_len == 1:
# only two teams
team_diff_layer[0].down()
delta = trunc_layer[0].up()
else:
# multiple teams
delta = 0
for x in range(team_diff_len - 1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(1) # up to right variable
for x in range(team_diff_len - 1, 0, -1):
team_diff_layer[x].down()
delta = max(delta, trunc_layer[x].up())
team_diff_layer[x].up(0) # up to left variable
# repeat until to small update
if delta <= min_delta:
break
# up both ends
team_diff_layer[0].up(0)
team_diff_layer[team_diff_len - 1].up(1)
# up the remainder of the black arrows
for f in team_perf_layer:
for x in range(len(f.vars) - 1):
f.up(x)
for f in perf_layer:
f.up()
return layers
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
group_size = len(rating_groups)
if ranks is None:
ranks = range(group_size)
elif len(ranks) != group_size:
raise ValueError('Wrong ranks')
# sort rating groups by rank
by_rank = lambda x: x[1][1]
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
key=by_rank)
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
for x, (g, r, w) in sorting:
sorted_rating_groups.append(g)
sorted_ranks.append(r)
# make weights to be greater than 0
sorted_weights.append(max(min_delta, w_) for w_ in w)
# build factor graph
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
builders = self.factor_graph_builders(*args)
args = builders + (min_delta,)
layers = self.run_schedule(*args)
# make result
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
transformed_groups = []
for start, end in zip([0] + team_sizes[:-1], team_sizes):
group = []
for f in rating_layer[start:end]:
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
transformed_groups.append(tuple(group))
by_hint = lambda x: x[0]
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
key=by_hint)
if keys is None:
return [g for x, g in unsorting]
# restore the structure with input dictionary keys
return [dict(zip(keys[x], g)) for x, g in unsorting]
def quality(self, rating_groups, weights=None):
rating_groups, keys = self.validate_rating_groups(rating_groups)
weights = self.validate_weights(weights, rating_groups, keys)
flatten_ratings = sum(map(tuple, rating_groups), ())
flatten_weights = sum(map(tuple, weights), ())
length = len(flatten_ratings)
# a vector of all of the skill means
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
# a matrix whose diagonal values are the variances (sigma ** 2) of each
# of the players.
def variance_matrix(height, width):
variances = (r.sigma ** 2 for r in flatten_ratings)
for x, variance in enumerate(variances):
yield (x, x), variance
variance_matrix = Matrix(variance_matrix, length, length)
# the player-team assignment and comparison matrix
def rotated_a_matrix(set_height, set_width):
t = 0
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
rating_groups[1:])):
for x in range(t, t + len(cur)):
yield (r, x), flatten_weights[x]
t += 1
x += 1
for x in range(x, x + len(_next)):
yield (r, x), -flatten_weights[x]
set_height(r + 1)
set_width(x + 1)
rotated_a_matrix = Matrix(rotated_a_matrix)
a_matrix = rotated_a_matrix.transpose()
# match quality further derivation
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
_atsa = rotated_a_matrix * variance_matrix * a_matrix
start = mean_matrix.transpose() * a_matrix
middle = _ata + _atsa
end = rotated_a_matrix * mean_matrix
# make result
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
s_arg = _ata.determinant() / middle.determinant()
return math.exp(e_arg) * math.sqrt(s_arg)
def expose(self, rating):
k = self.mu / self.sigma
return rating.mu - k * rating.sigma
def make_as_global(self):
return setup(env=self)
def __repr__(self):
c = type(self)
if callable(self.draw_probability):
f = self.draw_probability
draw_probability = '.'.join([f.__module__, f.__name__])
else:
draw_probability = '%.1f%%' % (self.draw_probability * 100)
if self.backend is None:
backend = ''
elif isinstance(self.backend, tuple):
backend = ', backend=...'
else:
backend = ', backend=%r' % self.backend
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
self.beta, self.tau, draw_probability, backend)
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
'draw_probability=%s%s)' % args)
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
if env is None:
env = global_env()
ranks = [0, 0 if drawn else 1]
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
return teams[0][0], teams[1][0]
def quality_1vs1(rating1, rating2, env=None):
if env is None:
env = global_env()
return env.quality([(rating1,), (rating2,)])
def global_env():
try:
global_env.__trueskill__
except AttributeError:
# setup the default environment
setup()
return global_env.__trueskill__
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
if env is None:
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
global_env.__trueskill__ = env
return env
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
return global_env().rate(rating_groups, ranks, weights, min_delta)
def quality(rating_groups, weights=None):
return global_env().quality(rating_groups, weights)
def expose(rating):
return global_env().expose(rating)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1 @@
[{"outputType":{"type":"APK"},"apkInfo":{"type":"MAIN","splits":[],"versionCode":1,"versionName":"1.0","enabled":true,"outputFile":"app-debug.apk","fullName":"debug","baseName":"debug"},"path":"app-debug.apk","properties":{}}]

13
apps/android/source/.gitignore vendored Normal file
View File

@@ -0,0 +1,13 @@
*.iml
.gradle
/local.properties
/.idea/caches
/.idea/libraries
/.idea/modules.xml
/.idea/workspace.xml
/.idea/navEditor.xml
/.idea/assetWizardSettings.xml
.DS_Store
/build
/captures
.externalNativeBuild

View File

@@ -0,0 +1,29 @@
<component name="ProjectCodeStyleConfiguration">
<code_scheme name="Project" version="173">
<Objective-C-extensions>
<file>
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Import" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Macro" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Typedef" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Enum" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Constant" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Global" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Struct" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="FunctionPredecl" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Function" />
</file>
<class>
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Property" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="Synthesize" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="InitMethod" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="StaticMethod" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="InstanceMethod" />
<option name="com.jetbrains.cidr.lang.util.OCDeclarationKind" value="DeallocMethod" />
</class>
<extensions>
<pair source="cpp" header="h" fileNamingConvention="NONE" />
<pair source="c" header="h" fileNamingConvention="NONE" />
</extensions>
</Objective-C-extensions>
</code_scheme>
</component>

18
apps/android/source/.idea/gradle.xml generated Normal file
View File

@@ -0,0 +1,18 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="GradleSettings">
<option name="linkedExternalProjectsSettings">
<GradleProjectSettings>
<option name="distributionType" value="DEFAULT_WRAPPED" />
<option name="externalProjectPath" value="$PROJECT_DIR$" />
<option name="modules">
<set>
<option value="$PROJECT_DIR$" />
<option value="$PROJECT_DIR$/app" />
</set>
</option>
<option name="resolveModulePerSourceSet" value="false" />
</GradleProjectSettings>
</option>
</component>
</project>

9
apps/android/source/.idea/misc.xml generated Normal file
View File

@@ -0,0 +1,9 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" languageLevel="JDK_1_7" project-jdk-name="11" project-jdk-type="JavaSDK">
<output url="file://$PROJECT_DIR$/build/classes" />
</component>
<component name="ProjectType">
<option name="id" value="Android" />
</component>
</project>

View File

@@ -0,0 +1,12 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="RunConfigurationProducerService">
<option name="ignoredProducers">
<set>
<option value="org.jetbrains.plugins.gradle.execution.test.runner.AllInPackageGradleConfigurationProducer" />
<option value="org.jetbrains.plugins.gradle.execution.test.runner.TestClassGradleConfigurationProducer" />
<option value="org.jetbrains.plugins.gradle.execution.test.runner.TestMethodGradleConfigurationProducer" />
</set>
</option>
</component>
</project>

6
apps/android/source/.idea/vcs.xml generated Normal file
View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/../../.." vcs="Git" />
</component>
</project>

1
apps/android/source/app/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
/build

View File

@@ -0,0 +1,28 @@
apply plugin: 'com.android.application'
android {
compileSdkVersion 28
defaultConfig {
applicationId "com.example.titanscouting"
minSdkVersion 16
targetSdkVersion 28
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
}
}
}
dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'com.android.support.constraint:constraint-layout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
}

View File

@@ -0,0 +1,21 @@
# Add project specific ProGuard rules here.
# You can control the set of applied configuration files using the
# proguardFiles setting in build.gradle.
#
# For more details, see
# http://developer.android.com/guide/developing/tools/proguard.html
# If your project uses WebView with JS, uncomment the following
# and specify the fully qualified class name to the JavaScript interface
# class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
# public *;
#}
# Uncomment this to preserve the line number information for
# debugging stack traces.
#-keepattributes SourceFile,LineNumberTable
# If you keep the line number information, uncomment this to
# hide the original source file name.
#-renamesourcefileattribute SourceFile

Binary file not shown.

View File

@@ -0,0 +1 @@
[{"outputType":{"type":"APK"},"apkInfo":{"type":"MAIN","splits":[],"versionCode":1,"versionName":"1.0","enabled":true,"outputFile":"app-release.apk","fullName":"release","baseName":"release"},"path":"app-release.apk","properties":{}}]

View File

@@ -0,0 +1,26 @@
package com.example.titanscouting;
import android.content.Context;
import android.support.test.InstrumentationRegistry;
import android.support.test.runner.AndroidJUnit4;
import org.junit.Test;
import org.junit.runner.RunWith;
import static org.junit.Assert.*;
/**
* Instrumented test, which will execute on an Android device.
*
* @see <a href="http://d.android.com/tools/testing">Testing documentation</a>
*/
@RunWith(AndroidJUnit4.class)
public class ExampleInstrumentedTest {
@Test
public void useAppContext() {
// Context of the app under test.
Context appContext = InstrumentationRegistry.getTargetContext();
assertEquals("com.example.titanscouting", appContext.getPackageName());
}
}

View File

@@ -0,0 +1,28 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.titanscouting">
<uses-permission android:name="android.permission.INTERNET" />
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@drawable/binoculars_big"
android:supportsRtl="true"
android:theme="@style/AppTheme"
android:usesCleartextTraffic="true">
<activity android:name=".tits"></activity>
<activity android:name=".launcher">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".MainActivity">
</activity>
</application>
</manifest>

View File

@@ -0,0 +1,32 @@
package com.example.titanscouting;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.webkit.WebView;
import android.webkit.WebSettings;
import android.webkit.WebViewClient;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
WebView myWebView = (WebView) findViewById(R.id.webview);
myWebView.getSettings().setJavaScriptEnabled(true);
myWebView.setWebViewClient(new WebViewClient());
myWebView.loadUrl("http://titanrobotics.ddns.net:60080/public/");
myWebView.getSettings().setJavaScriptEnabled(true);
myWebView.getSettings().setJavaScriptCanOpenWindowsAutomatically(true);
myWebView.getSettings().setDomStorageEnabled(true);
myWebView.getSettings().setDomStorageEnabled(true);
}
}

View File

@@ -0,0 +1,49 @@
package com.example.titanscouting;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.app.Activity;
import android.content.Intent;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
public class launcher extends AppCompatActivity {
Button button;
EditText passField;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_launcher);
// Locate the button in activity_main.xml
button = (Button) findViewById(R.id.launch_button);
final EditText passField = (EditText)findViewById(R.id.editText);
// Capture button clicks
button.setOnClickListener(new OnClickListener() {
public void onClick(View arg0) {
// Start NewActivity.class
if(passField.getText().toString().equals("gimmetits")){
Intent myIntent = new Intent(launcher.this,
tits.class);
startActivity(myIntent);
}
else {
Intent myIntent = new Intent(launcher.this,
MainActivity.class);
startActivity(myIntent);
}
}
});
}
}

View File

@@ -0,0 +1,30 @@
package com.example.titanscouting;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
public class tits extends AppCompatActivity {
Button button;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_tits);
button = (Button) findViewById(R.id.button);
// Capture button clicks
button.setOnClickListener(new View.OnClickListener() {
public void onClick(View arg0) {
Intent myIntent = new Intent(tits.this,
MainActivity.class);
startActivity(myIntent);
}
});
}
}

View File

@@ -0,0 +1,34 @@
<vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt"
android:width="108dp"
android:height="108dp"
android:viewportWidth="108"
android:viewportHeight="108">
<path
android:fillType="evenOdd"
android:pathData="M32,64C32,64 38.39,52.99 44.13,50.95C51.37,48.37 70.14,49.57 70.14,49.57L108.26,87.69L108,109.01L75.97,107.97L32,64Z"
android:strokeWidth="1"
android:strokeColor="#00000000">
<aapt:attr name="android:fillColor">
<gradient
android:endX="78.5885"
android:endY="90.9159"
android:startX="48.7653"
android:startY="61.0927"
android:type="linear">
<item
android:color="#44000000"
android:offset="0.0" />
<item
android:color="#00000000"
android:offset="1.0" />
</gradient>
</aapt:attr>
</path>
<path
android:fillColor="#FFFFFF"
android:fillType="nonZero"
android:pathData="M66.94,46.02L66.94,46.02C72.44,50.07 76,56.61 76,64L32,64C32,56.61 35.56,50.11 40.98,46.06L36.18,41.19C35.45,40.45 35.45,39.3 36.18,38.56C36.91,37.81 38.05,37.81 38.78,38.56L44.25,44.05C47.18,42.57 50.48,41.71 54,41.71C57.48,41.71 60.78,42.57 63.68,44.05L69.11,38.56C69.84,37.81 70.98,37.81 71.71,38.56C72.44,39.3 72.44,40.45 71.71,41.19L66.94,46.02ZM62.94,56.92C64.08,56.92 65,56.01 65,54.88C65,53.76 64.08,52.85 62.94,52.85C61.8,52.85 60.88,53.76 60.88,54.88C60.88,56.01 61.8,56.92 62.94,56.92ZM45.06,56.92C46.2,56.92 47.13,56.01 47.13,54.88C47.13,53.76 46.2,52.85 45.06,52.85C43.92,52.85 43,53.76 43,54.88C43,56.01 43.92,56.92 45.06,56.92Z"
android:strokeWidth="1"
android:strokeColor="#00000000" />
</vector>

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 925 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 KiB

View File

@@ -0,0 +1,170 @@
<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
android:width="108dp"
android:height="108dp"
android:viewportWidth="108"
android:viewportHeight="108">
<path
android:fillColor="#008577"
android:pathData="M0,0h108v108h-108z" />
<path
android:fillColor="#00000000"
android:pathData="M9,0L9,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,0L19,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M29,0L29,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M39,0L39,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M49,0L49,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M59,0L59,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M69,0L69,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M79,0L79,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M89,0L89,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M99,0L99,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,9L108,9"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,19L108,19"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,29L108,29"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,39L108,39"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,49L108,49"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,59L108,59"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,69L108,69"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,79L108,79"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,89L108,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,99L108,99"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,29L89,29"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,39L89,39"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,49L89,49"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,59L89,59"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,69L89,69"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,79L89,79"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M29,19L29,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M39,19L39,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M49,19L49,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M59,19L59,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M69,19L69,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M79,19L79,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
</vector>

View File

@@ -0,0 +1,42 @@
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".launcher">
<Button
android:id="@+id/launch_button"
android:layout_width="253dp"
android:layout_height="56dp"
android:layout_marginStart="8dp"
android:layout_marginLeft="8dp"
android:layout_marginTop="8dp"
android:layout_marginEnd="8dp"
android:layout_marginRight="8dp"
android:layout_marginBottom="8dp"
android:text="Launch Titan Scouting"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />
<EditText
android:id="@+id/editText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="8dp"
android:layout_marginLeft="8dp"
android:layout_marginTop="8dp"
android:layout_marginEnd="8dp"
android:layout_marginRight="8dp"
android:layout_marginBottom="8dp"
android:ems="10"
android:inputType="textPassword"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/launch_button"
app:layout_constraintVertical_bias="0.0" />
</android.support.constraint.ConstraintLayout>

View File

@@ -0,0 +1,19 @@
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<WebView
android:id="@+id/webview"
android:layout_width="0dp"
android:layout_height="0dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintVertical_bias="0.48000002" />
</android.support.constraint.ConstraintLayout>

View File

@@ -0,0 +1,36 @@
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".tits">
<ImageView
android:id="@+id/imageView"
android:layout_width="372dp"
android:layout_height="487dp"
android:layout_marginTop="4dp"
android:layout_marginBottom="215dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:srcCompat="@drawable/uuh" />
<Button
android:id="@+id/button"
android:layout_width="198dp"
android:layout_height="86dp"
android:layout_marginStart="8dp"
android:layout_marginLeft="8dp"
android:layout_marginTop="8dp"
android:layout_marginEnd="8dp"
android:layout_marginRight="8dp"
android:layout_marginBottom="8dp"
android:text="Fuck Get Me Out"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/imageView" />
</android.support.constraint.ConstraintLayout>

View File

@@ -0,0 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

View File

@@ -0,0 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="colorPrimary">#008577</color>
<color name="colorPrimaryDark">#00574B</color>
<color name="colorAccent">#D81B60</color>
</resources>

View File

@@ -0,0 +1,3 @@
<resources>
<string name="app_name">TitanScout</string>
</resources>

View File

@@ -0,0 +1,11 @@
<resources>
<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
</style>
</resources>

View File

@@ -0,0 +1,17 @@
package com.example.titanscouting;
import org.junit.Test;
import static org.junit.Assert.*;
/**
* Example local unit test, which will execute on the development machine (host).
*
* @see <a href="http://d.android.com/tools/testing">Testing documentation</a>
*/
public class ExampleUnitTest {
@Test
public void addition_isCorrect() {
assertEquals(4, 2 + 2);
}
}

View File

@@ -0,0 +1,27 @@
// Top-level build file where you can add configuration options common to all sub-projects/modules.
buildscript {
repositories {
google()
jcenter()
}
dependencies {
classpath 'com.android.tools.build:gradle:3.3.0'
// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files
}
}
allprojects {
repositories {
google()
jcenter()
}
}
task clean(type: Delete) {
delete rootProject.buildDir
}

View File

@@ -0,0 +1,15 @@
# Project-wide Gradle settings.
# IDE (e.g. Android Studio) users:
# Gradle settings configured through the IDE *will override*
# any settings specified in this file.
# For more details on how to configure your build environment visit
# http://www.gradle.org/docs/current/userguide/build_environment.html
# Specifies the JVM arguments used for the daemon process.
# The setting is particularly useful for tweaking memory settings.
org.gradle.jvmargs=-Xmx1536m
# When configured, Gradle will run in incubating parallel mode.
# This option should only be used with decoupled projects. More details, visit
# http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects
# org.gradle.parallel=true

Binary file not shown.

View File

@@ -0,0 +1,6 @@
#Wed Feb 06 15:44:44 CST 2019
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-4.10.1-all.zip

172
apps/android/source/gradlew vendored Normal file
View File

@@ -0,0 +1,172 @@
#!/usr/bin/env sh
##############################################################################
##
## Gradle start up script for UN*X
##
##############################################################################
# Attempt to set APP_HOME
# Resolve links: $0 may be a link
PRG="$0"
# Need this for relative symlinks.
while [ -h "$PRG" ] ; do
ls=`ls -ld "$PRG"`
link=`expr "$ls" : '.*-> \(.*\)$'`
if expr "$link" : '/.*' > /dev/null; then
PRG="$link"
else
PRG=`dirname "$PRG"`"/$link"
fi
done
SAVED="`pwd`"
cd "`dirname \"$PRG\"`/" >/dev/null
APP_HOME="`pwd -P`"
cd "$SAVED" >/dev/null
APP_NAME="Gradle"
APP_BASE_NAME=`basename "$0"`
# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
DEFAULT_JVM_OPTS=""
# Use the maximum available, or set MAX_FD != -1 to use that value.
MAX_FD="maximum"
warn () {
echo "$*"
}
die () {
echo
echo "$*"
echo
exit 1
}
# OS specific support (must be 'true' or 'false').
cygwin=false
msys=false
darwin=false
nonstop=false
case "`uname`" in
CYGWIN* )
cygwin=true
;;
Darwin* )
darwin=true
;;
MINGW* )
msys=true
;;
NONSTOP* )
nonstop=true
;;
esac
CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
# Determine the Java command to use to start the JVM.
if [ -n "$JAVA_HOME" ] ; then
if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
# IBM's JDK on AIX uses strange locations for the executables
JAVACMD="$JAVA_HOME/jre/sh/java"
else
JAVACMD="$JAVA_HOME/bin/java"
fi
if [ ! -x "$JAVACMD" ] ; then
die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
else
JAVACMD="java"
which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
# Increase the maximum file descriptors if we can.
if [ "$cygwin" = "false" -a "$darwin" = "false" -a "$nonstop" = "false" ] ; then
MAX_FD_LIMIT=`ulimit -H -n`
if [ $? -eq 0 ] ; then
if [ "$MAX_FD" = "maximum" -o "$MAX_FD" = "max" ] ; then
MAX_FD="$MAX_FD_LIMIT"
fi
ulimit -n $MAX_FD
if [ $? -ne 0 ] ; then
warn "Could not set maximum file descriptor limit: $MAX_FD"
fi
else
warn "Could not query maximum file descriptor limit: $MAX_FD_LIMIT"
fi
fi
# For Darwin, add options to specify how the application appears in the dock
if $darwin; then
GRADLE_OPTS="$GRADLE_OPTS \"-Xdock:name=$APP_NAME\" \"-Xdock:icon=$APP_HOME/media/gradle.icns\""
fi
# For Cygwin, switch paths to Windows format before running java
if $cygwin ; then
APP_HOME=`cygpath --path --mixed "$APP_HOME"`
CLASSPATH=`cygpath --path --mixed "$CLASSPATH"`
JAVACMD=`cygpath --unix "$JAVACMD"`
# We build the pattern for arguments to be converted via cygpath
ROOTDIRSRAW=`find -L / -maxdepth 1 -mindepth 1 -type d 2>/dev/null`
SEP=""
for dir in $ROOTDIRSRAW ; do
ROOTDIRS="$ROOTDIRS$SEP$dir"
SEP="|"
done
OURCYGPATTERN="(^($ROOTDIRS))"
# Add a user-defined pattern to the cygpath arguments
if [ "$GRADLE_CYGPATTERN" != "" ] ; then
OURCYGPATTERN="$OURCYGPATTERN|($GRADLE_CYGPATTERN)"
fi
# Now convert the arguments - kludge to limit ourselves to /bin/sh
i=0
for arg in "$@" ; do
CHECK=`echo "$arg"|egrep -c "$OURCYGPATTERN" -`
CHECK2=`echo "$arg"|egrep -c "^-"` ### Determine if an option
if [ $CHECK -ne 0 ] && [ $CHECK2 -eq 0 ] ; then ### Added a condition
eval `echo args$i`=`cygpath --path --ignore --mixed "$arg"`
else
eval `echo args$i`="\"$arg\""
fi
i=$((i+1))
done
case $i in
(0) set -- ;;
(1) set -- "$args0" ;;
(2) set -- "$args0" "$args1" ;;
(3) set -- "$args0" "$args1" "$args2" ;;
(4) set -- "$args0" "$args1" "$args2" "$args3" ;;
(5) set -- "$args0" "$args1" "$args2" "$args3" "$args4" ;;
(6) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" ;;
(7) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" ;;
(8) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" ;;
(9) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" "$args8" ;;
esac
fi
# Escape application args
save () {
for i do printf %s\\n "$i" | sed "s/'/'\\\\''/g;1s/^/'/;\$s/\$/' \\\\/" ; done
echo " "
}
APP_ARGS=$(save "$@")
# Collect all arguments for the java command, following the shell quoting and substitution rules
eval set -- $DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS "\"-Dorg.gradle.appname=$APP_BASE_NAME\"" -classpath "\"$CLASSPATH\"" org.gradle.wrapper.GradleWrapperMain "$APP_ARGS"
# by default we should be in the correct project dir, but when run from Finder on Mac, the cwd is wrong
if [ "$(uname)" = "Darwin" ] && [ "$HOME" = "$PWD" ]; then
cd "$(dirname "$0")"
fi
exec "$JAVACMD" "$@"

84
apps/android/source/gradlew.bat vendored Normal file
View File

@@ -0,0 +1,84 @@
@if "%DEBUG%" == "" @echo off
@rem ##########################################################################
@rem
@rem Gradle startup script for Windows
@rem
@rem ##########################################################################
@rem Set local scope for the variables with windows NT shell
if "%OS%"=="Windows_NT" setlocal
set DIRNAME=%~dp0
if "%DIRNAME%" == "" set DIRNAME=.
set APP_BASE_NAME=%~n0
set APP_HOME=%DIRNAME%
@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
set DEFAULT_JVM_OPTS=
@rem Find java.exe
if defined JAVA_HOME goto findJavaFromJavaHome
set JAVA_EXE=java.exe
%JAVA_EXE% -version >NUL 2>&1
if "%ERRORLEVEL%" == "0" goto init
echo.
echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:findJavaFromJavaHome
set JAVA_HOME=%JAVA_HOME:"=%
set JAVA_EXE=%JAVA_HOME%/bin/java.exe
if exist "%JAVA_EXE%" goto init
echo.
echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:init
@rem Get command-line arguments, handling Windows variants
if not "%OS%" == "Windows_NT" goto win9xME_args
:win9xME_args
@rem Slurp the command line arguments.
set CMD_LINE_ARGS=
set _SKIP=2
:win9xME_args_slurp
if "x%~1" == "x" goto execute
set CMD_LINE_ARGS=%*
:execute
@rem Setup the command line
set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
@rem Execute Gradle
"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %CMD_LINE_ARGS%
:end
@rem End local scope for the variables with windows NT shell
if "%ERRORLEVEL%"=="0" goto mainEnd
:fail
rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
rem the _cmd.exe /c_ return code!
if not "" == "%GRADLE_EXIT_CONSOLE%" exit 1
exit /b 1
:mainEnd
if "%OS%"=="Windows_NT" endlocal
:omega

View File

@@ -0,0 +1 @@
include ':app'

Some files were not shown because too many files have changed in this diff Show More