2020-02-18 17:31:20 +00:00
|
|
|
# Titan Robotics Team 2022: Superscript Script
|
|
|
|
# Written by Arthur Lu & Jacob Levine
|
|
|
|
# Notes:
|
|
|
|
# setup:
|
|
|
|
|
2020-03-07 03:09:16 +00:00
|
|
|
__version__ = "0.0.4.002"
|
2020-02-18 17:31:20 +00:00
|
|
|
|
|
|
|
# changelog should be viewed using print(analysis.__changelog__)
|
|
|
|
__changelog__ = """changelog:
|
2020-03-07 03:09:16 +00:00
|
|
|
0.0.4.002:
|
|
|
|
- removed unessasary code
|
2020-03-06 20:44:13 +00:00
|
|
|
0.0.4.001:
|
|
|
|
- fixed bug where X range for regression was determined before sanitization
|
|
|
|
- better sanitized data
|
2020-03-06 17:50:07 +00:00
|
|
|
0.0.4.000:
|
|
|
|
- fixed spelling issue in __changelog__
|
|
|
|
- addressed nan bug in regression
|
|
|
|
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
|
|
|
|
- fixed errors in metrics computing
|
|
|
|
0.0.3.000:
|
2020-03-06 04:52:02 +00:00
|
|
|
- added analysis to pit data
|
2020-03-05 05:59:50 +00:00
|
|
|
0.0.2.001:
|
|
|
|
- minor stability patches
|
|
|
|
- implemented db syncing for timestamps
|
|
|
|
- fixed bugs
|
|
|
|
0.0.2.000:
|
|
|
|
- finalized testing and small fixes
|
2020-03-05 02:12:09 +00:00
|
|
|
0.0.1.004:
|
|
|
|
- finished metrics implement, trueskill is bugged
|
2020-03-04 22:53:25 +00:00
|
|
|
0.0.1.003:
|
|
|
|
- working
|
2020-03-04 21:57:20 +00:00
|
|
|
0.0.1.002:
|
|
|
|
- started implement of metrics
|
2020-03-04 02:10:29 +00:00
|
|
|
0.0.1.001:
|
|
|
|
- cleaned up imports
|
2020-03-04 01:39:58 +00:00
|
|
|
0.0.1.000:
|
|
|
|
- tested working, can push to database
|
2020-03-04 00:40:35 +00:00
|
|
|
0.0.0.009:
|
|
|
|
- tested working
|
|
|
|
- prints out stats for the time being, will push to database later
|
2020-03-04 00:02:24 +00:00
|
|
|
0.0.0.008:
|
|
|
|
- added data import
|
|
|
|
- removed tba import
|
|
|
|
- finished main method
|
2020-03-03 22:01:07 +00:00
|
|
|
0.0.0.007:
|
|
|
|
- added load_config
|
|
|
|
- optimized simpleloop for readibility
|
|
|
|
- added __all__ entries
|
|
|
|
- added simplestats engine
|
|
|
|
- pending testing
|
2020-03-03 21:42:37 +00:00
|
|
|
0.0.0.006:
|
|
|
|
- fixes
|
2020-02-20 01:51:45 +00:00
|
|
|
0.0.0.005:
|
|
|
|
- imported pickle
|
|
|
|
- created custom database object
|
2020-02-20 01:21:48 +00:00
|
|
|
0.0.0.004:
|
|
|
|
- fixed simpleloop to actually return a vector
|
2020-02-19 02:29:22 +00:00
|
|
|
0.0.0.003:
|
|
|
|
- added metricsloop which is unfinished
|
2020-02-19 01:54:09 +00:00
|
|
|
0.0.0.002:
|
|
|
|
- added simpleloop which is untested until data is provided
|
2020-02-18 17:31:20 +00:00
|
|
|
0.0.0.001:
|
|
|
|
- created script
|
|
|
|
- added analysis, numba, numpy imports
|
|
|
|
"""
|
|
|
|
|
|
|
|
__author__ = (
|
|
|
|
"Arthur Lu <learthurgo@gmail.com>",
|
|
|
|
"Jacob Levine <jlevine@imsa.edu>",
|
|
|
|
)
|
|
|
|
|
|
|
|
__all__ = [
|
2020-03-03 22:01:07 +00:00
|
|
|
"main",
|
|
|
|
"load_config",
|
|
|
|
"simpleloop",
|
|
|
|
"simplestats",
|
|
|
|
"metricsloop"
|
2020-02-18 17:31:20 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
# imports:
|
|
|
|
|
|
|
|
from analysis import analysis as an
|
2020-03-04 00:02:24 +00:00
|
|
|
import data as d
|
2020-03-06 20:44:13 +00:00
|
|
|
import numpy as np
|
2020-03-06 04:52:02 +00:00
|
|
|
import matplotlib.pyplot as plt
|
2020-03-04 19:42:54 +00:00
|
|
|
import time
|
2020-03-05 19:18:33 +00:00
|
|
|
import warnings
|
2020-02-18 21:25:23 +00:00
|
|
|
|
|
|
|
def main():
|
2020-03-05 19:18:33 +00:00
|
|
|
warnings.filterwarnings("ignore")
|
2020-03-03 22:01:07 +00:00
|
|
|
while(True):
|
2020-03-05 05:59:50 +00:00
|
|
|
|
2020-03-04 19:42:54 +00:00
|
|
|
current_time = time.time()
|
2020-03-04 22:53:25 +00:00
|
|
|
print("time: " + str(current_time))
|
2020-03-04 19:47:56 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" loading config")
|
2020-03-04 00:02:24 +00:00
|
|
|
competition, config = load_config("config.csv")
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" config loaded")
|
2020-03-04 19:47:56 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" loading database keys")
|
2020-03-04 00:02:24 +00:00
|
|
|
apikey = an.load_csv("keys.txt")[0][0]
|
2020-03-04 21:57:20 +00:00
|
|
|
tbakey = an.load_csv("keys.txt")[1][0]
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" loaded keys")
|
2020-03-04 19:47:56 +00:00
|
|
|
|
2020-03-05 05:59:50 +00:00
|
|
|
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
|
|
|
|
|
|
|
if(previous_time == None):
|
|
|
|
|
|
|
|
d.set_analysis_flags(apikey, "latest_update", 0)
|
|
|
|
previous_time = 0
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
previous_time = previous_time["latest_update"]
|
|
|
|
|
|
|
|
print(" analysis backtimed to: " + str(previous_time))
|
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" loading data")
|
2020-03-06 04:52:02 +00:00
|
|
|
data = d.get_match_data_formatted(apikey, competition)
|
|
|
|
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" loaded data")
|
2020-03-04 19:47:56 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" running tests")
|
2020-03-04 00:02:24 +00:00
|
|
|
results = simpleloop(data, config)
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" finished tests")
|
2020-03-04 21:57:20 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" running metrics")
|
2020-03-06 17:27:32 +00:00
|
|
|
metricsloop(tbakey, apikey, competition, previous_time)
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" finished metrics")
|
2020-03-05 05:59:50 +00:00
|
|
|
|
2020-03-06 04:52:02 +00:00
|
|
|
print(" running pit analysis")
|
|
|
|
pit = pitloop(pit_data, config)
|
|
|
|
print(" finished pit analysis")
|
|
|
|
|
2020-03-05 05:59:50 +00:00
|
|
|
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
2020-03-04 19:47:56 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" pushing to database")
|
2020-03-06 17:50:07 +00:00
|
|
|
push_to_database(apikey, competition, results, pit)
|
2020-03-05 02:12:09 +00:00
|
|
|
print(" pushed to database")
|
2020-03-03 22:01:07 +00:00
|
|
|
|
|
|
|
def load_config(file):
|
|
|
|
config_vector = {}
|
|
|
|
file = an.load_csv(file)
|
2020-03-04 00:13:03 +00:00
|
|
|
for line in file[1:]:
|
|
|
|
config_vector[line[0]] = line[1:]
|
2020-03-03 22:01:07 +00:00
|
|
|
|
2020-03-04 00:02:24 +00:00
|
|
|
return (file[0][0], config_vector)
|
2020-02-18 21:25:23 +00:00
|
|
|
|
2020-02-19 01:54:09 +00:00
|
|
|
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
2020-03-05 02:12:09 +00:00
|
|
|
|
2020-03-03 21:42:37 +00:00
|
|
|
return_vector = {}
|
2020-02-20 01:53:23 +00:00
|
|
|
for team in data:
|
2020-03-03 21:42:37 +00:00
|
|
|
variable_vector = {}
|
|
|
|
for variable in data[team]:
|
|
|
|
test_vector = {}
|
|
|
|
variable_data = data[team][variable]
|
2020-03-04 00:13:03 +00:00
|
|
|
if(variable in tests):
|
|
|
|
for test in tests[variable]:
|
|
|
|
test_vector[test] = simplestats(variable_data, test)
|
|
|
|
else:
|
|
|
|
pass
|
2020-03-03 21:42:37 +00:00
|
|
|
variable_vector[variable] = test_vector
|
|
|
|
return_vector[team] = variable_vector
|
2020-02-19 01:54:09 +00:00
|
|
|
|
2020-03-03 21:42:37 +00:00
|
|
|
return return_vector
|
2020-02-19 01:54:09 +00:00
|
|
|
|
2020-03-03 21:42:37 +00:00
|
|
|
def simplestats(data, test):
|
2020-02-19 01:54:09 +00:00
|
|
|
|
2020-03-06 20:44:13 +00:00
|
|
|
data = np.array(data)
|
|
|
|
data = data[np.isfinite(data)]
|
|
|
|
ranges = list(range(len(data)))
|
|
|
|
|
2020-03-04 00:13:03 +00:00
|
|
|
if(test == "basic_stats"):
|
2020-03-03 21:42:37 +00:00
|
|
|
return an.basic_stats(data)
|
2020-02-19 01:54:09 +00:00
|
|
|
|
2020-03-03 22:01:07 +00:00
|
|
|
if(test == "historical_analysis"):
|
2020-03-06 20:44:13 +00:00
|
|
|
return an.histo_analysis([ranges, data])
|
2020-03-03 22:01:07 +00:00
|
|
|
|
|
|
|
if(test == "regression_linear"):
|
2020-03-06 20:44:13 +00:00
|
|
|
return an.regression(ranges, data, ['lin'])
|
2020-03-03 22:01:07 +00:00
|
|
|
|
|
|
|
if(test == "regression_logarithmic"):
|
2020-03-06 20:44:13 +00:00
|
|
|
return an.regression(ranges, data, ['log'])
|
2020-03-03 22:01:07 +00:00
|
|
|
|
|
|
|
if(test == "regression_exponential"):
|
2020-03-06 20:44:13 +00:00
|
|
|
return an.regression(ranges, data, ['exp'])
|
2020-03-03 22:01:07 +00:00
|
|
|
|
|
|
|
if(test == "regression_polynomial"):
|
2020-03-06 20:44:13 +00:00
|
|
|
return an.regression(ranges, data, ['ply'])
|
2020-03-03 22:01:07 +00:00
|
|
|
|
|
|
|
if(test == "regression_sigmoidal"):
|
2020-03-06 20:44:13 +00:00
|
|
|
return an.regression(ranges, data, ['sig'])
|
2020-02-20 01:21:48 +00:00
|
|
|
|
2020-03-06 17:27:32 +00:00
|
|
|
def push_to_database(apikey, competition, results, pit):
|
2020-03-04 01:39:58 +00:00
|
|
|
|
|
|
|
for team in results:
|
|
|
|
|
2020-03-04 19:42:54 +00:00
|
|
|
d.push_team_tests_data(apikey, competition, team, results[team])
|
2020-03-04 01:39:58 +00:00
|
|
|
|
2020-03-06 04:52:02 +00:00
|
|
|
for variable in pit:
|
|
|
|
|
|
|
|
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
|
|
|
|
2020-03-04 22:53:25 +00:00
|
|
|
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
|
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
elo_N = 400
|
|
|
|
elo_K = 24
|
|
|
|
|
2020-03-04 22:53:25 +00:00
|
|
|
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
return_vector = {}
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
red = {}
|
|
|
|
blu = {}
|
|
|
|
|
2020-03-06 17:16:24 +00:00
|
|
|
for match in matches:
|
2020-03-06 17:27:32 +00:00
|
|
|
|
|
|
|
red = load_metrics(apikey, competition, match, "red")
|
|
|
|
blu = load_metrics(apikey, competition, match, "blue")
|
2020-03-06 17:16:24 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
elo_red_total = 0
|
|
|
|
elo_blu_total = 0
|
2020-03-04 23:54:30 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
gl2_red_score_total = 0
|
|
|
|
gl2_blu_score_total = 0
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
gl2_red_rd_total = 0
|
|
|
|
gl2_blu_rd_total = 0
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
gl2_red_vol_total = 0
|
|
|
|
gl2_blu_vol_total = 0
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
for team in red:
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
elo_red_total += red[team]["elo"]["score"]
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
gl2_red_score_total += red[team]["gl2"]["score"]
|
|
|
|
gl2_red_rd_total += red[team]["gl2"]["rd"]
|
|
|
|
gl2_red_vol_total += red[team]["gl2"]["vol"]
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
for team in blu:
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
elo_blu_total += blu[team]["elo"]["score"]
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
gl2_blu_score_total += blu[team]["gl2"]["score"]
|
|
|
|
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
|
|
|
|
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
red_elo = {"score": elo_red_total / len(red)}
|
|
|
|
blu_elo = {"score": elo_blu_total / len(blu)}
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
|
|
|
|
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
|
|
|
|
|
|
|
|
|
|
|
|
if(match["winner"] == "red"):
|
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
observations = {"red": 1, "blu": 0}
|
2020-03-05 00:55:45 +00:00
|
|
|
|
|
|
|
elif(match["winner"] == "blue"):
|
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
observations = {"red": 0, "blu": 1}
|
2020-03-05 00:55:45 +00:00
|
|
|
|
|
|
|
else:
|
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
observations = {"red": 0.5, "blu": 0.5}
|
2020-03-05 00:55:45 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
red_elo_delta = an.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
|
|
|
blu_elo_delta = an.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
2020-03-05 00:55:45 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
|
|
|
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
2020-03-05 00:55:45 +00:00
|
|
|
|
|
|
|
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
|
|
|
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
|
|
|
|
|
|
|
for team in red:
|
|
|
|
|
|
|
|
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
|
|
|
|
|
|
|
|
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
|
|
|
|
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
|
|
|
|
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
|
|
|
|
|
|
|
|
for team in blu:
|
|
|
|
|
|
|
|
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
|
|
|
|
|
|
|
|
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
|
|
|
|
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
|
|
|
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
|
|
|
|
2020-03-06 17:27:32 +00:00
|
|
|
temp_vector = {}
|
|
|
|
temp_vector.update(red)
|
|
|
|
temp_vector.update(blu)
|
|
|
|
|
|
|
|
for team in temp_vector:
|
|
|
|
|
|
|
|
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
|
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
def load_metrics(apikey, competition, match, group_name):
|
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
group = {}
|
2020-03-05 00:55:45 +00:00
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
for team in match[group_name]:
|
2020-03-05 00:55:45 +00:00
|
|
|
|
|
|
|
db_data = d.get_team_metrics_data(apikey, competition, team)
|
|
|
|
|
|
|
|
if d.get_team_metrics_data(apikey, competition, team) == None:
|
|
|
|
|
|
|
|
elo = {"score": 1500}
|
|
|
|
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
|
|
|
|
ts = {"mu": 25, "sigma": 25/3}
|
|
|
|
|
2020-03-06 16:57:39 +00:00
|
|
|
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
|
2020-03-05 00:55:45 +00:00
|
|
|
|
|
|
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
|
|
|
|
|
|
|
else:
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
metrics = db_data["metrics"]
|
2020-03-06 16:43:45 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
elo = metrics["elo"]
|
2020-03-06 16:25:20 +00:00
|
|
|
gl2 = metrics["gl2"]
|
2020-03-06 17:14:10 +00:00
|
|
|
ts = metrics["ts"]
|
2020-03-04 22:53:25 +00:00
|
|
|
|
2020-03-05 00:55:45 +00:00
|
|
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
2020-03-04 22:53:25 +00:00
|
|
|
|
|
|
|
return group
|
|
|
|
|
2020-03-06 04:52:02 +00:00
|
|
|
def pitloop(pit, tests):
|
|
|
|
|
|
|
|
return_vector = {}
|
|
|
|
for team in pit:
|
|
|
|
for variable in pit[team]:
|
|
|
|
if(variable in tests):
|
|
|
|
if(not variable in return_vector):
|
|
|
|
return_vector[variable] = []
|
|
|
|
return_vector[variable].append(pit[team][variable])
|
|
|
|
|
|
|
|
return return_vector
|
|
|
|
|
2020-03-05 02:12:09 +00:00
|
|
|
main()
|
2020-03-04 22:53:25 +00:00
|
|
|
|
|
|
|
"""
|
|
|
|
Metrics Defaults:
|
2020-02-20 01:51:45 +00:00
|
|
|
|
2020-03-04 22:53:25 +00:00
|
|
|
elo starting score = 1500
|
2020-03-04 23:54:30 +00:00
|
|
|
elo N = 400
|
|
|
|
elo K = 24
|
2020-02-20 01:51:45 +00:00
|
|
|
|
2020-03-04 22:53:25 +00:00
|
|
|
gl2 starting score = 1500
|
|
|
|
gl2 starting rd = 350
|
|
|
|
gl2 starting vol = 0.06
|
|
|
|
"""
|