fixed merge changes

This commit is contained in:
Arthur Lu 2022-03-15 05:31:51 +00:00
parent 9279311664
commit 6b070c7b08
4 changed files with 2 additions and 447 deletions

View File

@ -1,2 +0,0 @@
FROM titanscout2022/tra-analysis-base:latest
WORKDIR /

View File

@ -1,7 +1,7 @@
{
"name": "TRA Analysis Development Environment",
"build": {
"dockerfile": "dev-dockerfile",
"dockerfile": "Dockerfile",
},
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",

View File

@ -149,25 +149,9 @@ __author__ = (
# imports:
<<<<<<< HEAD
import os, sys, time
import pymongo # soon to be deprecated
import traceback
=======
from tra_analysis import analysis as an
import data as d
from collections import defaultdict
import json
import math
import numpy as np
import os
from os import system, name
from pathlib import Path
from multiprocessing import Pool
import platform
import sys
import time
>>>>>>> master
import warnings
from config import Configuration, ConfigurationError
from data import get_previous_time, set_current_time, check_new_database_matches
@ -175,15 +159,10 @@ from interface import Logger
from module import Match, Metric, Pit
import zmq
<<<<<<< HEAD
config_path = "config.json"
=======
global exec_threads
>>>>>>> master
def main(logger, verbose, profile, debug, socket_send = None):
<<<<<<< HEAD
def close_all():
if "client" in locals():
client.close()
@ -239,95 +218,10 @@ def main(logger, verbose, profile, debug, socket_send = None):
socket_send(m + " module finished in " + str(time.time() - start) + " seconds")
if debug:
logger.save_module_to_file(m, current_module.data, current_module.results) # logging flag check done in logger
=======
global exec_threads
sys.stderr = open("errorlog.txt", "w")
warnings.filterwarnings("ignore")
splash()
while (True):
try:
current_time = time.time()
print("[OK] time: " + str(current_time))
config = load_config("config.json")
competition = config["competition"]
match_tests = config["statistics"]["match"]
pit_tests = config["statistics"]["pit"]
metrics_tests = config["statistics"]["metric"]
print("[OK] configs loaded")
print("[OK] starting threads")
cfg_max_threads = config["max-threads"]
sys_max_threads = os.cpu_count()
if cfg_max_threads > -sys_max_threads and cfg_max_threads < 0 :
alloc_processes = sys_max_threads + cfg_max_threads
elif cfg_max_threads > 0 and cfg_max_threads < 1:
alloc_processes = math.floor(cfg_max_threads * sys_max_threads)
elif cfg_max_threads > 1 and cfg_max_threads <= sys_max_threads:
alloc_processes = cfg_max_threads
elif cfg_max_threads == 0:
alloc_processes = sys_max_threads
else:
print("[ERROR] Invalid number of processes, must be between -" + str(sys_max_threads) + " and " + str(sys_max_threads))
exit()
exec_threads = Pool(processes = alloc_processes)
print("[OK] " + str(alloc_processes) + " threads started")
apikey = config["key"]["database"]
tbakey = config["key"]["tba"]
print("[OK] loaded keys")
previous_time = get_previous_time(apikey)
print("[OK] analysis backtimed to: " + str(previous_time))
print("[OK] loading data")
start = time.time()
match_data = load_match(apikey, competition)
pit_data = load_pit(apikey, competition)
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
print("[OK] running match stats")
start = time.time()
matchloop(apikey, competition, match_data, match_tests)
print("[OK] finished match stats in " + str(time.time() - start) + " seconds")
print("[OK] running team metrics")
start = time.time()
metricloop(tbakey, apikey, competition, previous_time, metrics_tests)
print("[OK] finished team metrics in " + str(time.time() - start) + " seconds")
print("[OK] running pit analysis")
start = time.time()
pitloop(apikey, competition, pit_data, pit_tests)
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
set_current_time(apikey, current_time)
print("[OK] finished all tests, looping")
print_hrule()
except KeyboardInterrupt:
print("\n[OK] caught KeyboardInterrupt, killing processes")
exec_threads.terminate()
print("[OK] processes killed, exiting")
exit()
else:
pass
#clear()
>>>>>>> master
set_current_time(client, loop_start)
close_all()
<<<<<<< HEAD
logger.info("closed threads and database client")
logger.info("finished all tasks in " + str(time.time() - loop_start) + " seconds, looping")
socket_send("closed threads and database client")
@ -335,41 +229,6 @@ def main(logger, verbose, profile, debug, socket_send = None):
if profile:
return 0
=======
def print_hrule():
print("#"+38*"-"+"#")
def print_box(s):
temp = "|"
temp += s
temp += (40-len(s)-2)*" "
temp += "|"
print(temp)
def splash():
print_hrule()
print_box(" superscript version: " + __version__)
print_box(" os: " + platform.system())
print_box(" python: " + platform.python_version())
print_hrule()
def load_config(file):
config_vector = {}
try:
f = open(file)
except:
print("[ERROR] could not locate config.json, generating blank config.json and exiting")
f = open(file, "w")
f.write(sample_json)
exit()
config_vector = json.load(f)
>>>>>>> master
if debug:
return 0
@ -457,7 +316,6 @@ def start(pid_path, verbose, profile, debug):
else:
<<<<<<< HEAD
logfile = "logfile.log"
f = open(logfile, 'w+')
@ -505,119 +363,6 @@ def stop(pid_path):
if err.find("No such process") > 0:
if os.path.exists(pid_path):
os.remove(pid_path)
=======
previous_time = previous_time["latest_update"]
return previous_time
def set_current_time(apikey, current_time):
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
def load_match(apikey, competition):
return d.get_match_data_formatted(apikey, competition)
def simplestats(data_test):
data = np.array(data_test[0])
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
test = data_test[1]
if test == "basic_stats":
return an.basic_stats(data)
if test == "historical_analysis":
return an.histo_analysis([ranges, data])
if test == "regression_linear":
return an.regression(ranges, data, ['lin'])
if test == "regression_logarithmic":
return an.regression(ranges, data, ['log'])
if test == "regression_exponential":
return an.regression(ranges, data, ['exp'])
if test == "regression_polynomial":
return an.regression(ranges, data, ['ply'])
if test == "regression_sigmoidal":
return an.regression(ranges, data, ['sig'])
def matchloop(apikey, competition, data, tests): # expects 3D array with [Team][Variable][Match]
global exec_threads
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
class AutoVivification(dict):
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
return_vector = {}
team_filtered = []
variable_filtered = []
variable_data = []
test_filtered = []
result_filtered = []
return_vector = AutoVivification()
for team in data:
for variable in data[team]:
if variable in tests:
for test in tests[variable]:
team_filtered.append(team)
variable_filtered.append(variable)
variable_data.append((data[team][variable], test))
test_filtered.append(test)
result_filtered = exec_threads.map(simplestats, variable_data)
i = 0
result_filtered = list(result_filtered)
for result in result_filtered:
filtered = test_filtered[i]
try:
short = short_mapping[filtered]
return_vector[team_filtered[i]][variable_filtered[i]][test_filtered[i]] = result[short]
except KeyError: # not in mapping
return_vector[team_filtered[i]][variable_filtered[i]][test_filtered[i]] = result
i += 1
push_match(apikey, competition, return_vector)
def load_metric(apikey, competition, match, group_name, metrics):
group = {}
for team in match[group_name]:
db_data = d.get_team_metrics_data(apikey, competition, team)
if d.get_team_metrics_data(apikey, competition, team) == None:
elo = {"score": metrics["elo"]["score"]}
gl2 = {"score": metrics["gl2"]["score"], "rd": metrics["gl2"]["rd"], "vol": metrics["gl2"]["vol"]}
ts = {"mu": metrics["ts"]["mu"], "sigma": metrics["ts"]["sigma"]}
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
>>>>>>> master
else:
traceback.print_exc(file = sys.stderr)
sys.exit(1)
@ -654,156 +399,5 @@ if __name__ == "__main__":
sys.exit(2)
sys.exit(0)
else:
<<<<<<< HEAD
print("usage: %s start|stop|restart|verbose|profile|debug" % sys.argv[0])
sys.exit(2)
=======
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
for team in red:
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
for team in blu:
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
push_metric(apikey, competition, temp_vector)
def load_pit(apikey, competition):
return d.get_pit_data_formatted(apikey, competition)
def pitloop(apikey, competition, pit, tests):
return_vector = {}
for team in pit:
for variable in pit[team]:
if variable in tests:
if not variable in return_vector:
return_vector[variable] = []
return_vector[variable].append(pit[team][variable])
push_pit(apikey, competition, return_vector)
def push_match(apikey, competition, results):
for team in results:
d.push_team_tests_data(apikey, competition, team, results[team])
def push_metric(apikey, competition, metric):
for team in metric:
d.push_team_metrics_data(apikey, competition, team, metric[team])
def push_pit(apikey, competition, pit):
for variable in pit:
d.push_team_pit_data(apikey, competition, variable, pit[variable])
def get_team_metrics(apikey, tbakey, competition):
metrics = d.get_metrics_data_formatted(apikey, competition)
elo = {}
gl2 = {}
for team in metrics:
elo[team] = metrics[team]["metrics"]["elo"]["score"]
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
elo_ranked = []
for team in elo:
elo_ranked.append({"team": str(team), "elo": str(elo[team])})
gl2_ranked = []
for team in gl2:
gl2_ranked.append({"team": str(team), "gl2": str(gl2[team])})
return {"elo-ranks": elo_ranked, "glicko2-ranks": gl2_ranked}
sample_json = """{
"max-threads": 0.5,
"team": "",
"competition": "2020ilch",
"key":{
"database":"",
"tba":""
},
"statistics":{
"match":{
"balls-blocked":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-collected":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-lower-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-lower-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-started":["basic_stats","historical_analyss","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-upper-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-upper-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"]
},
"metric":{
"elo":{
"score":1500,
"N":400,
"K":24
},
"gl2":{
"score":1500,
"rd":250,
"vol":0.06
},
"ts":{
"mu":25,
"sigma":8.33
}
},
"pit":{
"wheel-mechanism":true,
"low-balls":true,
"high-balls":true,
"wheel-success":true,
"strategic-focus":true,
"climb-mechanism":true,
"attitude":true
}
}
}"""
if __name__ == "__main__":
if sys.platform.startswith('win'):
multiprocessing.freeze_support()
main()
>>>>>>> master
sys.exit(2)

View File

@ -1,37 +0,0 @@
# -*- mode: python ; coding: utf-8 -*-
block_cipher = None
a = Analysis(['superscript.py'],
pathex=['/workspaces/tra-data-analysis/src'],
binaries=[],
datas=[],
hiddenimports=[
"dnspython",
"sklearn.utils._weight_vector",
"requests",
],
hookspath=[],
runtime_hooks=[],
excludes=[],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False)
pyz = PYZ(a.pure, a.zipped_data,
cipher=block_cipher)
exe = EXE(pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
[('W ignore', None, 'OPTION')],
name='superscript',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
upx_exclude=[],
runtime_tmpdir=None,
console=True )