mirror of
https://github.com/titanscouting/tra-superscript.git
synced 2024-11-09 22:44:44 +00:00
Merge branch 'master' into superscript-v1
This commit is contained in:
commit
9279311664
@ -3,4 +3,4 @@ WORKDIR /
|
||||
RUN apt-get -y update; apt-get -y upgrade
|
||||
RUN apt-get -y install git binutils
|
||||
COPY requirements.txt .
|
||||
RUN pip install -r requirements.txt
|
||||
RUN pip install -r requirements.txt
|
||||
|
2
.devcontainer/dev-dockerfile
Normal file
2
.devcontainer/dev-dockerfile
Normal file
@ -0,0 +1,2 @@
|
||||
FROM titanscout2022/tra-analysis-base:latest
|
||||
WORKDIR /
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"name": "TRA Analysis Development Environment",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile",
|
||||
"dockerfile": "dev-dockerfile",
|
||||
},
|
||||
"settings": {
|
||||
"terminal.integrated.shell.linux": "/bin/bash",
|
||||
|
2
.github/workflows/build-cli.yml
vendored
2
.github/workflows/build-cli.yml
vendored
@ -32,4 +32,4 @@ jobs:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: superscript
|
||||
asset_name: superscript
|
||||
tag: ${{ github.ref }}
|
||||
tag: ${{ github.ref }}
|
||||
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -15,4 +15,4 @@
|
||||
|
||||
**/*.log
|
||||
**/errorlog.txt
|
||||
/dist/*
|
||||
/dist/*
|
||||
|
@ -43,4 +43,4 @@ don't worry, you may have just not configured the application correctly, but wou
|
||||
|
||||
# Build Statuses
|
||||
|
||||
Coming soon!
|
||||
Coming soon!
|
||||
|
@ -2,4 +2,4 @@ set pathtospec="../src/superscript.spec"
|
||||
set pathtodist="../dist/"
|
||||
set pathtowork="temp/"
|
||||
|
||||
pyinstaller --clean --distpath %pathtodist% --workpath %pathtowork% %pathtospec%
|
||||
pyinstaller --clean --distpath %pathtodist% --workpath %pathtowork% %pathtospec%
|
||||
|
@ -2,4 +2,4 @@ pathtospec="superscript.spec"
|
||||
pathtodist="../dist/"
|
||||
pathtowork="temp/"
|
||||
|
||||
pyinstaller --clean --distpath ${pathtodist} --workpath ${pathtowork} ${pathtospec}
|
||||
pyinstaller --clean --distpath ${pathtodist} --workpath ${pathtowork} ${pathtospec}
|
||||
|
@ -149,9 +149,25 @@ __author__ = (
|
||||
|
||||
# imports:
|
||||
|
||||
<<<<<<< HEAD
|
||||
import os, sys, time
|
||||
import pymongo # soon to be deprecated
|
||||
import traceback
|
||||
=======
|
||||
from tra_analysis import analysis as an
|
||||
import data as d
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import math
|
||||
import numpy as np
|
||||
import os
|
||||
from os import system, name
|
||||
from pathlib import Path
|
||||
from multiprocessing import Pool
|
||||
import platform
|
||||
import sys
|
||||
import time
|
||||
>>>>>>> master
|
||||
import warnings
|
||||
from config import Configuration, ConfigurationError
|
||||
from data import get_previous_time, set_current_time, check_new_database_matches
|
||||
@ -159,10 +175,15 @@ from interface import Logger
|
||||
from module import Match, Metric, Pit
|
||||
import zmq
|
||||
|
||||
<<<<<<< HEAD
|
||||
config_path = "config.json"
|
||||
=======
|
||||
global exec_threads
|
||||
>>>>>>> master
|
||||
|
||||
def main(logger, verbose, profile, debug, socket_send = None):
|
||||
|
||||
<<<<<<< HEAD
|
||||
def close_all():
|
||||
if "client" in locals():
|
||||
client.close()
|
||||
@ -218,10 +239,95 @@ def main(logger, verbose, profile, debug, socket_send = None):
|
||||
socket_send(m + " module finished in " + str(time.time() - start) + " seconds")
|
||||
if debug:
|
||||
logger.save_module_to_file(m, current_module.data, current_module.results) # logging flag check done in logger
|
||||
=======
|
||||
global exec_threads
|
||||
|
||||
sys.stderr = open("errorlog.txt", "w")
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
splash()
|
||||
|
||||
while (True):
|
||||
|
||||
try:
|
||||
|
||||
current_time = time.time()
|
||||
print("[OK] time: " + str(current_time))
|
||||
|
||||
config = load_config("config.json")
|
||||
competition = config["competition"]
|
||||
match_tests = config["statistics"]["match"]
|
||||
pit_tests = config["statistics"]["pit"]
|
||||
metrics_tests = config["statistics"]["metric"]
|
||||
print("[OK] configs loaded")
|
||||
|
||||
print("[OK] starting threads")
|
||||
cfg_max_threads = config["max-threads"]
|
||||
sys_max_threads = os.cpu_count()
|
||||
if cfg_max_threads > -sys_max_threads and cfg_max_threads < 0 :
|
||||
alloc_processes = sys_max_threads + cfg_max_threads
|
||||
elif cfg_max_threads > 0 and cfg_max_threads < 1:
|
||||
alloc_processes = math.floor(cfg_max_threads * sys_max_threads)
|
||||
elif cfg_max_threads > 1 and cfg_max_threads <= sys_max_threads:
|
||||
alloc_processes = cfg_max_threads
|
||||
elif cfg_max_threads == 0:
|
||||
alloc_processes = sys_max_threads
|
||||
else:
|
||||
print("[ERROR] Invalid number of processes, must be between -" + str(sys_max_threads) + " and " + str(sys_max_threads))
|
||||
exit()
|
||||
exec_threads = Pool(processes = alloc_processes)
|
||||
print("[OK] " + str(alloc_processes) + " threads started")
|
||||
|
||||
apikey = config["key"]["database"]
|
||||
tbakey = config["key"]["tba"]
|
||||
print("[OK] loaded keys")
|
||||
|
||||
previous_time = get_previous_time(apikey)
|
||||
print("[OK] analysis backtimed to: " + str(previous_time))
|
||||
|
||||
print("[OK] loading data")
|
||||
start = time.time()
|
||||
match_data = load_match(apikey, competition)
|
||||
pit_data = load_pit(apikey, competition)
|
||||
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running match stats")
|
||||
start = time.time()
|
||||
matchloop(apikey, competition, match_data, match_tests)
|
||||
print("[OK] finished match stats in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running team metrics")
|
||||
start = time.time()
|
||||
metricloop(tbakey, apikey, competition, previous_time, metrics_tests)
|
||||
print("[OK] finished team metrics in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running pit analysis")
|
||||
start = time.time()
|
||||
pitloop(apikey, competition, pit_data, pit_tests)
|
||||
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
|
||||
|
||||
set_current_time(apikey, current_time)
|
||||
print("[OK] finished all tests, looping")
|
||||
|
||||
print_hrule()
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n[OK] caught KeyboardInterrupt, killing processes")
|
||||
exec_threads.terminate()
|
||||
print("[OK] processes killed, exiting")
|
||||
exit()
|
||||
|
||||
else:
|
||||
pass
|
||||
|
||||
#clear()
|
||||
>>>>>>> master
|
||||
|
||||
set_current_time(client, loop_start)
|
||||
close_all()
|
||||
|
||||
<<<<<<< HEAD
|
||||
logger.info("closed threads and database client")
|
||||
logger.info("finished all tasks in " + str(time.time() - loop_start) + " seconds, looping")
|
||||
socket_send("closed threads and database client")
|
||||
@ -229,6 +335,41 @@ def main(logger, verbose, profile, debug, socket_send = None):
|
||||
|
||||
if profile:
|
||||
return 0
|
||||
=======
|
||||
def print_hrule():
|
||||
|
||||
print("#"+38*"-"+"#")
|
||||
|
||||
def print_box(s):
|
||||
|
||||
temp = "|"
|
||||
temp += s
|
||||
temp += (40-len(s)-2)*" "
|
||||
temp += "|"
|
||||
print(temp)
|
||||
|
||||
def splash():
|
||||
|
||||
print_hrule()
|
||||
print_box(" superscript version: " + __version__)
|
||||
print_box(" os: " + platform.system())
|
||||
print_box(" python: " + platform.python_version())
|
||||
print_hrule()
|
||||
|
||||
def load_config(file):
|
||||
|
||||
config_vector = {}
|
||||
|
||||
try:
|
||||
f = open(file)
|
||||
except:
|
||||
print("[ERROR] could not locate config.json, generating blank config.json and exiting")
|
||||
f = open(file, "w")
|
||||
f.write(sample_json)
|
||||
exit()
|
||||
|
||||
config_vector = json.load(f)
|
||||
>>>>>>> master
|
||||
|
||||
if debug:
|
||||
return 0
|
||||
@ -316,6 +457,7 @@ def start(pid_path, verbose, profile, debug):
|
||||
|
||||
else:
|
||||
|
||||
<<<<<<< HEAD
|
||||
logfile = "logfile.log"
|
||||
|
||||
f = open(logfile, 'w+')
|
||||
@ -363,6 +505,119 @@ def stop(pid_path):
|
||||
if err.find("No such process") > 0:
|
||||
if os.path.exists(pid_path):
|
||||
os.remove(pid_path)
|
||||
=======
|
||||
previous_time = previous_time["latest_update"]
|
||||
|
||||
return previous_time
|
||||
|
||||
def set_current_time(apikey, current_time):
|
||||
|
||||
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
||||
|
||||
def load_match(apikey, competition):
|
||||
|
||||
return d.get_match_data_formatted(apikey, competition)
|
||||
|
||||
def simplestats(data_test):
|
||||
|
||||
data = np.array(data_test[0])
|
||||
data = data[np.isfinite(data)]
|
||||
ranges = list(range(len(data)))
|
||||
|
||||
test = data_test[1]
|
||||
|
||||
if test == "basic_stats":
|
||||
return an.basic_stats(data)
|
||||
|
||||
if test == "historical_analysis":
|
||||
return an.histo_analysis([ranges, data])
|
||||
|
||||
if test == "regression_linear":
|
||||
return an.regression(ranges, data, ['lin'])
|
||||
|
||||
if test == "regression_logarithmic":
|
||||
return an.regression(ranges, data, ['log'])
|
||||
|
||||
if test == "regression_exponential":
|
||||
return an.regression(ranges, data, ['exp'])
|
||||
|
||||
if test == "regression_polynomial":
|
||||
return an.regression(ranges, data, ['ply'])
|
||||
|
||||
if test == "regression_sigmoidal":
|
||||
return an.regression(ranges, data, ['sig'])
|
||||
|
||||
def matchloop(apikey, competition, data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
|
||||
global exec_threads
|
||||
|
||||
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
|
||||
|
||||
class AutoVivification(dict):
|
||||
def __getitem__(self, item):
|
||||
try:
|
||||
return dict.__getitem__(self, item)
|
||||
except KeyError:
|
||||
value = self[item] = type(self)()
|
||||
return value
|
||||
|
||||
return_vector = {}
|
||||
|
||||
team_filtered = []
|
||||
variable_filtered = []
|
||||
variable_data = []
|
||||
test_filtered = []
|
||||
result_filtered = []
|
||||
return_vector = AutoVivification()
|
||||
|
||||
for team in data:
|
||||
|
||||
for variable in data[team]:
|
||||
|
||||
if variable in tests:
|
||||
|
||||
for test in tests[variable]:
|
||||
|
||||
team_filtered.append(team)
|
||||
variable_filtered.append(variable)
|
||||
variable_data.append((data[team][variable], test))
|
||||
test_filtered.append(test)
|
||||
|
||||
result_filtered = exec_threads.map(simplestats, variable_data)
|
||||
i = 0
|
||||
|
||||
result_filtered = list(result_filtered)
|
||||
|
||||
for result in result_filtered:
|
||||
|
||||
filtered = test_filtered[i]
|
||||
|
||||
try:
|
||||
short = short_mapping[filtered]
|
||||
return_vector[team_filtered[i]][variable_filtered[i]][test_filtered[i]] = result[short]
|
||||
except KeyError: # not in mapping
|
||||
return_vector[team_filtered[i]][variable_filtered[i]][test_filtered[i]] = result
|
||||
i += 1
|
||||
|
||||
push_match(apikey, competition, return_vector)
|
||||
|
||||
def load_metric(apikey, competition, match, group_name, metrics):
|
||||
|
||||
group = {}
|
||||
|
||||
for team in match[group_name]:
|
||||
|
||||
db_data = d.get_team_metrics_data(apikey, competition, team)
|
||||
|
||||
if d.get_team_metrics_data(apikey, competition, team) == None:
|
||||
|
||||
elo = {"score": metrics["elo"]["score"]}
|
||||
gl2 = {"score": metrics["gl2"]["score"], "rd": metrics["gl2"]["rd"], "vol": metrics["gl2"]["vol"]}
|
||||
ts = {"mu": metrics["ts"]["mu"], "sigma": metrics["ts"]["sigma"]}
|
||||
|
||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||
|
||||
>>>>>>> master
|
||||
else:
|
||||
traceback.print_exc(file = sys.stderr)
|
||||
sys.exit(1)
|
||||
@ -399,5 +654,156 @@ if __name__ == "__main__":
|
||||
sys.exit(2)
|
||||
sys.exit(0)
|
||||
else:
|
||||
<<<<<<< HEAD
|
||||
print("usage: %s start|stop|restart|verbose|profile|debug" % sys.argv[0])
|
||||
sys.exit(2)
|
||||
sys.exit(2)
|
||||
=======
|
||||
|
||||
observations = {"red": 0.5, "blu": 0.5}
|
||||
|
||||
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
||||
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
||||
|
||||
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
||||
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
||||
|
||||
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
||||
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
||||
|
||||
for team in red:
|
||||
|
||||
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
|
||||
|
||||
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
|
||||
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
|
||||
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
|
||||
|
||||
for team in blu:
|
||||
|
||||
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
|
||||
|
||||
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
|
||||
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
||||
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
||||
|
||||
temp_vector = {}
|
||||
temp_vector.update(red)
|
||||
temp_vector.update(blu)
|
||||
|
||||
push_metric(apikey, competition, temp_vector)
|
||||
|
||||
def load_pit(apikey, competition):
|
||||
|
||||
return d.get_pit_data_formatted(apikey, competition)
|
||||
|
||||
def pitloop(apikey, competition, pit, tests):
|
||||
|
||||
return_vector = {}
|
||||
for team in pit:
|
||||
for variable in pit[team]:
|
||||
if variable in tests:
|
||||
if not variable in return_vector:
|
||||
return_vector[variable] = []
|
||||
return_vector[variable].append(pit[team][variable])
|
||||
|
||||
push_pit(apikey, competition, return_vector)
|
||||
|
||||
def push_match(apikey, competition, results):
|
||||
|
||||
for team in results:
|
||||
|
||||
d.push_team_tests_data(apikey, competition, team, results[team])
|
||||
|
||||
def push_metric(apikey, competition, metric):
|
||||
|
||||
for team in metric:
|
||||
|
||||
d.push_team_metrics_data(apikey, competition, team, metric[team])
|
||||
|
||||
def push_pit(apikey, competition, pit):
|
||||
|
||||
for variable in pit:
|
||||
|
||||
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
||||
|
||||
def get_team_metrics(apikey, tbakey, competition):
|
||||
|
||||
metrics = d.get_metrics_data_formatted(apikey, competition)
|
||||
|
||||
elo = {}
|
||||
gl2 = {}
|
||||
|
||||
for team in metrics:
|
||||
|
||||
elo[team] = metrics[team]["metrics"]["elo"]["score"]
|
||||
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
|
||||
|
||||
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
|
||||
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
|
||||
|
||||
elo_ranked = []
|
||||
|
||||
for team in elo:
|
||||
|
||||
elo_ranked.append({"team": str(team), "elo": str(elo[team])})
|
||||
|
||||
gl2_ranked = []
|
||||
|
||||
for team in gl2:
|
||||
|
||||
gl2_ranked.append({"team": str(team), "gl2": str(gl2[team])})
|
||||
|
||||
return {"elo-ranks": elo_ranked, "glicko2-ranks": gl2_ranked}
|
||||
|
||||
sample_json = """{
|
||||
"max-threads": 0.5,
|
||||
"team": "",
|
||||
"competition": "2020ilch",
|
||||
"key":{
|
||||
"database":"",
|
||||
"tba":""
|
||||
},
|
||||
"statistics":{
|
||||
"match":{
|
||||
"balls-blocked":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||
"balls-collected":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||
"balls-lower-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||
"balls-lower-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||
"balls-started":["basic_stats","historical_analyss","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||
"balls-upper-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||
"balls-upper-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"]
|
||||
|
||||
},
|
||||
"metric":{
|
||||
"elo":{
|
||||
"score":1500,
|
||||
"N":400,
|
||||
"K":24
|
||||
},
|
||||
"gl2":{
|
||||
"score":1500,
|
||||
"rd":250,
|
||||
"vol":0.06
|
||||
},
|
||||
"ts":{
|
||||
"mu":25,
|
||||
"sigma":8.33
|
||||
}
|
||||
},
|
||||
"pit":{
|
||||
"wheel-mechanism":true,
|
||||
"low-balls":true,
|
||||
"high-balls":true,
|
||||
"wheel-success":true,
|
||||
"strategic-focus":true,
|
||||
"climb-mechanism":true,
|
||||
"attitude":true
|
||||
}
|
||||
}
|
||||
}"""
|
||||
|
||||
if __name__ == "__main__":
|
||||
if sys.platform.startswith('win'):
|
||||
multiprocessing.freeze_support()
|
||||
main()
|
||||
>>>>>>> master
|
||||
|
37
src/superscript.spec
Normal file
37
src/superscript.spec
Normal file
@ -0,0 +1,37 @@
|
||||
# -*- mode: python ; coding: utf-8 -*-
|
||||
|
||||
block_cipher = None
|
||||
|
||||
|
||||
a = Analysis(['superscript.py'],
|
||||
pathex=['/workspaces/tra-data-analysis/src'],
|
||||
binaries=[],
|
||||
datas=[],
|
||||
hiddenimports=[
|
||||
"dnspython",
|
||||
"sklearn.utils._weight_vector",
|
||||
"requests",
|
||||
],
|
||||
hookspath=[],
|
||||
runtime_hooks=[],
|
||||
excludes=[],
|
||||
win_no_prefer_redirects=False,
|
||||
win_private_assemblies=False,
|
||||
cipher=block_cipher,
|
||||
noarchive=False)
|
||||
pyz = PYZ(a.pure, a.zipped_data,
|
||||
cipher=block_cipher)
|
||||
exe = EXE(pyz,
|
||||
a.scripts,
|
||||
a.binaries,
|
||||
a.zipfiles,
|
||||
a.datas,
|
||||
[('W ignore', None, 'OPTION')],
|
||||
name='superscript',
|
||||
debug=False,
|
||||
bootloader_ignore_signals=False,
|
||||
strip=False,
|
||||
upx=True,
|
||||
upx_exclude=[],
|
||||
runtime_tmpdir=None,
|
||||
console=True )
|
Loading…
Reference in New Issue
Block a user