mirror of
https://github.com/titanscouting/tra-superscript.git
synced 2025-01-04 21:55:56 +00:00
Merge pull request #19 from titanscouting/modularize
Reflect modularization changes into v1
Former-commit-id: b0a0632b99
This commit is contained in:
commit
14ed3cc507
@ -2,4 +2,4 @@ set pathtospec="../src/cli/superscript.spec"
|
|||||||
set pathtodist="../dist/"
|
set pathtodist="../dist/"
|
||||||
set pathtowork="temp/"
|
set pathtowork="temp/"
|
||||||
|
|
||||||
pyinstaller --onefile --clean --distpath %pathtodist% --workpath %pathtowork% %pathtospec%
|
pyinstaller --clean --distpath %pathtodist% --workpath %pathtowork% %pathtospec%
|
@ -2,4 +2,4 @@ pathtospec="../src/cli/superscript.spec"
|
|||||||
pathtodist="../dist/"
|
pathtodist="../dist/"
|
||||||
pathtowork="temp/"
|
pathtowork="temp/"
|
||||||
|
|
||||||
pyinstaller --onefile --clean --distpath ${pathtodist} --workpath ${pathtowork} ${pathtospec}
|
pyinstaller --clean --distpath ${pathtodist} --workpath ${pathtowork} ${pathtospec}
|
@ -1,5 +1,4 @@
|
|||||||
import requests
|
import requests
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
def pull_new_tba_matches(apikey, competition, cutoff):
|
def pull_new_tba_matches(apikey, competition, cutoff):
|
||||||
api_key= apikey
|
api_key= apikey
|
||||||
|
309
src/cli/module.py
Normal file
309
src/cli/module.py
Normal file
@ -0,0 +1,309 @@
|
|||||||
|
import abc
|
||||||
|
import data as d
|
||||||
|
import signal
|
||||||
|
import numpy as np
|
||||||
|
import tra_analysis as an
|
||||||
|
|
||||||
|
class Module(metaclass = abc.ABCMeta):
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def __subclasshook__(cls, subclass):
|
||||||
|
return (hasattr(subclass, 'validate_config') and
|
||||||
|
callable(subclass.validate_config) and
|
||||||
|
hasattr(subclass, 'load_data') and
|
||||||
|
callable(subclass.load_data) and
|
||||||
|
hasattr(subclass, 'process_data') and
|
||||||
|
callable(subclass.process_data) and
|
||||||
|
hasattr(subclass, 'push_results') and
|
||||||
|
callable(subclass.push_results)
|
||||||
|
)
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def validate_config(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
@abc.abstractmethod
|
||||||
|
def load_data(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
@abc.abstractmethod
|
||||||
|
def process_data(self, exec_threads):
|
||||||
|
raise NotImplementedError
|
||||||
|
@abc.abstractmethod
|
||||||
|
def push_results(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
class Match (Module):
|
||||||
|
|
||||||
|
config = None
|
||||||
|
apikey = None
|
||||||
|
tbakey = None
|
||||||
|
timestamp = None
|
||||||
|
competition = None
|
||||||
|
|
||||||
|
data = None
|
||||||
|
results = None
|
||||||
|
|
||||||
|
def __init__(self, config, apikey, tbakey, timestamp, competition):
|
||||||
|
self.config = config
|
||||||
|
self.apikey = apikey
|
||||||
|
self.tbakey = tbakey
|
||||||
|
self.timestamp = timestamp
|
||||||
|
self.competition = competition
|
||||||
|
|
||||||
|
def validate_config(self):
|
||||||
|
return True, ""
|
||||||
|
|
||||||
|
def load_data(self):
|
||||||
|
self.data = d.load_match(self.apikey, self.competition)
|
||||||
|
|
||||||
|
def simplestats(data_test):
|
||||||
|
|
||||||
|
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
||||||
|
|
||||||
|
data = np.array(data_test[3])
|
||||||
|
data = data[np.isfinite(data)]
|
||||||
|
ranges = list(range(len(data)))
|
||||||
|
|
||||||
|
test = data_test[2]
|
||||||
|
|
||||||
|
if test == "basic_stats":
|
||||||
|
return an.basic_stats(data)
|
||||||
|
|
||||||
|
if test == "historical_analysis":
|
||||||
|
return an.histo_analysis([ranges, data])
|
||||||
|
|
||||||
|
if test == "regression_linear":
|
||||||
|
return an.regression(ranges, data, ['lin'])
|
||||||
|
|
||||||
|
if test == "regression_logarithmic":
|
||||||
|
return an.regression(ranges, data, ['log'])
|
||||||
|
|
||||||
|
if test == "regression_exponential":
|
||||||
|
return an.regression(ranges, data, ['exp'])
|
||||||
|
|
||||||
|
if test == "regression_polynomial":
|
||||||
|
return an.regression(ranges, data, ['ply'])
|
||||||
|
|
||||||
|
if test == "regression_sigmoidal":
|
||||||
|
return an.regression(ranges, data, ['sig'])
|
||||||
|
|
||||||
|
def process_data(self, exec_threads):
|
||||||
|
|
||||||
|
tests = self.config["tests"]
|
||||||
|
data = self.data
|
||||||
|
|
||||||
|
input_vector = []
|
||||||
|
|
||||||
|
for team in data:
|
||||||
|
|
||||||
|
for variable in data[team]:
|
||||||
|
|
||||||
|
if variable in tests:
|
||||||
|
|
||||||
|
for test in tests[variable]:
|
||||||
|
|
||||||
|
input_vector.append((team, variable, test, data[team][variable]))
|
||||||
|
|
||||||
|
self.data = input_vector
|
||||||
|
self.results = list(exec_threads.map(self.simplestats, self.data))
|
||||||
|
|
||||||
|
def push_results(self):
|
||||||
|
|
||||||
|
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
|
||||||
|
|
||||||
|
class AutoVivification(dict):
|
||||||
|
def __getitem__(self, item):
|
||||||
|
try:
|
||||||
|
return dict.__getitem__(self, item)
|
||||||
|
except KeyError:
|
||||||
|
value = self[item] = type(self)()
|
||||||
|
return value
|
||||||
|
|
||||||
|
result_filtered = self.results
|
||||||
|
input_vector = self.data
|
||||||
|
|
||||||
|
return_vector = AutoVivification()
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
|
||||||
|
for result in result_filtered:
|
||||||
|
|
||||||
|
filtered = input_vector[i][2]
|
||||||
|
|
||||||
|
try:
|
||||||
|
short = short_mapping[filtered]
|
||||||
|
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result[short]
|
||||||
|
except KeyError: # not in mapping
|
||||||
|
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result
|
||||||
|
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
self.results = return_vector
|
||||||
|
|
||||||
|
d.push_match(self.apikey, self.competition, self.results)
|
||||||
|
|
||||||
|
class Metric (Module):
|
||||||
|
|
||||||
|
config = None
|
||||||
|
apikey = None
|
||||||
|
tbakey = None
|
||||||
|
timestamp = None
|
||||||
|
competition = None
|
||||||
|
|
||||||
|
data = None
|
||||||
|
results = None
|
||||||
|
|
||||||
|
def __init__(self, config, apikey, tbakey, timestamp, competition):
|
||||||
|
self.config = config
|
||||||
|
self.apikey = apikey
|
||||||
|
self.tbakey = tbakey
|
||||||
|
self.timestamp = timestamp
|
||||||
|
self.competition = competition
|
||||||
|
|
||||||
|
def validate_config(self):
|
||||||
|
return True, ""
|
||||||
|
|
||||||
|
def load_data(self):
|
||||||
|
self.data = d.pull_new_tba_matches(self.tbakey, self.competition, self.timestamp)
|
||||||
|
|
||||||
|
def process_data(self, exec_threads):
|
||||||
|
|
||||||
|
elo_N = self.config["tests"]["elo"]["N"]
|
||||||
|
elo_K = self.config["tests"]["elo"]["K"]
|
||||||
|
|
||||||
|
matches = self.data
|
||||||
|
|
||||||
|
red = {}
|
||||||
|
blu = {}
|
||||||
|
|
||||||
|
for match in matches:
|
||||||
|
|
||||||
|
red = d.load_metric(self.apikey, self.competition, match, "red", self.config["tests"])
|
||||||
|
blu = d.load_metric(self.apikey, self.competition, match, "blue", self.config["tests"])
|
||||||
|
|
||||||
|
elo_red_total = 0
|
||||||
|
elo_blu_total = 0
|
||||||
|
|
||||||
|
gl2_red_score_total = 0
|
||||||
|
gl2_blu_score_total = 0
|
||||||
|
|
||||||
|
gl2_red_rd_total = 0
|
||||||
|
gl2_blu_rd_total = 0
|
||||||
|
|
||||||
|
gl2_red_vol_total = 0
|
||||||
|
gl2_blu_vol_total = 0
|
||||||
|
|
||||||
|
for team in red:
|
||||||
|
|
||||||
|
elo_red_total += red[team]["elo"]["score"]
|
||||||
|
|
||||||
|
gl2_red_score_total += red[team]["gl2"]["score"]
|
||||||
|
gl2_red_rd_total += red[team]["gl2"]["rd"]
|
||||||
|
gl2_red_vol_total += red[team]["gl2"]["vol"]
|
||||||
|
|
||||||
|
for team in blu:
|
||||||
|
|
||||||
|
elo_blu_total += blu[team]["elo"]["score"]
|
||||||
|
|
||||||
|
gl2_blu_score_total += blu[team]["gl2"]["score"]
|
||||||
|
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
|
||||||
|
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
|
||||||
|
|
||||||
|
red_elo = {"score": elo_red_total / len(red)}
|
||||||
|
blu_elo = {"score": elo_blu_total / len(blu)}
|
||||||
|
|
||||||
|
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
|
||||||
|
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
|
||||||
|
|
||||||
|
|
||||||
|
if match["winner"] == "red":
|
||||||
|
|
||||||
|
observations = {"red": 1, "blu": 0}
|
||||||
|
|
||||||
|
elif match["winner"] == "blue":
|
||||||
|
|
||||||
|
observations = {"red": 0, "blu": 1}
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
observations = {"red": 0.5, "blu": 0.5}
|
||||||
|
|
||||||
|
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
||||||
|
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
||||||
|
|
||||||
|
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
||||||
|
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
||||||
|
|
||||||
|
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
||||||
|
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
||||||
|
|
||||||
|
for team in red:
|
||||||
|
|
||||||
|
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
|
||||||
|
|
||||||
|
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
|
||||||
|
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
|
||||||
|
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
|
||||||
|
|
||||||
|
for team in blu:
|
||||||
|
|
||||||
|
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
|
||||||
|
|
||||||
|
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
|
||||||
|
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
||||||
|
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
||||||
|
|
||||||
|
temp_vector = {}
|
||||||
|
temp_vector.update(red)
|
||||||
|
temp_vector.update(blu)
|
||||||
|
|
||||||
|
d.push_metric(self.client, self.competition, temp_vector)
|
||||||
|
|
||||||
|
def push_results(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
class Pit (Module):
|
||||||
|
|
||||||
|
config = None
|
||||||
|
apikey = None
|
||||||
|
tbakey = None
|
||||||
|
timestamp = None
|
||||||
|
competition = None
|
||||||
|
|
||||||
|
data = None
|
||||||
|
results = None
|
||||||
|
|
||||||
|
def __init__(self, config, apikey, tbakey, timestamp, competition):
|
||||||
|
self.config = config
|
||||||
|
self.apikey = apikey
|
||||||
|
self.tbakey = tbakey
|
||||||
|
self.timestamp = timestamp
|
||||||
|
self.competition = competition
|
||||||
|
|
||||||
|
def validate_config(self):
|
||||||
|
return True, ""
|
||||||
|
|
||||||
|
def load_data(self):
|
||||||
|
self.data = d.load_pit(self.apikey, self.competition)
|
||||||
|
|
||||||
|
def process_data(self, exec_threads):
|
||||||
|
return_vector = {}
|
||||||
|
for team in self.data:
|
||||||
|
for variable in self.data[team]:
|
||||||
|
if variable in self.config:
|
||||||
|
if not variable in return_vector:
|
||||||
|
return_vector[variable] = []
|
||||||
|
return_vector[variable].append(self.data[team][variable])
|
||||||
|
|
||||||
|
self.results = return_vector
|
||||||
|
|
||||||
|
def push_results(self):
|
||||||
|
d.push_pit(self.apikey, self.competition, self.results)
|
||||||
|
|
||||||
|
class Rating (Module):
|
||||||
|
pass
|
||||||
|
|
||||||
|
class Heatmap (Module):
|
||||||
|
pass
|
||||||
|
|
||||||
|
class Sentiment (Module):
|
||||||
|
pass
|
@ -1,188 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
|
|
||||||
from tra_analysis import Analysis as an
|
|
||||||
from data import pull_new_tba_matches, push_metric, load_metric
|
|
||||||
|
|
||||||
import signal
|
|
||||||
|
|
||||||
def simplestats(data_test):
|
|
||||||
|
|
||||||
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
|
||||||
|
|
||||||
data = np.array(data_test[3])
|
|
||||||
data = data[np.isfinite(data)]
|
|
||||||
ranges = list(range(len(data)))
|
|
||||||
|
|
||||||
test = data_test[2]
|
|
||||||
|
|
||||||
if test == "basic_stats":
|
|
||||||
return an.basic_stats(data)
|
|
||||||
|
|
||||||
if test == "historical_analysis":
|
|
||||||
return an.histo_analysis([ranges, data])
|
|
||||||
|
|
||||||
if test == "regression_linear":
|
|
||||||
return an.regression(ranges, data, ['lin'])
|
|
||||||
|
|
||||||
if test == "regression_logarithmic":
|
|
||||||
return an.regression(ranges, data, ['log'])
|
|
||||||
|
|
||||||
if test == "regression_exponential":
|
|
||||||
return an.regression(ranges, data, ['exp'])
|
|
||||||
|
|
||||||
if test == "regression_polynomial":
|
|
||||||
return an.regression(ranges, data, ['ply'])
|
|
||||||
|
|
||||||
if test == "regression_sigmoidal":
|
|
||||||
return an.regression(ranges, data, ['sig'])
|
|
||||||
|
|
||||||
def matchloop(client, competition, data, tests, exec_threads):
|
|
||||||
|
|
||||||
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
|
|
||||||
|
|
||||||
class AutoVivification(dict):
|
|
||||||
def __getitem__(self, item):
|
|
||||||
try:
|
|
||||||
return dict.__getitem__(self, item)
|
|
||||||
except KeyError:
|
|
||||||
value = self[item] = type(self)()
|
|
||||||
return value
|
|
||||||
|
|
||||||
input_vector = []
|
|
||||||
return_vector = AutoVivification()
|
|
||||||
|
|
||||||
for team in data:
|
|
||||||
|
|
||||||
for variable in data[team]:
|
|
||||||
|
|
||||||
if variable in tests:
|
|
||||||
|
|
||||||
for test in tests[variable]:
|
|
||||||
|
|
||||||
input_vector.append((team, variable, test, data[team][variable]))
|
|
||||||
|
|
||||||
result_filtered = exec_threads.map(simplestats, input_vector)
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
|
|
||||||
result_filtered = list(result_filtered)
|
|
||||||
|
|
||||||
for result in result_filtered:
|
|
||||||
|
|
||||||
filtered = input_vector[i][2]
|
|
||||||
|
|
||||||
try:
|
|
||||||
short = short_mapping[filtered]
|
|
||||||
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result[short]
|
|
||||||
except KeyError: # not in mapping
|
|
||||||
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result
|
|
||||||
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
return return_vector
|
|
||||||
|
|
||||||
def metricloop(client, competition, data, metrics): # listener based metrics update
|
|
||||||
|
|
||||||
elo_N = metrics["elo"]["N"]
|
|
||||||
elo_K = metrics["elo"]["K"]
|
|
||||||
|
|
||||||
matches = data
|
|
||||||
#matches = pull_new_tba_matches(tbakey, competition, timestamp)
|
|
||||||
|
|
||||||
red = {}
|
|
||||||
blu = {}
|
|
||||||
|
|
||||||
for match in matches:
|
|
||||||
|
|
||||||
red = load_metric(client, competition, match, "red", metrics)
|
|
||||||
blu = load_metric(client, competition, match, "blue", metrics)
|
|
||||||
|
|
||||||
elo_red_total = 0
|
|
||||||
elo_blu_total = 0
|
|
||||||
|
|
||||||
gl2_red_score_total = 0
|
|
||||||
gl2_blu_score_total = 0
|
|
||||||
|
|
||||||
gl2_red_rd_total = 0
|
|
||||||
gl2_blu_rd_total = 0
|
|
||||||
|
|
||||||
gl2_red_vol_total = 0
|
|
||||||
gl2_blu_vol_total = 0
|
|
||||||
|
|
||||||
for team in red:
|
|
||||||
|
|
||||||
elo_red_total += red[team]["elo"]["score"]
|
|
||||||
|
|
||||||
gl2_red_score_total += red[team]["gl2"]["score"]
|
|
||||||
gl2_red_rd_total += red[team]["gl2"]["rd"]
|
|
||||||
gl2_red_vol_total += red[team]["gl2"]["vol"]
|
|
||||||
|
|
||||||
for team in blu:
|
|
||||||
|
|
||||||
elo_blu_total += blu[team]["elo"]["score"]
|
|
||||||
|
|
||||||
gl2_blu_score_total += blu[team]["gl2"]["score"]
|
|
||||||
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
|
|
||||||
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
|
|
||||||
|
|
||||||
red_elo = {"score": elo_red_total / len(red)}
|
|
||||||
blu_elo = {"score": elo_blu_total / len(blu)}
|
|
||||||
|
|
||||||
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
|
|
||||||
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
|
|
||||||
|
|
||||||
|
|
||||||
if match["winner"] == "red":
|
|
||||||
|
|
||||||
observations = {"red": 1, "blu": 0}
|
|
||||||
|
|
||||||
elif match["winner"] == "blue":
|
|
||||||
|
|
||||||
observations = {"red": 0, "blu": 1}
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
observations = {"red": 0.5, "blu": 0.5}
|
|
||||||
|
|
||||||
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
|
||||||
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
|
||||||
|
|
||||||
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
|
||||||
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
|
||||||
|
|
||||||
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
|
||||||
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
|
||||||
|
|
||||||
for team in red:
|
|
||||||
|
|
||||||
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
|
|
||||||
|
|
||||||
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
|
|
||||||
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
|
|
||||||
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
|
|
||||||
|
|
||||||
for team in blu:
|
|
||||||
|
|
||||||
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
|
|
||||||
|
|
||||||
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
|
|
||||||
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
|
||||||
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
|
||||||
|
|
||||||
temp_vector = {}
|
|
||||||
temp_vector.update(red)
|
|
||||||
temp_vector.update(blu)
|
|
||||||
|
|
||||||
push_metric(client, competition, temp_vector)
|
|
||||||
|
|
||||||
def pitloop(client, competition, pit, tests):
|
|
||||||
|
|
||||||
return_vector = {}
|
|
||||||
for team in pit:
|
|
||||||
for variable in pit[team]:
|
|
||||||
if variable in tests:
|
|
||||||
if not variable in return_vector:
|
|
||||||
return_vector[variable] = []
|
|
||||||
return_vector[variable].append(pit[team][variable])
|
|
||||||
|
|
||||||
return return_vector
|
|
@ -163,62 +163,78 @@ import warnings
|
|||||||
import zmq
|
import zmq
|
||||||
|
|
||||||
from interface import splash, log, ERR, INF, stdout, stderr
|
from interface import splash, log, ERR, INF, stdout, stderr
|
||||||
from data import get_previous_time, pull_new_tba_matches, set_current_time, load_match, push_match, load_pit, push_pit, get_database_config, set_database_config, check_new_database_matches
|
from data import get_previous_time, set_current_time, get_database_config, set_database_config, check_new_database_matches
|
||||||
from processing import matchloop, metricloop, pitloop
|
from module import Match, Metric, Pit
|
||||||
|
|
||||||
config_path = "config.json"
|
config_path = "config.json"
|
||||||
sample_json = """{
|
sample_json = """{
|
||||||
"persistent":{
|
"persistent":{
|
||||||
"key":{
|
"key":{
|
||||||
"database":"mongodb+srv://analysis:MU2gPeEjEurRt2n@2022-scouting-4vfuu.mongodb.net/<dbname>?retryWrites=true&w=majority",
|
"database":"",
|
||||||
"tba":"UDvKmPjPRfwwUdDX1JxbmkyecYBJhCtXeyVk9vmO2i7K0Zn4wqQPMfzuEINXJ7e5"
|
"tba":""
|
||||||
},
|
},
|
||||||
"config-preference":"local",
|
"config-preference":"local",
|
||||||
"synchronize-config":false
|
"synchronize-config":false
|
||||||
},
|
},
|
||||||
"variable":{
|
"variable":{
|
||||||
|
|
||||||
"max-threads":0.5,
|
"max-threads":0.5,
|
||||||
|
|
||||||
|
"competition":"",
|
||||||
"team":"",
|
"team":"",
|
||||||
"competition": "2020ilch",
|
|
||||||
"statistics":{
|
"event-delay":false,
|
||||||
|
"loop-delay":0,
|
||||||
|
"reportable":true,
|
||||||
|
|
||||||
|
"teams":[],
|
||||||
|
|
||||||
|
"modules":{
|
||||||
|
|
||||||
"match":{
|
"match":{
|
||||||
"balls-blocked":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
"tests":{
|
||||||
"balls-collected":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
"balls-blocked":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
"balls-lower-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
"balls-collected":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
"balls-lower-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
"balls-lower-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
"balls-started":["basic_stats","historical_analyss","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
"balls-lower-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
"balls-upper-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
"balls-started":["basic_stats","historical_analyss","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
"balls-upper-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"]
|
"balls-upper-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
|
"balls-upper-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"]
|
||||||
|
}
|
||||||
|
|
||||||
},
|
},
|
||||||
|
|
||||||
"metric":{
|
"metric":{
|
||||||
"elo":{
|
"tests":{
|
||||||
"score":1500,
|
"elo":{
|
||||||
"N":400,
|
"score":1500,
|
||||||
"K":24
|
"N":400,
|
||||||
},
|
"K":24
|
||||||
"gl2":{
|
},
|
||||||
"score":1500,
|
"gl2":{
|
||||||
"rd":250,
|
"score":1500,
|
||||||
"vol":0.06
|
"rd":250,
|
||||||
},
|
"vol":0.06
|
||||||
"ts":{
|
},
|
||||||
"mu":25,
|
"ts":{
|
||||||
"sigma":8.33
|
"mu":25,
|
||||||
|
"sigma":8.33
|
||||||
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
|
||||||
"pit":{
|
"pit":{
|
||||||
"wheel-mechanism":true,
|
"tests":{
|
||||||
"low-balls":true,
|
"wheel-mechanism":true,
|
||||||
"high-balls":true,
|
"low-balls":true,
|
||||||
"wheel-success":true,
|
"high-balls":true,
|
||||||
"strategic-focus":true,
|
"wheel-success":true,
|
||||||
"climb-mechanism":true,
|
"strategic-focus":true,
|
||||||
"attitude":true
|
"climb-mechanism":true,
|
||||||
|
"attitude":true
|
||||||
|
}
|
||||||
}
|
}
|
||||||
},
|
}
|
||||||
"event-delay":false,
|
|
||||||
"loop-delay":60
|
|
||||||
}
|
}
|
||||||
}"""
|
}"""
|
||||||
|
|
||||||
@ -238,6 +254,8 @@ def main(send, verbose = False, profile = False, debug = False):
|
|||||||
if verbose:
|
if verbose:
|
||||||
splash(__version__)
|
splash(__version__)
|
||||||
|
|
||||||
|
modules = {"match": Match, "metric": Metric, "pit": Pit}
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -273,40 +291,27 @@ def main(send, verbose = False, profile = False, debug = False):
|
|||||||
exit_code = 1
|
exit_code = 1
|
||||||
close_all()
|
close_all()
|
||||||
break
|
break
|
||||||
flag, exec_threads, competition, match_tests, metrics_tests, pit_tests = parse_config_variable(send, config)
|
flag, exec_threads, competition, config_modules = parse_config_variable(send, config)
|
||||||
if flag:
|
if flag:
|
||||||
exit_code = 1
|
exit_code = 1
|
||||||
close_all()
|
close_all()
|
||||||
break
|
break
|
||||||
|
|
||||||
start = time.time()
|
for m in config_modules:
|
||||||
send(stdout, INF, "loading match, metric, pit data (this may take a few seconds)")
|
if m in modules:
|
||||||
match_data = load_match(client, competition)
|
start = time.time()
|
||||||
metrics_data = pull_new_tba_matches(tbakey, competition, loop_start)
|
current_module = modules[m](config_modules[m], client, tbakey, loop_start, competition)
|
||||||
pit_data = load_pit(client, competition)
|
valid = current_module.validate_config()
|
||||||
send(stdout, INF, "finished loading match, metric, pit data in "+ str(time.time() - start) + " seconds")
|
if not valid:
|
||||||
|
continue
|
||||||
start = time.time()
|
current_module.load_data()
|
||||||
send(stdout, INF, "performing analysis on match, metrics, pit data")
|
current_module.process_data(exec_threads)
|
||||||
match_results = matchloop(client, competition, match_data, match_tests, exec_threads)
|
current_module.push_results()
|
||||||
metrics_results = metricloop(client, competition, metrics_data, metrics_tests)
|
send(stdout, INF, m + " module finished in " + str(time.time() - start) + " seconds")
|
||||||
pit_results = pitloop(client, competition, pit_data, pit_tests)
|
if debug:
|
||||||
send(stdout, INF, "finished analysis in " + str(time.time() - start) + " seconds")
|
f = open(m + ".log", "w+")
|
||||||
|
json.dump({"data": current_module.data, "results":current_module.results}, f, ensure_ascii=False, indent=4)
|
||||||
start = time.time()
|
f.close()
|
||||||
send(stdout, INF, "uploading match, metrics, pit results to database")
|
|
||||||
push_match(client, competition, match_results)
|
|
||||||
push_pit(client, competition, pit_results)
|
|
||||||
send(stdout, INF, "finished uploading results in " + str(time.time() - start) + " seconds")
|
|
||||||
|
|
||||||
if debug:
|
|
||||||
f = open("matchloop.log", "w+")
|
|
||||||
json.dump(match_results, f, ensure_ascii=False, indent=4)
|
|
||||||
f.close()
|
|
||||||
|
|
||||||
f = open("pitloop.log", "w+")
|
|
||||||
json.dump(pit_results, f, ensure_ascii=False, indent=4)
|
|
||||||
f.close()
|
|
||||||
|
|
||||||
set_current_time(client, loop_start)
|
set_current_time(client, loop_start)
|
||||||
close_all()
|
close_all()
|
||||||
@ -423,37 +428,21 @@ def parse_config_variable(send, config):
|
|||||||
send(stderr, ERR, "could not find competition field in config", code = 101)
|
send(stderr, ERR, "could not find competition field in config", code = 101)
|
||||||
exit_flag = True
|
exit_flag = True
|
||||||
try:
|
try:
|
||||||
match_tests = config["variable"]["statistics"]["match"]
|
modules = config["variable"]["modules"]
|
||||||
except:
|
except:
|
||||||
send(stderr, ERR, "could not find match field in config", code = 102)
|
send(stderr, ERR, "could not find modules field in config", code = 102)
|
||||||
exit_flag = True
|
|
||||||
try:
|
|
||||||
metrics_tests = config["variable"]["statistics"]["metric"]
|
|
||||||
except:
|
|
||||||
send(stderr, ERR, "could not find metrics field in config", code = 103)
|
|
||||||
exit_flag = True
|
|
||||||
try:
|
|
||||||
pit_tests = config["variable"]["statistics"]["pit"]
|
|
||||||
except:
|
|
||||||
send(stderr, ERR, "could not find pit field in config", code = 104)
|
|
||||||
exit_flag = True
|
exit_flag = True
|
||||||
|
|
||||||
if competition == None or competition == "":
|
if competition == None or competition == "":
|
||||||
send(stderr, ERR, "competition field in config must not be empty", code = 105)
|
send(stderr, ERR, "competition field in config must not be empty", code = 105)
|
||||||
exit_flag = True
|
exit_flag = True
|
||||||
if match_tests == None:
|
if modules == None:
|
||||||
send(stderr, ERR, "matchfield in config must not be empty", code = 106)
|
send(stderr, ERR, "modules in config must not be empty", code = 106)
|
||||||
exit_flag = True
|
|
||||||
if metrics_tests == None:
|
|
||||||
send(stderr, ERR, "metrics field in config must not be empty", code = 107)
|
|
||||||
exit_flag = True
|
|
||||||
if pit_tests == None:
|
|
||||||
send(stderr, ERR, "pit field in config must not be empty", code = 108)
|
|
||||||
exit_flag = True
|
exit_flag = True
|
||||||
|
|
||||||
send(stdout, INF, "found and loaded competition, match, metrics, pit from config")
|
send(stdout, INF, "found and loaded competition, match, metrics, pit from config")
|
||||||
|
|
||||||
return exit_flag, exec_threads, competition, match_tests, metrics_tests, pit_tests
|
return exit_flag, exec_threads, competition, modules
|
||||||
|
|
||||||
def resolve_config_conflicts(send, client, config, preference, sync):
|
def resolve_config_conflicts(send, client, config, preference, sync):
|
||||||
|
|
||||||
|
@ -13,7 +13,10 @@ a = Analysis(['superscript.py'],
|
|||||||
],
|
],
|
||||||
hookspath=[],
|
hookspath=[],
|
||||||
runtime_hooks=[],
|
runtime_hooks=[],
|
||||||
excludes=[],
|
excludes=[
|
||||||
|
"matplotlib",
|
||||||
|
"pandas"
|
||||||
|
],
|
||||||
win_no_prefer_redirects=False,
|
win_no_prefer_redirects=False,
|
||||||
win_private_assemblies=False,
|
win_private_assemblies=False,
|
||||||
cipher=block_cipher,
|
cipher=block_cipher,
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
requests
|
requests
|
||||||
pymongo
|
pymongo
|
||||||
pandas
|
|
||||||
tra-analysis
|
tra-analysis
|
||||||
|
|
||||||
dnspython
|
dnspython
|
||||||
@ -11,7 +10,6 @@ scipy
|
|||||||
scikit-learn
|
scikit-learn
|
||||||
six
|
six
|
||||||
pyparsing
|
pyparsing
|
||||||
pandas
|
|
||||||
|
|
||||||
kivy==2.0.0rc2
|
kivy==2.0.0rc2
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user