Merge pull request #19 from titanscouting/modularize

Reflect modularization changes into v1

Former-commit-id: b0a0632b99
This commit is contained in:
Arthur Lu 2021-11-05 16:22:04 -07:00 committed by GitHub
commit 14ed3cc507
8 changed files with 390 additions and 280 deletions

View File

@ -2,4 +2,4 @@ set pathtospec="../src/cli/superscript.spec"
set pathtodist="../dist/"
set pathtowork="temp/"
pyinstaller --onefile --clean --distpath %pathtodist% --workpath %pathtowork% %pathtospec%
pyinstaller --clean --distpath %pathtodist% --workpath %pathtowork% %pathtospec%

View File

@ -2,4 +2,4 @@ pathtospec="../src/cli/superscript.spec"
pathtodist="../dist/"
pathtowork="temp/"
pyinstaller --onefile --clean --distpath ${pathtodist} --workpath ${pathtowork} ${pathtospec}
pyinstaller --clean --distpath ${pathtodist} --workpath ${pathtowork} ${pathtospec}

View File

@ -1,5 +1,4 @@
import requests
import pandas as pd
def pull_new_tba_matches(apikey, competition, cutoff):
api_key= apikey

309
src/cli/module.py Normal file
View File

@ -0,0 +1,309 @@
import abc
import data as d
import signal
import numpy as np
import tra_analysis as an
class Module(metaclass = abc.ABCMeta):
@classmethod
def __subclasshook__(cls, subclass):
return (hasattr(subclass, 'validate_config') and
callable(subclass.validate_config) and
hasattr(subclass, 'load_data') and
callable(subclass.load_data) and
hasattr(subclass, 'process_data') and
callable(subclass.process_data) and
hasattr(subclass, 'push_results') and
callable(subclass.push_results)
)
@abc.abstractmethod
def validate_config(self):
raise NotImplementedError
@abc.abstractmethod
def load_data(self):
raise NotImplementedError
@abc.abstractmethod
def process_data(self, exec_threads):
raise NotImplementedError
@abc.abstractmethod
def push_results(self):
raise NotImplementedError
class Match (Module):
config = None
apikey = None
tbakey = None
timestamp = None
competition = None
data = None
results = None
def __init__(self, config, apikey, tbakey, timestamp, competition):
self.config = config
self.apikey = apikey
self.tbakey = tbakey
self.timestamp = timestamp
self.competition = competition
def validate_config(self):
return True, ""
def load_data(self):
self.data = d.load_match(self.apikey, self.competition)
def simplestats(data_test):
signal.signal(signal.SIGINT, signal.SIG_IGN)
data = np.array(data_test[3])
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
test = data_test[2]
if test == "basic_stats":
return an.basic_stats(data)
if test == "historical_analysis":
return an.histo_analysis([ranges, data])
if test == "regression_linear":
return an.regression(ranges, data, ['lin'])
if test == "regression_logarithmic":
return an.regression(ranges, data, ['log'])
if test == "regression_exponential":
return an.regression(ranges, data, ['exp'])
if test == "regression_polynomial":
return an.regression(ranges, data, ['ply'])
if test == "regression_sigmoidal":
return an.regression(ranges, data, ['sig'])
def process_data(self, exec_threads):
tests = self.config["tests"]
data = self.data
input_vector = []
for team in data:
for variable in data[team]:
if variable in tests:
for test in tests[variable]:
input_vector.append((team, variable, test, data[team][variable]))
self.data = input_vector
self.results = list(exec_threads.map(self.simplestats, self.data))
def push_results(self):
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
class AutoVivification(dict):
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
result_filtered = self.results
input_vector = self.data
return_vector = AutoVivification()
i = 0
for result in result_filtered:
filtered = input_vector[i][2]
try:
short = short_mapping[filtered]
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result[short]
except KeyError: # not in mapping
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result
i += 1
self.results = return_vector
d.push_match(self.apikey, self.competition, self.results)
class Metric (Module):
config = None
apikey = None
tbakey = None
timestamp = None
competition = None
data = None
results = None
def __init__(self, config, apikey, tbakey, timestamp, competition):
self.config = config
self.apikey = apikey
self.tbakey = tbakey
self.timestamp = timestamp
self.competition = competition
def validate_config(self):
return True, ""
def load_data(self):
self.data = d.pull_new_tba_matches(self.tbakey, self.competition, self.timestamp)
def process_data(self, exec_threads):
elo_N = self.config["tests"]["elo"]["N"]
elo_K = self.config["tests"]["elo"]["K"]
matches = self.data
red = {}
blu = {}
for match in matches:
red = d.load_metric(self.apikey, self.competition, match, "red", self.config["tests"])
blu = d.load_metric(self.apikey, self.competition, match, "blue", self.config["tests"])
elo_red_total = 0
elo_blu_total = 0
gl2_red_score_total = 0
gl2_blu_score_total = 0
gl2_red_rd_total = 0
gl2_blu_rd_total = 0
gl2_red_vol_total = 0
gl2_blu_vol_total = 0
for team in red:
elo_red_total += red[team]["elo"]["score"]
gl2_red_score_total += red[team]["gl2"]["score"]
gl2_red_rd_total += red[team]["gl2"]["rd"]
gl2_red_vol_total += red[team]["gl2"]["vol"]
for team in blu:
elo_blu_total += blu[team]["elo"]["score"]
gl2_blu_score_total += blu[team]["gl2"]["score"]
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
red_elo = {"score": elo_red_total / len(red)}
blu_elo = {"score": elo_blu_total / len(blu)}
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
if match["winner"] == "red":
observations = {"red": 1, "blu": 0}
elif match["winner"] == "blue":
observations = {"red": 0, "blu": 1}
else:
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
for team in red:
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
for team in blu:
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
d.push_metric(self.client, self.competition, temp_vector)
def push_results(self):
pass
class Pit (Module):
config = None
apikey = None
tbakey = None
timestamp = None
competition = None
data = None
results = None
def __init__(self, config, apikey, tbakey, timestamp, competition):
self.config = config
self.apikey = apikey
self.tbakey = tbakey
self.timestamp = timestamp
self.competition = competition
def validate_config(self):
return True, ""
def load_data(self):
self.data = d.load_pit(self.apikey, self.competition)
def process_data(self, exec_threads):
return_vector = {}
for team in self.data:
for variable in self.data[team]:
if variable in self.config:
if not variable in return_vector:
return_vector[variable] = []
return_vector[variable].append(self.data[team][variable])
self.results = return_vector
def push_results(self):
d.push_pit(self.apikey, self.competition, self.results)
class Rating (Module):
pass
class Heatmap (Module):
pass
class Sentiment (Module):
pass

View File

@ -1,188 +0,0 @@
import numpy as np
from tra_analysis import Analysis as an
from data import pull_new_tba_matches, push_metric, load_metric
import signal
def simplestats(data_test):
signal.signal(signal.SIGINT, signal.SIG_IGN)
data = np.array(data_test[3])
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
test = data_test[2]
if test == "basic_stats":
return an.basic_stats(data)
if test == "historical_analysis":
return an.histo_analysis([ranges, data])
if test == "regression_linear":
return an.regression(ranges, data, ['lin'])
if test == "regression_logarithmic":
return an.regression(ranges, data, ['log'])
if test == "regression_exponential":
return an.regression(ranges, data, ['exp'])
if test == "regression_polynomial":
return an.regression(ranges, data, ['ply'])
if test == "regression_sigmoidal":
return an.regression(ranges, data, ['sig'])
def matchloop(client, competition, data, tests, exec_threads):
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
class AutoVivification(dict):
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
input_vector = []
return_vector = AutoVivification()
for team in data:
for variable in data[team]:
if variable in tests:
for test in tests[variable]:
input_vector.append((team, variable, test, data[team][variable]))
result_filtered = exec_threads.map(simplestats, input_vector)
i = 0
result_filtered = list(result_filtered)
for result in result_filtered:
filtered = input_vector[i][2]
try:
short = short_mapping[filtered]
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result[short]
except KeyError: # not in mapping
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result
i += 1
return return_vector
def metricloop(client, competition, data, metrics): # listener based metrics update
elo_N = metrics["elo"]["N"]
elo_K = metrics["elo"]["K"]
matches = data
#matches = pull_new_tba_matches(tbakey, competition, timestamp)
red = {}
blu = {}
for match in matches:
red = load_metric(client, competition, match, "red", metrics)
blu = load_metric(client, competition, match, "blue", metrics)
elo_red_total = 0
elo_blu_total = 0
gl2_red_score_total = 0
gl2_blu_score_total = 0
gl2_red_rd_total = 0
gl2_blu_rd_total = 0
gl2_red_vol_total = 0
gl2_blu_vol_total = 0
for team in red:
elo_red_total += red[team]["elo"]["score"]
gl2_red_score_total += red[team]["gl2"]["score"]
gl2_red_rd_total += red[team]["gl2"]["rd"]
gl2_red_vol_total += red[team]["gl2"]["vol"]
for team in blu:
elo_blu_total += blu[team]["elo"]["score"]
gl2_blu_score_total += blu[team]["gl2"]["score"]
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
red_elo = {"score": elo_red_total / len(red)}
blu_elo = {"score": elo_blu_total / len(blu)}
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
if match["winner"] == "red":
observations = {"red": 1, "blu": 0}
elif match["winner"] == "blue":
observations = {"red": 0, "blu": 1}
else:
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
for team in red:
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
for team in blu:
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
push_metric(client, competition, temp_vector)
def pitloop(client, competition, pit, tests):
return_vector = {}
for team in pit:
for variable in pit[team]:
if variable in tests:
if not variable in return_vector:
return_vector[variable] = []
return_vector[variable].append(pit[team][variable])
return return_vector

View File

@ -163,62 +163,78 @@ import warnings
import zmq
from interface import splash, log, ERR, INF, stdout, stderr
from data import get_previous_time, pull_new_tba_matches, set_current_time, load_match, push_match, load_pit, push_pit, get_database_config, set_database_config, check_new_database_matches
from processing import matchloop, metricloop, pitloop
from data import get_previous_time, set_current_time, get_database_config, set_database_config, check_new_database_matches
from module import Match, Metric, Pit
config_path = "config.json"
sample_json = """{
"persistent":{
"key":{
"database":"mongodb+srv://analysis:MU2gPeEjEurRt2n@2022-scouting-4vfuu.mongodb.net/<dbname>?retryWrites=true&w=majority",
"tba":"UDvKmPjPRfwwUdDX1JxbmkyecYBJhCtXeyVk9vmO2i7K0Zn4wqQPMfzuEINXJ7e5"
"database":"",
"tba":""
},
"config-preference":"local",
"synchronize-config":false
},
"variable":{
"max-threads":0.5,
"competition":"",
"team":"",
"competition": "2020ilch",
"statistics":{
"event-delay":false,
"loop-delay":0,
"reportable":true,
"teams":[],
"modules":{
"match":{
"balls-blocked":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-collected":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-lower-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-lower-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-started":["basic_stats","historical_analyss","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-upper-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-upper-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"]
"tests":{
"balls-blocked":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-collected":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-lower-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-lower-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-started":["basic_stats","historical_analyss","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-upper-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
"balls-upper-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"]
}
},
"metric":{
"elo":{
"score":1500,
"N":400,
"K":24
},
"gl2":{
"score":1500,
"rd":250,
"vol":0.06
},
"ts":{
"mu":25,
"sigma":8.33
"tests":{
"elo":{
"score":1500,
"N":400,
"K":24
},
"gl2":{
"score":1500,
"rd":250,
"vol":0.06
},
"ts":{
"mu":25,
"sigma":8.33
}
}
},
"pit":{
"wheel-mechanism":true,
"low-balls":true,
"high-balls":true,
"wheel-success":true,
"strategic-focus":true,
"climb-mechanism":true,
"attitude":true
"tests":{
"wheel-mechanism":true,
"low-balls":true,
"high-balls":true,
"wheel-success":true,
"strategic-focus":true,
"climb-mechanism":true,
"attitude":true
}
}
},
"event-delay":false,
"loop-delay":60
}
}
}"""
@ -238,6 +254,8 @@ def main(send, verbose = False, profile = False, debug = False):
if verbose:
splash(__version__)
modules = {"match": Match, "metric": Metric, "pit": Pit}
while True:
try:
@ -273,40 +291,27 @@ def main(send, verbose = False, profile = False, debug = False):
exit_code = 1
close_all()
break
flag, exec_threads, competition, match_tests, metrics_tests, pit_tests = parse_config_variable(send, config)
flag, exec_threads, competition, config_modules = parse_config_variable(send, config)
if flag:
exit_code = 1
close_all()
break
start = time.time()
send(stdout, INF, "loading match, metric, pit data (this may take a few seconds)")
match_data = load_match(client, competition)
metrics_data = pull_new_tba_matches(tbakey, competition, loop_start)
pit_data = load_pit(client, competition)
send(stdout, INF, "finished loading match, metric, pit data in "+ str(time.time() - start) + " seconds")
start = time.time()
send(stdout, INF, "performing analysis on match, metrics, pit data")
match_results = matchloop(client, competition, match_data, match_tests, exec_threads)
metrics_results = metricloop(client, competition, metrics_data, metrics_tests)
pit_results = pitloop(client, competition, pit_data, pit_tests)
send(stdout, INF, "finished analysis in " + str(time.time() - start) + " seconds")
start = time.time()
send(stdout, INF, "uploading match, metrics, pit results to database")
push_match(client, competition, match_results)
push_pit(client, competition, pit_results)
send(stdout, INF, "finished uploading results in " + str(time.time() - start) + " seconds")
if debug:
f = open("matchloop.log", "w+")
json.dump(match_results, f, ensure_ascii=False, indent=4)
f.close()
f = open("pitloop.log", "w+")
json.dump(pit_results, f, ensure_ascii=False, indent=4)
f.close()
for m in config_modules:
if m in modules:
start = time.time()
current_module = modules[m](config_modules[m], client, tbakey, loop_start, competition)
valid = current_module.validate_config()
if not valid:
continue
current_module.load_data()
current_module.process_data(exec_threads)
current_module.push_results()
send(stdout, INF, m + " module finished in " + str(time.time() - start) + " seconds")
if debug:
f = open(m + ".log", "w+")
json.dump({"data": current_module.data, "results":current_module.results}, f, ensure_ascii=False, indent=4)
f.close()
set_current_time(client, loop_start)
close_all()
@ -423,37 +428,21 @@ def parse_config_variable(send, config):
send(stderr, ERR, "could not find competition field in config", code = 101)
exit_flag = True
try:
match_tests = config["variable"]["statistics"]["match"]
modules = config["variable"]["modules"]
except:
send(stderr, ERR, "could not find match field in config", code = 102)
exit_flag = True
try:
metrics_tests = config["variable"]["statistics"]["metric"]
except:
send(stderr, ERR, "could not find metrics field in config", code = 103)
exit_flag = True
try:
pit_tests = config["variable"]["statistics"]["pit"]
except:
send(stderr, ERR, "could not find pit field in config", code = 104)
send(stderr, ERR, "could not find modules field in config", code = 102)
exit_flag = True
if competition == None or competition == "":
send(stderr, ERR, "competition field in config must not be empty", code = 105)
exit_flag = True
if match_tests == None:
send(stderr, ERR, "matchfield in config must not be empty", code = 106)
exit_flag = True
if metrics_tests == None:
send(stderr, ERR, "metrics field in config must not be empty", code = 107)
exit_flag = True
if pit_tests == None:
send(stderr, ERR, "pit field in config must not be empty", code = 108)
if modules == None:
send(stderr, ERR, "modules in config must not be empty", code = 106)
exit_flag = True
send(stdout, INF, "found and loaded competition, match, metrics, pit from config")
return exit_flag, exec_threads, competition, match_tests, metrics_tests, pit_tests
return exit_flag, exec_threads, competition, modules
def resolve_config_conflicts(send, client, config, preference, sync):

View File

@ -13,7 +13,10 @@ a = Analysis(['superscript.py'],
],
hookspath=[],
runtime_hooks=[],
excludes=[],
excludes=[
"matplotlib",
"pandas"
],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,

View File

@ -1,6 +1,5 @@
requests
pymongo
pandas
tra-analysis
dnspython
@ -11,7 +10,6 @@ scipy
scikit-learn
six
pyparsing
pandas
kivy==2.0.0rc2