tra-superscript/src/config.py

244 lines
7.8 KiB
Python
Raw Normal View History

import math
import json
from multiprocessing import Pool
import os
from cerberus import Validator
from exceptions import ConfigurationError
from data import set_database_config, get_database_config
from interface import stderr, stdout, INF, ERR
config_path = "config.json"
sample_json = """
{
"persistent":{
"key":{
"database":"",
"tba":"",
"tra":{
"CLIENT_ID":"",
"CLIENT_SECRET":"",
"url": ""
}
},
"config-preference":"local",
"synchronize-config":false
},
"variable":{
"max-threads":0.5,
"team":"",
"event-delay":false,
"loop-delay":0,
"reportable":true,
"teams":[
],
"modules":{
"match":{
"tests":{
"balls-blocked":[
"basic_stats",
"historical_analysis",
"regression_linear",
"regression_logarithmic",
"regression_exponential",
"regression_polynomial",
"regression_sigmoidal"
],
"balls-collected":[
"basic_stats",
"historical_analysis",
"regression_linear",
"regression_logarithmic",
"regression_exponential",
"regression_polynomial",
"regression_sigmoidal"
],
"balls-lower-teleop":[
"basic_stats",
"historical_analysis",
"regression_linear",
"regression_logarithmic",
"regression_exponential",
"regression_polynomial",
"regression_sigmoidal"
],
"balls-lower-auto":[
"basic_stats",
"historical_analysis",
"regression_linear",
"regression_logarithmic",
"regression_exponential",
"regression_polynomial",
"regression_sigmoidal"
],
"balls-started":[
"basic_stats",
"historical_analyss",
"regression_linear",
"regression_logarithmic",
"regression_exponential",
"regression_polynomial",
"regression_sigmoidal"
],
"balls-upper-teleop":[
"basic_stats",
"historical_analysis",
"regression_linear",
"regression_logarithmic",
"regression_exponential",
"regression_polynomial",
"regression_sigmoidal"
],
"balls-upper-auto":[
"basic_stats",
"historical_analysis",
"regression_linear",
"regression_logarithmic",
"regression_exponential",
"regression_polynomial",
"regression_sigmoidal"
]
}
},
"metric":{
"tests":{
"elo":{
"score":1500,
"N":400,
"K":24
},
"gl2":{
"score":1500,
"rd":250,
"vol":0.06
},
"ts":{
"mu":25,
"sigma":8.33
}
}
},
"pit":{
"tests":{
"wheel-mechanism":true,
"low-balls":true,
"high-balls":true,
"wheel-success":true,
"strategic-focus":true,
"climb-mechanism":true,
"attitude":true
}
}
}
}
}
"""
def parse_config_persistent(send, config):
v = Validator(load_validation_schema(), allow_unknown = True)
isValidated = v.validate(config)
if not isValidated:
raise ConfigurationError(v.errors, 101)
apikey = config["persistent"]["key"]["database"]
tbakey = config["persistent"]["key"]["tba"]
preference = config["persistent"]["config-preference"]
sync = config["persistent"]["synchronize-config"]
return apikey, tbakey, preference, sync
def parse_config_variable(send, config):
sys_max_threads = os.cpu_count()
try:
cfg_max_threads = config["variable"]["max-threads"]
except:
raise ConfigurationError("variable/max-threads field is invalid or missing, refer to documentation for configuration options", 109)
if cfg_max_threads > -sys_max_threads and cfg_max_threads < 0 :
alloc_processes = sys_max_threads + cfg_max_threads
elif cfg_max_threads > 0 and cfg_max_threads < 1:
alloc_processes = math.floor(cfg_max_threads * sys_max_threads)
elif cfg_max_threads > 1 and cfg_max_threads <= sys_max_threads:
alloc_processes = cfg_max_threads
elif cfg_max_threads == 0:
alloc_processes = sys_max_threads
else:
raise ConfigurationError("variable/max-threads must be between -" + str(sys_max_threads) + " and " + str(sys_max_threads) + ", but got " + cfg_max_threads, 110)
try:
exec_threads = Pool(processes = alloc_processes)
except Exception as e:
send(stderr, INF, e)
raise ConfigurationError("unable to start threads", 200)
send(stdout, INF, "successfully initialized " + str(alloc_processes) + " threads")
try:
modules = config["variable"]["modules"]
except:
raise ConfigurationError("variable/modules field is invalid or missing", 102)
if modules == None:
raise ConfigurationError("variable/modules field is empty", 106)
send(stdout, INF, "found and loaded competition, match, metrics, pit from config")
return exec_threads, modules
def resolve_config_conflicts(send, client, config, preference, sync):
if sync:
if preference == "local" or preference == "client":
send(stdout, INF, "config-preference set to local/client, loading local config information")
remote_config = get_database_config(client)
if remote_config != config["variable"]:
set_database_config(client, config["variable"])
send(stdout, INF, "database config was different and was updated")
return config
elif preference == "remote" or preference == "database":
send(stdout, INF, "config-preference set to remote/database, loading remote config information")
remote_config= get_database_config(client)
if remote_config != config["variable"]:
config["variable"] = remote_config
if save_config(config_path, config):
raise ConfigurationError("local config was different but could not be updated", 121)
send(stdout, INF, "local config was different and was updated")
return config
else:
raise ConfigurationError("persistent/config-preference field must be \"local\"/\"client\" or \"remote\"/\"database\"", 120)
else:
if preference == "local" or preference == "client":
send(stdout, INF, "config-preference set to local/client, loading local config information")
return config
elif preference == "remote" or preference == "database":
send(stdout, INF, "config-preference set to remote/database, loading database config information")
config["variable"] = get_database_config(client)
return config
else:
raise ConfigurationError("persistent/config-preference field must be \"local\"/\"client\" or \"remote\"/\"database\"", 120)
def load_config(path, config_vector):
try:
f = open(path, "r")
config_vector.update(json.load(f))
f.close()
return 0
except:
f = open(path, "w")
f.write(sample_json)
f.close()
return 1
def load_validation_schema():
try:
with open("validation-schema.json", "r") as f:
return json.load(f)
except:
raise FileNotFoundError("Validation schema not found at validation-schema.json")
def save_config(path, config_vector):
f = open(path, "w+")
json.dump(config_vector, f, ensure_ascii=False, indent=4)
f.close()
return 0