mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
analysis.py v 1.1.12.003
This commit is contained in:
parent
52d79ea25e
commit
fe31db07f9
@ -7,10 +7,12 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.12.002"
|
__version__ = "1.1.12.003"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.12.003:
|
||||||
|
- removed depreciated code
|
||||||
1.1.12.002:
|
1.1.12.002:
|
||||||
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
||||||
1.1.12.001:
|
1.1.12.001:
|
||||||
@ -371,21 +373,6 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
regressions.append(plys)
|
regressions.append(plys)
|
||||||
|
|
||||||
""" non functional and dep
|
|
||||||
plys = []
|
|
||||||
|
|
||||||
if power_limit == None:
|
|
||||||
|
|
||||||
power_limit = len(outputs[0]) - 1
|
|
||||||
|
|
||||||
for i in range(2, power_limit):
|
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.PolyRegKernel(len(inputs),i), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations_ply * 10 ** i, learning_rate=lr_ply * 10 ** -i, return_losses=True)
|
|
||||||
plys.append((model[0].parameters, model[1][::-1][0]))
|
|
||||||
|
|
||||||
regressions.append(plys)
|
|
||||||
"""
|
|
||||||
|
|
||||||
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
Loading…
Reference in New Issue
Block a user