mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 01:29:10 +00:00
analysis pkg v 1.0.0.12
analysis.py v 1.2.0.004
This commit is contained in:
parent
4545f5721a
commit
aeb4990c81
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: analysis
|
||||
Version: 1.0.0.11
|
||||
Version: 1.0.0.12
|
||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||
Author: The Titan Scouting Team
|
||||
|
@ -1,13 +1,15 @@
|
||||
setup.py
|
||||
analysis/__init__.py
|
||||
analysis/analysis.py
|
||||
analysis/glicko2.py
|
||||
analysis/regression.py
|
||||
analysis/titanlearn.py
|
||||
analysis/trueskill.py
|
||||
analysis/visualization.py
|
||||
analysis.egg-info/PKG-INFO
|
||||
analysis.egg-info/SOURCES.txt
|
||||
analysis.egg-info/dependency_links.txt
|
||||
analysis.egg-info/requires.txt
|
||||
analysis.egg-info/top_level.txt
|
||||
analysis/metrics/__init__.py
|
||||
analysis/metrics/elo.py
|
||||
analysis/metrics/glicko2.py
|
||||
analysis/metrics/trueskill.py
|
@ -7,10 +7,17 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.2.0.003"
|
||||
__version__ = "1.2.0.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.2.0.004:
|
||||
- fixed __all__ to reflected the correct functions and classes
|
||||
- fixed CorrelationTests and StatisticalTests class functions to require self invocation
|
||||
- added missing math import
|
||||
- fixed KNN class functions to require self invocation
|
||||
- fixed Metrics class functions to require self invocation
|
||||
- various spelling fixes in CorrelationTests and StatisticalTests
|
||||
1.2.0.003:
|
||||
- bug fixes with CorrelationTests and StatisticalTests
|
||||
- moved glicko2 and trueskill to the metrics subpackage
|
||||
@ -275,22 +282,19 @@ __all__ = [
|
||||
'z_normalize',
|
||||
'histo_analysis',
|
||||
'regression',
|
||||
'elo',
|
||||
'glicko2',
|
||||
'trueskill',
|
||||
'Metrics',
|
||||
'RegressionMetrics',
|
||||
'ClassificationMetrics',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
'knn_classifier',
|
||||
'knn_regressor',
|
||||
'KNN',
|
||||
'NaiveBayes',
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'CorrelationTests',
|
||||
'RegressionTests',
|
||||
'StatisticalTests',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
@ -301,6 +305,7 @@ __all__ = [
|
||||
import csv
|
||||
from analysis.metrics import elo as Elo
|
||||
from analysis.metrics import glicko2 as Glicko2
|
||||
import math
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
@ -467,11 +472,11 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
class Metrics:
|
||||
|
||||
def elo(starting_score, opposing_score, observed, N, K):
|
||||
def elo(self, starting_score, opposing_score, observed, N, K):
|
||||
|
||||
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
||||
|
||||
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||
|
||||
@ -479,7 +484,7 @@ class Metrics:
|
||||
|
||||
return (player.rating, player.rd, player.vol)
|
||||
|
||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
|
||||
team_ratings = []
|
||||
|
||||
@ -584,7 +589,7 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
|
||||
|
||||
class KNN:
|
||||
|
||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
def knn_classifier(self, data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsClassifier()
|
||||
@ -593,7 +598,7 @@ class KNN:
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
def knn_regressor(self, data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
@ -716,203 +721,203 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
|
||||
|
||||
class CorrelationTests:
|
||||
|
||||
def anova_oneway(*args): #expects arrays of samples
|
||||
def anova_oneway(self, *args): #expects arrays of samples
|
||||
|
||||
results = scipy.stats.f_oneway(*args)
|
||||
return {"F-value": results[0], "p-value": results[1]}
|
||||
|
||||
def pearson(x, y):
|
||||
def pearson(self, x, y):
|
||||
|
||||
results = scipy.stats.pearsonr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def spearman(a, b = None, axis = 0, nan_policy = 'propagate'):
|
||||
def spearman(self, a, b = None, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.spearmanr(a, b = b, axis = axis, nan_policy = nan_policy)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def point_biserial(x,y):
|
||||
def point_biserial(self, x,y):
|
||||
|
||||
results = scipy.stats.pointbiserialr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall(x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
|
||||
def kendall(self, x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
|
||||
|
||||
results = scipy.stats.kendalltau(x, y, initial_lexsort = initial_lexsort, nan_policy = nan_policy, method = method)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall_weighted(x, y, rank = True, weigher = None, additive = True):
|
||||
def kendall_weighted(self, x, y, rank = True, weigher = None, additive = True):
|
||||
|
||||
results = scipy.stats.weightedtau(x, y, rank = rank, weigher = weigher, additive = additive)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def mgc(x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
|
||||
def mgc(self, x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
|
||||
|
||||
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
|
||||
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value
|
||||
|
||||
class StatisticalTests:
|
||||
|
||||
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||
def ttest_onesample(self, a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_independent(a, b, equal = True, nan_policy = 'propagate'):
|
||||
def ttest_independent(self, a, b, equal = True, nan_policy = 'propagate'):
|
||||
|
||||
results = scipt.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
|
||||
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_statistic(o1, o2, equal = True):
|
||||
def ttest_statistic(self, o1, o2, equal = True):
|
||||
|
||||
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_related(a, b, axis = 0, nan_policy='propagate'):
|
||||
def ttest_related(self, a, b, axis = 0, nan_policy='propagate'):
|
||||
|
||||
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_fitness(rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
|
||||
def ks_fitness(self, rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
|
||||
|
||||
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def chisquare(f_obs, f_exp = None, ddof = None, axis = 0):
|
||||
def chisquare(self, f_obs, f_exp = None, ddof = None, axis = 0):
|
||||
|
||||
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def powerdivergence(f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
|
||||
def powerdivergence(self, f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
|
||||
|
||||
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
|
||||
return {"powerdivergence-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_twosample(x, y, alternative = 'two_sided', mode = 'auto'):
|
||||
def ks_twosample(self, x, y, alternative = 'two_sided', mode = 'auto'):
|
||||
|
||||
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def es_twosample(x, y, t = (0.4, 0.8)):
|
||||
def es_twosample(self, x, y, t = (0.4, 0.8)):
|
||||
|
||||
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
|
||||
return {"es-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_rank(x, y, use_continuity = True, alternative = None):
|
||||
def mw_rank(self, x, y, use_continuity = True, alternative = None):
|
||||
|
||||
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_tiecorrection(rank_values):
|
||||
def mw_tiecorrection(self, rank_values):
|
||||
|
||||
results = scipy.stats.tiecorrect(rank_values)
|
||||
return {"correction-factor": results}
|
||||
|
||||
def rankdata(a, method = 'average'):
|
||||
def rankdata(self, a, method = 'average'):
|
||||
|
||||
results = scipy.stats.rankdata(a, method = method)
|
||||
return results
|
||||
|
||||
def wilcoxon_ranksum(a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
|
||||
def wilcoxon_ranksum(self, a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
|
||||
|
||||
results = scipy.stats.ranksums(a, b)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def wilcoxon_signedrank(x, y = None, method = 'wilcox', correction = False, alternative = 'two-sided'):
|
||||
def wilcoxon_signedrank(self, x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.wilcoxon(x, y = y, method = method, correction = correction, alternative = alternative)
|
||||
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kw_htest(*args, nan_policy = 'propagate'):
|
||||
def kw_htest(self, *args, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
|
||||
return {"h-value": results[0], "p-value": results[1]}
|
||||
|
||||
def friedman_chisquare(*args):
|
||||
def friedman_chisquare(self, *args):
|
||||
|
||||
results = scipy.stats.friedmanchisquare(*args)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bm_wtest(x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
||||
def bm_wtest(self, x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def combine_pvalues(pvalues, method = 'fisher', weights = None):
|
||||
def combine_pvalues(self, pvalues, method = 'fisher', weights = None):
|
||||
|
||||
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
|
||||
return {"combined-statistic": results[0], "p-value": results[1]}
|
||||
|
||||
def jb_fitness(x):
|
||||
def jb_fitness(self, x):
|
||||
|
||||
results = scipy.stats.jarque_bera(x)
|
||||
return {"jb-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ab_equality(x, y):
|
||||
def ab_equality(self, x, y):
|
||||
|
||||
results = scipy.stats.ansari(x, y)
|
||||
return {"ab-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bartlett_variance(*args):
|
||||
def bartlett_variance(self, *args):
|
||||
|
||||
results = scipy.stats.bartlett(*args)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def levene_variance(*args, center = 'median', proportiontocut = 0.05):
|
||||
def levene_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def sw_normality(x):
|
||||
def sw_normality(self, x):
|
||||
|
||||
results = scipy.stats.shapiro(x)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def shapiro(x):
|
||||
def shapiro(self, x):
|
||||
|
||||
return "destroyed by facts and logic"
|
||||
|
||||
def ad_onesample(x, dist = 'norm'):
|
||||
def ad_onesample(self, x, dist = 'norm'):
|
||||
|
||||
results = scipy.stats.anderson(x, dist = dist)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def ad_ksample(samples, midrank = True):
|
||||
def ad_ksample(self, samples, midrank = True):
|
||||
|
||||
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def binomial(x, n = None, p = 0.5, alternative = 'two-sided'):
|
||||
def binomial(self, x, n = None, p = 0.5, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
|
||||
return {"p-value": results}
|
||||
|
||||
def fk_variance(*args, center = 'median', proportiontocut = 0.05):
|
||||
def fk_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
|
||||
|
||||
def mood_mediantest(*args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
|
||||
def mood_mediantest(self, *args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
|
||||
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
|
||||
|
||||
def mood_equalscale(x, y, axis = 0):
|
||||
def mood_equalscale(self, x, y, axis = 0):
|
||||
|
||||
results = scipy.stats.mood(x, y, axis = axis)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def skewtest(a, axis = 0, nan_policy = 'propogate'):
|
||||
def skewtest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def kurtosistest(a, axis = 0, nan_policy = 'propogate'):
|
||||
def kurtosistest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def normaltest(a, axis = 0, nan_policy = 'propogate'):
|
||||
def normaltest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
@ -1,16 +1,37 @@
|
||||
# Titan Robotics Team 2022: Data Analysis Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import analysis'
|
||||
# this should be imported as a python module using 'from analysis import analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been optimized for multhreaded computing
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.009"
|
||||
__version__ = "1.2.0.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.2.0.004:
|
||||
- fixed __all__ to reflected the correct functions and classes
|
||||
- fixed CorrelationTests and StatisticalTests class functions to require self invocation
|
||||
- added missing math import
|
||||
- fixed KNN class functions to require self invocation
|
||||
- fixed Metrics class functions to require self invocation
|
||||
- various spelling fixes in CorrelationTests and StatisticalTests
|
||||
1.2.0.003:
|
||||
- bug fixes with CorrelationTests and StatisticalTests
|
||||
- moved glicko2 and trueskill to the metrics subpackage
|
||||
- moved elo to a new metrics subpackage
|
||||
1.2.0.002:
|
||||
- fixed docs
|
||||
1.2.0.001:
|
||||
- fixed docs
|
||||
1.2.0.000:
|
||||
- cleaned up wild card imports with scipy and sklearn
|
||||
- added CorrelationTests class
|
||||
- added StatisticalTests class
|
||||
- added several correlation tests to CorrelationTests
|
||||
- added several statistical tests to StatisticalTests
|
||||
1.1.13.009:
|
||||
- moved elo, glicko2, trueskill functions under class Metrics
|
||||
1.1.13.008:
|
||||
@ -261,20 +282,19 @@ __all__ = [
|
||||
'z_normalize',
|
||||
'histo_analysis',
|
||||
'regression',
|
||||
'elo',
|
||||
'glicko2',
|
||||
'trueskill',
|
||||
'Metrics',
|
||||
'RegressionMetrics',
|
||||
'ClassificationMetrics',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
'knn_classifier',
|
||||
'knn_regressor',
|
||||
'KNN',
|
||||
'NaiveBayes',
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'CorrelationTests',
|
||||
'StatisticalTests',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
@ -283,15 +303,17 @@ __all__ = [
|
||||
# imports (now in alphabetical order! v 1.0.3.006):
|
||||
|
||||
import csv
|
||||
from analysis import glicko2 as Glicko2
|
||||
from analysis.metrics import elo as Elo
|
||||
from analysis.metrics import glicko2 as Glicko2
|
||||
import math
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import *
|
||||
from scipy import optimize, stats
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
from analysis import trueskill as Trueskill
|
||||
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
|
||||
from analysis.metrics import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
@ -450,13 +472,11 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
class Metrics:
|
||||
|
||||
def elo(starting_score, opposing_score, observed, N, K):
|
||||
def elo(self, starting_score, opposing_score, observed, N, K):
|
||||
|
||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
||||
|
||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||
|
||||
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||
|
||||
@ -464,7 +484,7 @@ class Metrics:
|
||||
|
||||
return (player.rating, player.rd, player.vol)
|
||||
|
||||
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
|
||||
team_ratings = []
|
||||
|
||||
@ -569,7 +589,7 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
|
||||
|
||||
class KNN:
|
||||
|
||||
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
def knn_classifier(self, data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsClassifier()
|
||||
@ -578,7 +598,7 @@ class KNN:
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
|
||||
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
def knn_regressor(self, data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
@ -698,3 +718,206 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||
|
||||
class CorrelationTests:
|
||||
|
||||
def anova_oneway(self, *args): #expects arrays of samples
|
||||
|
||||
results = scipy.stats.f_oneway(*args)
|
||||
return {"F-value": results[0], "p-value": results[1]}
|
||||
|
||||
def pearson(self, x, y):
|
||||
|
||||
results = scipy.stats.pearsonr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def spearman(self, a, b = None, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.spearmanr(a, b = b, axis = axis, nan_policy = nan_policy)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def point_biserial(self, x,y):
|
||||
|
||||
results = scipy.stats.pointbiserialr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall(self, x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
|
||||
|
||||
results = scipy.stats.kendalltau(x, y, initial_lexsort = initial_lexsort, nan_policy = nan_policy, method = method)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall_weighted(self, x, y, rank = True, weigher = None, additive = True):
|
||||
|
||||
results = scipy.stats.weightedtau(x, y, rank = rank, weigher = weigher, additive = additive)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def mgc(self, x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
|
||||
|
||||
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
|
||||
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value
|
||||
|
||||
class StatisticalTests:
|
||||
|
||||
def ttest_onesample(self, a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_independent(self, a, b, equal = True, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_statistic(self, o1, o2, equal = True):
|
||||
|
||||
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_related(self, a, b, axis = 0, nan_policy='propagate'):
|
||||
|
||||
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_fitness(self, rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
|
||||
|
||||
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def chisquare(self, f_obs, f_exp = None, ddof = None, axis = 0):
|
||||
|
||||
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def powerdivergence(self, f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
|
||||
|
||||
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
|
||||
return {"powerdivergence-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_twosample(self, x, y, alternative = 'two_sided', mode = 'auto'):
|
||||
|
||||
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def es_twosample(self, x, y, t = (0.4, 0.8)):
|
||||
|
||||
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
|
||||
return {"es-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_rank(self, x, y, use_continuity = True, alternative = None):
|
||||
|
||||
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_tiecorrection(self, rank_values):
|
||||
|
||||
results = scipy.stats.tiecorrect(rank_values)
|
||||
return {"correction-factor": results}
|
||||
|
||||
def rankdata(self, a, method = 'average'):
|
||||
|
||||
results = scipy.stats.rankdata(a, method = method)
|
||||
return results
|
||||
|
||||
def wilcoxon_ranksum(self, a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
|
||||
|
||||
results = scipy.stats.ranksums(a, b)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def wilcoxon_signedrank(self, x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kw_htest(self, *args, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
|
||||
return {"h-value": results[0], "p-value": results[1]}
|
||||
|
||||
def friedman_chisquare(self, *args):
|
||||
|
||||
results = scipy.stats.friedmanchisquare(*args)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bm_wtest(self, x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def combine_pvalues(self, pvalues, method = 'fisher', weights = None):
|
||||
|
||||
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
|
||||
return {"combined-statistic": results[0], "p-value": results[1]}
|
||||
|
||||
def jb_fitness(self, x):
|
||||
|
||||
results = scipy.stats.jarque_bera(x)
|
||||
return {"jb-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ab_equality(self, x, y):
|
||||
|
||||
results = scipy.stats.ansari(x, y)
|
||||
return {"ab-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bartlett_variance(self, *args):
|
||||
|
||||
results = scipy.stats.bartlett(*args)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def levene_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def sw_normality(self, x):
|
||||
|
||||
results = scipy.stats.shapiro(x)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def shapiro(self, x):
|
||||
|
||||
return "destroyed by facts and logic"
|
||||
|
||||
def ad_onesample(self, x, dist = 'norm'):
|
||||
|
||||
results = scipy.stats.anderson(x, dist = dist)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def ad_ksample(self, samples, midrank = True):
|
||||
|
||||
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def binomial(self, x, n = None, p = 0.5, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
|
||||
return {"p-value": results}
|
||||
|
||||
def fk_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
|
||||
|
||||
def mood_mediantest(self, *args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
|
||||
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
|
||||
|
||||
def mood_equalscale(self, x, y, axis = 0):
|
||||
|
||||
results = scipy.stats.mood(x, y, axis = axis)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def skewtest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def kurtosistest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def normaltest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
@ -0,0 +1,7 @@
|
||||
import numpy as np
|
||||
|
||||
def calculate(starting_score, opposing_score, observed, N, K):
|
||||
|
||||
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||
|
||||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
@ -0,0 +1,99 @@
|
||||
import math
|
||||
|
||||
class Glicko2:
|
||||
_tau = 0.5
|
||||
|
||||
def getRating(self):
|
||||
return (self.__rating * 173.7178) + 1500
|
||||
|
||||
def setRating(self, rating):
|
||||
self.__rating = (rating - 1500) / 173.7178
|
||||
|
||||
rating = property(getRating, setRating)
|
||||
|
||||
def getRd(self):
|
||||
return self.__rd * 173.7178
|
||||
|
||||
def setRd(self, rd):
|
||||
self.__rd = rd / 173.7178
|
||||
|
||||
rd = property(getRd, setRd)
|
||||
|
||||
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
||||
|
||||
self.setRating(rating)
|
||||
self.setRd(rd)
|
||||
self.vol = vol
|
||||
|
||||
def _preRatingRD(self):
|
||||
|
||||
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
||||
|
||||
def update_player(self, rating_list, RD_list, outcome_list):
|
||||
|
||||
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
||||
RD_list = [x / 173.7178 for x in RD_list]
|
||||
|
||||
v = self._v(rating_list, RD_list)
|
||||
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
||||
self._preRatingRD()
|
||||
|
||||
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempSum += self._g(RD_list[i]) * \
|
||||
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||
self.__rating += math.pow(self.__rd, 2) * tempSum
|
||||
|
||||
|
||||
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
||||
|
||||
i = 0
|
||||
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
||||
a = math.log(math.pow(self.vol, 2))
|
||||
tau = self._tau
|
||||
x0 = a
|
||||
x1 = 0
|
||||
|
||||
while x0 != x1:
|
||||
# New iteration, so x(i) becomes x(i-1)
|
||||
x0 = x1
|
||||
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
||||
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
||||
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
||||
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
||||
(math.pow(self.__rating, 2) + v) \
|
||||
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
||||
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
||||
x1 = x0 - (h1 / h2)
|
||||
|
||||
return math.exp(x1 / 2)
|
||||
|
||||
def _delta(self, rating_list, RD_list, outcome_list, v):
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||
return v * tempSum
|
||||
|
||||
def _v(self, rating_list, RD_list):
|
||||
|
||||
tempSum = 0
|
||||
for i in range(len(rating_list)):
|
||||
tempE = self._E(rating_list[i], RD_list[i])
|
||||
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
||||
return 1 / tempSum
|
||||
|
||||
def _E(self, p2rating, p2RD):
|
||||
|
||||
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
||||
(self.__rating - p2rating)))
|
||||
|
||||
def _g(self, RD):
|
||||
|
||||
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
||||
|
||||
def did_not_compete(self):
|
||||
|
||||
self._preRatingRD()
|
@ -0,0 +1,907 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
from itertools import chain
|
||||
import math
|
||||
|
||||
from six import iteritems
|
||||
from six.moves import map, range, zip
|
||||
from six import iterkeys
|
||||
|
||||
import copy
|
||||
try:
|
||||
from numbers import Number
|
||||
except ImportError:
|
||||
Number = (int, long, float, complex)
|
||||
|
||||
inf = float('inf')
|
||||
|
||||
class Gaussian(object):
|
||||
#: Precision, the inverse of the variance.
|
||||
pi = 0
|
||||
#: Precision adjusted mean, the precision multiplied by the mean.
|
||||
tau = 0
|
||||
|
||||
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
|
||||
if mu is not None:
|
||||
if sigma is None:
|
||||
raise TypeError('sigma argument is needed')
|
||||
elif sigma == 0:
|
||||
raise ValueError('sigma**2 should be greater than 0')
|
||||
pi = sigma ** -2
|
||||
tau = pi * mu
|
||||
self.pi = pi
|
||||
self.tau = tau
|
||||
|
||||
@property
|
||||
def mu(self):
|
||||
return self.pi and self.tau / self.pi
|
||||
|
||||
@property
|
||||
def sigma(self):
|
||||
return math.sqrt(1 / self.pi) if self.pi else inf
|
||||
|
||||
def __mul__(self, other):
|
||||
pi, tau = self.pi + other.pi, self.tau + other.tau
|
||||
return Gaussian(pi=pi, tau=tau)
|
||||
|
||||
def __truediv__(self, other):
|
||||
pi, tau = self.pi - other.pi, self.tau - other.tau
|
||||
return Gaussian(pi=pi, tau=tau)
|
||||
|
||||
__div__ = __truediv__ # for Python 2
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.pi == other.pi and self.tau == other.tau
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.mu < other.mu
|
||||
|
||||
def __le__(self, other):
|
||||
return self.mu <= other.mu
|
||||
|
||||
def __gt__(self, other):
|
||||
return self.mu > other.mu
|
||||
|
||||
def __ge__(self, other):
|
||||
return self.mu >= other.mu
|
||||
|
||||
def __repr__(self):
|
||||
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
|
||||
|
||||
def _repr_latex_(self):
|
||||
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
|
||||
return '$%s$' % latex
|
||||
|
||||
class Matrix(list):
|
||||
def __init__(self, src, height=None, width=None):
|
||||
if callable(src):
|
||||
f, src = src, {}
|
||||
size = [height, width]
|
||||
if not height:
|
||||
def set_height(height):
|
||||
size[0] = height
|
||||
size[0] = set_height
|
||||
if not width:
|
||||
def set_width(width):
|
||||
size[1] = width
|
||||
size[1] = set_width
|
||||
try:
|
||||
for (r, c), val in f(*size):
|
||||
src[r, c] = val
|
||||
except TypeError:
|
||||
raise TypeError('A callable src must return an interable '
|
||||
'which generates a tuple containing '
|
||||
'coordinate and value')
|
||||
height, width = tuple(size)
|
||||
if height is None or width is None:
|
||||
raise TypeError('A callable src must call set_height and '
|
||||
'set_width if the size is non-deterministic')
|
||||
if isinstance(src, list):
|
||||
is_number = lambda x: isinstance(x, Number)
|
||||
unique_col_sizes = set(map(len, src))
|
||||
everything_are_number = filter(is_number, sum(src, []))
|
||||
if len(unique_col_sizes) != 1 or not everything_are_number:
|
||||
raise ValueError('src must be a rectangular array of numbers')
|
||||
two_dimensional_array = src
|
||||
elif isinstance(src, dict):
|
||||
if not height or not width:
|
||||
w = h = 0
|
||||
for r, c in iterkeys(src):
|
||||
if not height:
|
||||
h = max(h, r + 1)
|
||||
if not width:
|
||||
w = max(w, c + 1)
|
||||
if not height:
|
||||
height = h
|
||||
if not width:
|
||||
width = w
|
||||
two_dimensional_array = []
|
||||
for r in range(height):
|
||||
row = []
|
||||
two_dimensional_array.append(row)
|
||||
for c in range(width):
|
||||
row.append(src.get((r, c), 0))
|
||||
else:
|
||||
raise TypeError('src must be a list or dict or callable')
|
||||
super(Matrix, self).__init__(two_dimensional_array)
|
||||
|
||||
@property
|
||||
def height(self):
|
||||
return len(self)
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return len(self[0])
|
||||
|
||||
def transpose(self):
|
||||
height, width = self.height, self.width
|
||||
src = {}
|
||||
for c in range(width):
|
||||
for r in range(height):
|
||||
src[c, r] = self[r][c]
|
||||
return type(self)(src, height=width, width=height)
|
||||
|
||||
def minor(self, row_n, col_n):
|
||||
height, width = self.height, self.width
|
||||
if not (0 <= row_n < height):
|
||||
raise ValueError('row_n should be between 0 and %d' % height)
|
||||
elif not (0 <= col_n < width):
|
||||
raise ValueError('col_n should be between 0 and %d' % width)
|
||||
two_dimensional_array = []
|
||||
for r in range(height):
|
||||
if r == row_n:
|
||||
continue
|
||||
row = []
|
||||
two_dimensional_array.append(row)
|
||||
for c in range(width):
|
||||
if c == col_n:
|
||||
continue
|
||||
row.append(self[r][c])
|
||||
return type(self)(two_dimensional_array)
|
||||
|
||||
def determinant(self):
|
||||
height, width = self.height, self.width
|
||||
if height != width:
|
||||
raise ValueError('Only square matrix can calculate a determinant')
|
||||
tmp, rv = copy.deepcopy(self), 1.
|
||||
for c in range(width - 1, 0, -1):
|
||||
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
|
||||
pivot = tmp[r][c]
|
||||
if not pivot:
|
||||
return 0.
|
||||
tmp[r], tmp[c] = tmp[c], tmp[r]
|
||||
if r != c:
|
||||
rv = -rv
|
||||
rv *= pivot
|
||||
fact = -1. / pivot
|
||||
for r in range(c):
|
||||
f = fact * tmp[r][c]
|
||||
for x in range(c):
|
||||
tmp[r][x] += f * tmp[c][x]
|
||||
return rv * tmp[0][0]
|
||||
|
||||
def adjugate(self):
|
||||
height, width = self.height, self.width
|
||||
if height != width:
|
||||
raise ValueError('Only square matrix can be adjugated')
|
||||
if height == 2:
|
||||
a, b = self[0][0], self[0][1]
|
||||
c, d = self[1][0], self[1][1]
|
||||
return type(self)([[d, -b], [-c, a]])
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
sign = -1 if (r + c) % 2 else 1
|
||||
src[r, c] = self.minor(r, c).determinant() * sign
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def inverse(self):
|
||||
if self.height == self.width == 1:
|
||||
return type(self)([[1. / self[0][0]]])
|
||||
return (1. / self.determinant()) * self.adjugate()
|
||||
|
||||
def __add__(self, other):
|
||||
height, width = self.height, self.width
|
||||
if (height, width) != (other.height, other.width):
|
||||
raise ValueError('Must be same size')
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = self[r][c] + other[r][c]
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __mul__(self, other):
|
||||
if self.width != other.height:
|
||||
raise ValueError('Bad size')
|
||||
height, width = self.height, other.width
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = sum(self[r][x] * other[x][c]
|
||||
for x in range(self.width))
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __rmul__(self, other):
|
||||
if not isinstance(other, Number):
|
||||
raise TypeError('The operand should be a number')
|
||||
height, width = self.height, self.width
|
||||
src = {}
|
||||
for r in range(height):
|
||||
for c in range(width):
|
||||
src[r, c] = other * self[r][c]
|
||||
return type(self)(src, height, width)
|
||||
|
||||
def __repr__(self):
|
||||
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
|
||||
|
||||
def _repr_latex_(self):
|
||||
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
|
||||
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
|
||||
return '$%s$' % latex
|
||||
|
||||
def _gen_erfcinv(erfc, math=math):
|
||||
def erfcinv(y):
|
||||
"""The inverse function of erfc."""
|
||||
if y >= 2:
|
||||
return -100.
|
||||
elif y <= 0:
|
||||
return 100.
|
||||
zero_point = y < 1
|
||||
if not zero_point:
|
||||
y = 2 - y
|
||||
t = math.sqrt(-2 * math.log(y / 2.))
|
||||
x = -0.70711 * \
|
||||
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
|
||||
for i in range(2):
|
||||
err = erfc(x) - y
|
||||
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
|
||||
return x if zero_point else -x
|
||||
return erfcinv
|
||||
|
||||
def _gen_ppf(erfc, math=math):
|
||||
erfcinv = _gen_erfcinv(erfc, math)
|
||||
def ppf(x, mu=0, sigma=1):
|
||||
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
|
||||
return ppf
|
||||
|
||||
def erfc(x):
|
||||
z = abs(x)
|
||||
t = 1. / (1. + z / 2.)
|
||||
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
|
||||
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
|
||||
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
|
||||
-0.82215223 + t * 0.17087277
|
||||
)))
|
||||
)))
|
||||
)))
|
||||
return 2. - r if x < 0 else r
|
||||
|
||||
def cdf(x, mu=0, sigma=1):
|
||||
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
|
||||
|
||||
|
||||
def pdf(x, mu=0, sigma=1):
|
||||
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
|
||||
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
|
||||
|
||||
ppf = _gen_ppf(erfc)
|
||||
|
||||
def choose_backend(backend):
|
||||
if backend is None: # fallback
|
||||
return cdf, pdf, ppf
|
||||
elif backend == 'mpmath':
|
||||
try:
|
||||
import mpmath
|
||||
except ImportError:
|
||||
raise ImportError('Install "mpmath" to use this backend')
|
||||
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
|
||||
elif backend == 'scipy':
|
||||
try:
|
||||
from scipy.stats import norm
|
||||
except ImportError:
|
||||
raise ImportError('Install "scipy" to use this backend')
|
||||
return norm.cdf, norm.pdf, norm.ppf
|
||||
raise ValueError('%r backend is not defined' % backend)
|
||||
|
||||
def available_backends():
|
||||
backends = [None]
|
||||
for backend in ['mpmath', 'scipy']:
|
||||
try:
|
||||
__import__(backend)
|
||||
except ImportError:
|
||||
continue
|
||||
backends.append(backend)
|
||||
return backends
|
||||
|
||||
class Node(object):
|
||||
|
||||
pass
|
||||
|
||||
class Variable(Node, Gaussian):
|
||||
|
||||
def __init__(self):
|
||||
self.messages = {}
|
||||
super(Variable, self).__init__()
|
||||
|
||||
def set(self, val):
|
||||
delta = self.delta(val)
|
||||
self.pi, self.tau = val.pi, val.tau
|
||||
return delta
|
||||
|
||||
def delta(self, other):
|
||||
pi_delta = abs(self.pi - other.pi)
|
||||
if pi_delta == inf:
|
||||
return 0.
|
||||
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
|
||||
|
||||
def update_message(self, factor, pi=0, tau=0, message=None):
|
||||
message = message or Gaussian(pi=pi, tau=tau)
|
||||
old_message, self[factor] = self[factor], message
|
||||
return self.set(self / old_message * message)
|
||||
|
||||
def update_value(self, factor, pi=0, tau=0, value=None):
|
||||
value = value or Gaussian(pi=pi, tau=tau)
|
||||
old_message = self[factor]
|
||||
self[factor] = value * old_message / self
|
||||
return self.set(value)
|
||||
|
||||
def __getitem__(self, factor):
|
||||
return self.messages[factor]
|
||||
|
||||
def __setitem__(self, factor, message):
|
||||
self.messages[factor] = message
|
||||
|
||||
def __repr__(self):
|
||||
args = (type(self).__name__, super(Variable, self).__repr__(),
|
||||
len(self.messages), '' if len(self.messages) == 1 else 's')
|
||||
return '<%s %s with %d connection%s>' % args
|
||||
|
||||
|
||||
class Factor(Node):
|
||||
|
||||
def __init__(self, variables):
|
||||
self.vars = variables
|
||||
for var in variables:
|
||||
var[self] = Gaussian()
|
||||
|
||||
def down(self):
|
||||
return 0
|
||||
|
||||
def up(self):
|
||||
return 0
|
||||
|
||||
@property
|
||||
def var(self):
|
||||
assert len(self.vars) == 1
|
||||
return self.vars[0]
|
||||
|
||||
def __repr__(self):
|
||||
args = (type(self).__name__, len(self.vars),
|
||||
'' if len(self.vars) == 1 else 's')
|
||||
return '<%s with %d connection%s>' % args
|
||||
|
||||
|
||||
class PriorFactor(Factor):
|
||||
|
||||
def __init__(self, var, val, dynamic=0):
|
||||
super(PriorFactor, self).__init__([var])
|
||||
self.val = val
|
||||
self.dynamic = dynamic
|
||||
|
||||
def down(self):
|
||||
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
|
||||
value = Gaussian(self.val.mu, sigma)
|
||||
return self.var.update_value(self, value=value)
|
||||
|
||||
|
||||
class LikelihoodFactor(Factor):
|
||||
|
||||
def __init__(self, mean_var, value_var, variance):
|
||||
super(LikelihoodFactor, self).__init__([mean_var, value_var])
|
||||
self.mean = mean_var
|
||||
self.value = value_var
|
||||
self.variance = variance
|
||||
|
||||
def calc_a(self, var):
|
||||
return 1. / (1. + self.variance * var.pi)
|
||||
|
||||
def down(self):
|
||||
# update value.
|
||||
msg = self.mean / self.mean[self]
|
||||
a = self.calc_a(msg)
|
||||
return self.value.update_message(self, a * msg.pi, a * msg.tau)
|
||||
|
||||
def up(self):
|
||||
# update mean.
|
||||
msg = self.value / self.value[self]
|
||||
a = self.calc_a(msg)
|
||||
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
|
||||
|
||||
|
||||
class SumFactor(Factor):
|
||||
|
||||
def __init__(self, sum_var, term_vars, coeffs):
|
||||
super(SumFactor, self).__init__([sum_var] + term_vars)
|
||||
self.sum = sum_var
|
||||
self.terms = term_vars
|
||||
self.coeffs = coeffs
|
||||
|
||||
def down(self):
|
||||
vals = self.terms
|
||||
msgs = [var[self] for var in vals]
|
||||
return self.update(self.sum, vals, msgs, self.coeffs)
|
||||
|
||||
def up(self, index=0):
|
||||
coeff = self.coeffs[index]
|
||||
coeffs = []
|
||||
for x, c in enumerate(self.coeffs):
|
||||
try:
|
||||
if x == index:
|
||||
coeffs.append(1. / coeff)
|
||||
else:
|
||||
coeffs.append(-c / coeff)
|
||||
except ZeroDivisionError:
|
||||
coeffs.append(0.)
|
||||
vals = self.terms[:]
|
||||
vals[index] = self.sum
|
||||
msgs = [var[self] for var in vals]
|
||||
return self.update(self.terms[index], vals, msgs, coeffs)
|
||||
|
||||
def update(self, var, vals, msgs, coeffs):
|
||||
pi_inv = 0
|
||||
mu = 0
|
||||
for val, msg, coeff in zip(vals, msgs, coeffs):
|
||||
div = val / msg
|
||||
mu += coeff * div.mu
|
||||
if pi_inv == inf:
|
||||
continue
|
||||
try:
|
||||
# numpy.float64 handles floating-point error by different way.
|
||||
# For example, it can just warn RuntimeWarning on n/0 problem
|
||||
# instead of throwing ZeroDivisionError. So div.pi, the
|
||||
# denominator has to be a built-in float.
|
||||
pi_inv += coeff ** 2 / float(div.pi)
|
||||
except ZeroDivisionError:
|
||||
pi_inv = inf
|
||||
pi = 1. / pi_inv
|
||||
tau = pi * mu
|
||||
return var.update_message(self, pi, tau)
|
||||
|
||||
|
||||
class TruncateFactor(Factor):
|
||||
|
||||
def __init__(self, var, v_func, w_func, draw_margin):
|
||||
super(TruncateFactor, self).__init__([var])
|
||||
self.v_func = v_func
|
||||
self.w_func = w_func
|
||||
self.draw_margin = draw_margin
|
||||
|
||||
def up(self):
|
||||
val = self.var
|
||||
msg = self.var[self]
|
||||
div = val / msg
|
||||
sqrt_pi = math.sqrt(div.pi)
|
||||
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
|
||||
v = self.v_func(*args)
|
||||
w = self.w_func(*args)
|
||||
denom = (1. - w)
|
||||
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
|
||||
return val.update_value(self, pi, tau)
|
||||
|
||||
#: Default initial mean of ratings.
|
||||
MU = 25.
|
||||
#: Default initial standard deviation of ratings.
|
||||
SIGMA = MU / 3
|
||||
#: Default distance that guarantees about 76% chance of winning.
|
||||
BETA = SIGMA / 2
|
||||
#: Default dynamic factor.
|
||||
TAU = SIGMA / 100
|
||||
#: Default draw probability of the game.
|
||||
DRAW_PROBABILITY = .10
|
||||
#: A basis to check reliability of the result.
|
||||
DELTA = 0.0001
|
||||
|
||||
|
||||
def calc_draw_probability(draw_margin, size, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
|
||||
|
||||
|
||||
def calc_draw_margin(draw_probability, size, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
|
||||
|
||||
|
||||
def _team_sizes(rating_groups):
|
||||
team_sizes = [0]
|
||||
for group in rating_groups:
|
||||
team_sizes.append(len(group) + team_sizes[-1])
|
||||
del team_sizes[0]
|
||||
return team_sizes
|
||||
|
||||
|
||||
def _floating_point_error(env):
|
||||
if env.backend == 'mpmath':
|
||||
msg = 'Set "mpmath.mp.dps" to higher'
|
||||
else:
|
||||
msg = 'Cannot calculate correctly, set backend to "mpmath"'
|
||||
return FloatingPointError(msg)
|
||||
|
||||
|
||||
class Rating(Gaussian):
|
||||
def __init__(self, mu=None, sigma=None):
|
||||
if isinstance(mu, tuple):
|
||||
mu, sigma = mu
|
||||
elif isinstance(mu, Gaussian):
|
||||
mu, sigma = mu.mu, mu.sigma
|
||||
if mu is None:
|
||||
mu = global_env().mu
|
||||
if sigma is None:
|
||||
sigma = global_env().sigma
|
||||
super(Rating, self).__init__(mu, sigma)
|
||||
|
||||
def __int__(self):
|
||||
return int(self.mu)
|
||||
|
||||
def __long__(self):
|
||||
return long(self.mu)
|
||||
|
||||
def __float__(self):
|
||||
return float(self.mu)
|
||||
|
||||
def __iter__(self):
|
||||
return iter((self.mu, self.sigma))
|
||||
|
||||
def __repr__(self):
|
||||
c = type(self)
|
||||
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
|
||||
return '%s(mu=%.3f, sigma=%.3f)' % args
|
||||
|
||||
|
||||
class TrueSkill(object):
|
||||
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||
draw_probability=DRAW_PROBABILITY, backend=None):
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
self.beta = beta
|
||||
self.tau = tau
|
||||
self.draw_probability = draw_probability
|
||||
self.backend = backend
|
||||
if isinstance(backend, tuple):
|
||||
self.cdf, self.pdf, self.ppf = backend
|
||||
else:
|
||||
self.cdf, self.pdf, self.ppf = choose_backend(backend)
|
||||
|
||||
def create_rating(self, mu=None, sigma=None):
|
||||
if mu is None:
|
||||
mu = self.mu
|
||||
if sigma is None:
|
||||
sigma = self.sigma
|
||||
return Rating(mu, sigma)
|
||||
|
||||
def v_win(self, diff, draw_margin):
|
||||
x = diff - draw_margin
|
||||
denom = self.cdf(x)
|
||||
return (self.pdf(x) / denom) if denom else -x
|
||||
|
||||
def v_draw(self, diff, draw_margin):
|
||||
abs_diff = abs(diff)
|
||||
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||
denom = self.cdf(a) - self.cdf(b)
|
||||
numer = self.pdf(b) - self.pdf(a)
|
||||
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
|
||||
|
||||
def w_win(self, diff, draw_margin):
|
||||
x = diff - draw_margin
|
||||
v = self.v_win(diff, draw_margin)
|
||||
w = v * (v + x)
|
||||
if 0 < w < 1:
|
||||
return w
|
||||
raise _floating_point_error(self)
|
||||
|
||||
def w_draw(self, diff, draw_margin):
|
||||
abs_diff = abs(diff)
|
||||
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||
denom = self.cdf(a) - self.cdf(b)
|
||||
if not denom:
|
||||
raise _floating_point_error(self)
|
||||
v = self.v_draw(abs_diff, draw_margin)
|
||||
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
|
||||
|
||||
def validate_rating_groups(self, rating_groups):
|
||||
# check group sizes
|
||||
if len(rating_groups) < 2:
|
||||
raise ValueError('Need multiple rating groups')
|
||||
elif not all(rating_groups):
|
||||
raise ValueError('Each group must contain multiple ratings')
|
||||
# check group types
|
||||
group_types = set(map(type, rating_groups))
|
||||
if len(group_types) != 1:
|
||||
raise TypeError('All groups should be same type')
|
||||
elif group_types.pop() is Rating:
|
||||
raise TypeError('Rating cannot be a rating group')
|
||||
# normalize rating_groups
|
||||
if isinstance(rating_groups[0], dict):
|
||||
dict_rating_groups = rating_groups
|
||||
rating_groups = []
|
||||
keys = []
|
||||
for dict_rating_group in dict_rating_groups:
|
||||
rating_group, key_group = [], []
|
||||
for key, rating in iteritems(dict_rating_group):
|
||||
rating_group.append(rating)
|
||||
key_group.append(key)
|
||||
rating_groups.append(tuple(rating_group))
|
||||
keys.append(tuple(key_group))
|
||||
else:
|
||||
rating_groups = list(rating_groups)
|
||||
keys = None
|
||||
return rating_groups, keys
|
||||
|
||||
def validate_weights(self, weights, rating_groups, keys=None):
|
||||
if weights is None:
|
||||
weights = [(1,) * len(g) for g in rating_groups]
|
||||
elif isinstance(weights, dict):
|
||||
weights_dict, weights = weights, []
|
||||
for x, group in enumerate(rating_groups):
|
||||
w = []
|
||||
weights.append(w)
|
||||
for y, rating in enumerate(group):
|
||||
if keys is not None:
|
||||
y = keys[x][y]
|
||||
w.append(weights_dict.get((x, y), 1))
|
||||
return weights
|
||||
|
||||
def factor_graph_builders(self, rating_groups, ranks, weights):
|
||||
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||
flatten_weights = sum(map(tuple, weights), ())
|
||||
size = len(flatten_ratings)
|
||||
group_size = len(rating_groups)
|
||||
# create variables
|
||||
rating_vars = [Variable() for x in range(size)]
|
||||
perf_vars = [Variable() for x in range(size)]
|
||||
team_perf_vars = [Variable() for x in range(group_size)]
|
||||
team_diff_vars = [Variable() for x in range(group_size - 1)]
|
||||
team_sizes = _team_sizes(rating_groups)
|
||||
# layer builders
|
||||
def build_rating_layer():
|
||||
for rating_var, rating in zip(rating_vars, flatten_ratings):
|
||||
yield PriorFactor(rating_var, rating, self.tau)
|
||||
def build_perf_layer():
|
||||
for rating_var, perf_var in zip(rating_vars, perf_vars):
|
||||
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
|
||||
def build_team_perf_layer():
|
||||
for team, team_perf_var in enumerate(team_perf_vars):
|
||||
if team > 0:
|
||||
start = team_sizes[team - 1]
|
||||
else:
|
||||
start = 0
|
||||
end = team_sizes[team]
|
||||
child_perf_vars = perf_vars[start:end]
|
||||
coeffs = flatten_weights[start:end]
|
||||
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
|
||||
def build_team_diff_layer():
|
||||
for team, team_diff_var in enumerate(team_diff_vars):
|
||||
yield SumFactor(team_diff_var,
|
||||
team_perf_vars[team:team + 2], [+1, -1])
|
||||
def build_trunc_layer():
|
||||
for x, team_diff_var in enumerate(team_diff_vars):
|
||||
if callable(self.draw_probability):
|
||||
# dynamic draw probability
|
||||
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
|
||||
args = (Rating(team_perf1), Rating(team_perf2), self)
|
||||
draw_probability = self.draw_probability(*args)
|
||||
else:
|
||||
# static draw probability
|
||||
draw_probability = self.draw_probability
|
||||
size = sum(map(len, rating_groups[x:x + 2]))
|
||||
draw_margin = calc_draw_margin(draw_probability, size, self)
|
||||
if ranks[x] == ranks[x + 1]: # is a tie?
|
||||
v_func, w_func = self.v_draw, self.w_draw
|
||||
else:
|
||||
v_func, w_func = self.v_win, self.w_win
|
||||
yield TruncateFactor(team_diff_var,
|
||||
v_func, w_func, draw_margin)
|
||||
# build layers
|
||||
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
|
||||
build_team_diff_layer, build_trunc_layer)
|
||||
|
||||
def run_schedule(self, build_rating_layer, build_perf_layer,
|
||||
build_team_perf_layer, build_team_diff_layer,
|
||||
build_trunc_layer, min_delta=DELTA):
|
||||
if min_delta <= 0:
|
||||
raise ValueError('min_delta must be greater than 0')
|
||||
layers = []
|
||||
def build(builders):
|
||||
layers_built = [list(build()) for build in builders]
|
||||
layers.extend(layers_built)
|
||||
return layers_built
|
||||
# gray arrows
|
||||
layers_built = build([build_rating_layer,
|
||||
build_perf_layer,
|
||||
build_team_perf_layer])
|
||||
rating_layer, perf_layer, team_perf_layer = layers_built
|
||||
for f in chain(*layers_built):
|
||||
f.down()
|
||||
# arrow #1, #2, #3
|
||||
team_diff_layer, trunc_layer = build([build_team_diff_layer,
|
||||
build_trunc_layer])
|
||||
team_diff_len = len(team_diff_layer)
|
||||
for x in range(10):
|
||||
if team_diff_len == 1:
|
||||
# only two teams
|
||||
team_diff_layer[0].down()
|
||||
delta = trunc_layer[0].up()
|
||||
else:
|
||||
# multiple teams
|
||||
delta = 0
|
||||
for x in range(team_diff_len - 1):
|
||||
team_diff_layer[x].down()
|
||||
delta = max(delta, trunc_layer[x].up())
|
||||
team_diff_layer[x].up(1) # up to right variable
|
||||
for x in range(team_diff_len - 1, 0, -1):
|
||||
team_diff_layer[x].down()
|
||||
delta = max(delta, trunc_layer[x].up())
|
||||
team_diff_layer[x].up(0) # up to left variable
|
||||
# repeat until to small update
|
||||
if delta <= min_delta:
|
||||
break
|
||||
# up both ends
|
||||
team_diff_layer[0].up(0)
|
||||
team_diff_layer[team_diff_len - 1].up(1)
|
||||
# up the remainder of the black arrows
|
||||
for f in team_perf_layer:
|
||||
for x in range(len(f.vars) - 1):
|
||||
f.up(x)
|
||||
for f in perf_layer:
|
||||
f.up()
|
||||
return layers
|
||||
|
||||
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||
weights = self.validate_weights(weights, rating_groups, keys)
|
||||
group_size = len(rating_groups)
|
||||
if ranks is None:
|
||||
ranks = range(group_size)
|
||||
elif len(ranks) != group_size:
|
||||
raise ValueError('Wrong ranks')
|
||||
# sort rating groups by rank
|
||||
by_rank = lambda x: x[1][1]
|
||||
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
|
||||
key=by_rank)
|
||||
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
|
||||
for x, (g, r, w) in sorting:
|
||||
sorted_rating_groups.append(g)
|
||||
sorted_ranks.append(r)
|
||||
# make weights to be greater than 0
|
||||
sorted_weights.append(max(min_delta, w_) for w_ in w)
|
||||
# build factor graph
|
||||
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
|
||||
builders = self.factor_graph_builders(*args)
|
||||
args = builders + (min_delta,)
|
||||
layers = self.run_schedule(*args)
|
||||
# make result
|
||||
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
|
||||
transformed_groups = []
|
||||
for start, end in zip([0] + team_sizes[:-1], team_sizes):
|
||||
group = []
|
||||
for f in rating_layer[start:end]:
|
||||
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
|
||||
transformed_groups.append(tuple(group))
|
||||
by_hint = lambda x: x[0]
|
||||
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
|
||||
key=by_hint)
|
||||
if keys is None:
|
||||
return [g for x, g in unsorting]
|
||||
# restore the structure with input dictionary keys
|
||||
return [dict(zip(keys[x], g)) for x, g in unsorting]
|
||||
|
||||
def quality(self, rating_groups, weights=None):
|
||||
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||
weights = self.validate_weights(weights, rating_groups, keys)
|
||||
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||
flatten_weights = sum(map(tuple, weights), ())
|
||||
length = len(flatten_ratings)
|
||||
# a vector of all of the skill means
|
||||
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
|
||||
# a matrix whose diagonal values are the variances (sigma ** 2) of each
|
||||
# of the players.
|
||||
def variance_matrix(height, width):
|
||||
variances = (r.sigma ** 2 for r in flatten_ratings)
|
||||
for x, variance in enumerate(variances):
|
||||
yield (x, x), variance
|
||||
variance_matrix = Matrix(variance_matrix, length, length)
|
||||
# the player-team assignment and comparison matrix
|
||||
def rotated_a_matrix(set_height, set_width):
|
||||
t = 0
|
||||
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
|
||||
rating_groups[1:])):
|
||||
for x in range(t, t + len(cur)):
|
||||
yield (r, x), flatten_weights[x]
|
||||
t += 1
|
||||
x += 1
|
||||
for x in range(x, x + len(_next)):
|
||||
yield (r, x), -flatten_weights[x]
|
||||
set_height(r + 1)
|
||||
set_width(x + 1)
|
||||
rotated_a_matrix = Matrix(rotated_a_matrix)
|
||||
a_matrix = rotated_a_matrix.transpose()
|
||||
# match quality further derivation
|
||||
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
|
||||
_atsa = rotated_a_matrix * variance_matrix * a_matrix
|
||||
start = mean_matrix.transpose() * a_matrix
|
||||
middle = _ata + _atsa
|
||||
end = rotated_a_matrix * mean_matrix
|
||||
# make result
|
||||
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
|
||||
s_arg = _ata.determinant() / middle.determinant()
|
||||
return math.exp(e_arg) * math.sqrt(s_arg)
|
||||
|
||||
def expose(self, rating):
|
||||
k = self.mu / self.sigma
|
||||
return rating.mu - k * rating.sigma
|
||||
|
||||
def make_as_global(self):
|
||||
return setup(env=self)
|
||||
|
||||
def __repr__(self):
|
||||
c = type(self)
|
||||
if callable(self.draw_probability):
|
||||
f = self.draw_probability
|
||||
draw_probability = '.'.join([f.__module__, f.__name__])
|
||||
else:
|
||||
draw_probability = '%.1f%%' % (self.draw_probability * 100)
|
||||
if self.backend is None:
|
||||
backend = ''
|
||||
elif isinstance(self.backend, tuple):
|
||||
backend = ', backend=...'
|
||||
else:
|
||||
backend = ', backend=%r' % self.backend
|
||||
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
|
||||
self.beta, self.tau, draw_probability, backend)
|
||||
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
|
||||
'draw_probability=%s%s)' % args)
|
||||
|
||||
|
||||
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
ranks = [0, 0 if drawn else 1]
|
||||
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
|
||||
return teams[0][0], teams[1][0]
|
||||
|
||||
|
||||
def quality_1vs1(rating1, rating2, env=None):
|
||||
if env is None:
|
||||
env = global_env()
|
||||
return env.quality([(rating1,), (rating2,)])
|
||||
|
||||
|
||||
def global_env():
|
||||
try:
|
||||
global_env.__trueskill__
|
||||
except AttributeError:
|
||||
# setup the default environment
|
||||
setup()
|
||||
return global_env.__trueskill__
|
||||
|
||||
|
||||
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
|
||||
if env is None:
|
||||
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
|
||||
global_env.__trueskill__ = env
|
||||
return env
|
||||
|
||||
|
||||
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||
return global_env().rate(rating_groups, ranks, weights, min_delta)
|
||||
|
||||
|
||||
def quality(rating_groups, weights=None):
|
||||
return global_env().quality(rating_groups, weights)
|
||||
|
||||
|
||||
def expose(rating):
|
||||
return global_env().expose(rating)
|
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.12-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.12-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.12.tar.gz
vendored
Normal file
BIN
analysis-master/analysis-amd64/dist/analysis-1.0.0.12.tar.gz
vendored
Normal file
Binary file not shown.
@ -8,7 +8,7 @@ with open("requirements.txt", 'r') as file:
|
||||
|
||||
setuptools.setup(
|
||||
name="analysis",
|
||||
version="1.0.0.011",
|
||||
version="1.0.0.012",
|
||||
author="The Titan Scouting Team",
|
||||
author_email="titanscout2022@gmail.com",
|
||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||
|
Loading…
Reference in New Issue
Block a user