mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-09 22:44:44 +00:00
Merge pull request #84 from titanscouting/typehinting-docstrings
Grab docstrings for Analysis to analysis-v4
This commit is contained in:
commit
a50be44c18
@ -7,10 +7,15 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "3.0.4"
|
__version__ = "3.0.6"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
3.0.6:
|
||||||
|
- added docstrings
|
||||||
|
3.0.5:
|
||||||
|
- removed extra submodule imports
|
||||||
|
- fixed/optimized header
|
||||||
3.0.4:
|
3.0.4:
|
||||||
- removed -_obj imports
|
- removed -_obj imports
|
||||||
3.0.3:
|
3.0.3:
|
||||||
@ -361,7 +366,6 @@ __all__ = [
|
|||||||
'histo_analysis',
|
'histo_analysis',
|
||||||
'regression',
|
'regression',
|
||||||
'Metric',
|
'Metric',
|
||||||
'kmeans',
|
|
||||||
'pca',
|
'pca',
|
||||||
'decisiontree',
|
'decisiontree',
|
||||||
# all statistics functions left out due to integration in other functions
|
# all statistics functions left out due to integration in other functions
|
||||||
@ -374,34 +378,39 @@ __all__ = [
|
|||||||
import csv
|
import csv
|
||||||
from tra_analysis.metrics import elo as Elo
|
from tra_analysis.metrics import elo as Elo
|
||||||
from tra_analysis.metrics import glicko2 as Glicko2
|
from tra_analysis.metrics import glicko2 as Glicko2
|
||||||
import math
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy
|
import scipy
|
||||||
from scipy import optimize, stats
|
import sklearn, sklearn.cluster
|
||||||
import sklearn
|
|
||||||
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
|
|
||||||
from tra_analysis.metrics import trueskill as Trueskill
|
from tra_analysis.metrics import trueskill as Trueskill
|
||||||
import warnings
|
|
||||||
|
|
||||||
# import submodules
|
# import submodules
|
||||||
|
|
||||||
from .Array import Array
|
|
||||||
from .ClassificationMetric import ClassificationMetric
|
from .ClassificationMetric import ClassificationMetric
|
||||||
from .RegressionMetric import RegressionMetric
|
|
||||||
from . import SVM
|
|
||||||
|
|
||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def load_csv(filepath):
|
def load_csv(filepath):
|
||||||
|
"""
|
||||||
|
Loads csv file into 2D numpy array. Does not check csv file validity.
|
||||||
|
parameters:
|
||||||
|
filepath: String path to the csv file
|
||||||
|
return:
|
||||||
|
2D numpy array of values stored in csv file
|
||||||
|
"""
|
||||||
with open(filepath, newline='') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = np.array(list(csv.reader(csvfile)))
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
csvfile.close()
|
csvfile.close()
|
||||||
return file_array
|
return file_array
|
||||||
|
|
||||||
# expects 1d array
|
|
||||||
def basic_stats(data):
|
def basic_stats(data):
|
||||||
|
"""
|
||||||
|
Calculates mean, median, standard deviation, variance, minimum, maximum of a simple set of elements.
|
||||||
|
parameters:
|
||||||
|
data: List representing set of unordered elements
|
||||||
|
return:
|
||||||
|
Dictionary with (mean, median, standard-deviation, variance, minimum, maximum) as keys and corresponding values
|
||||||
|
"""
|
||||||
data_t = np.array(data).astype(float)
|
data_t = np.array(data).astype(float)
|
||||||
|
|
||||||
_mean = mean(data_t)
|
_mean = mean(data_t)
|
||||||
@ -413,24 +422,43 @@ def basic_stats(data):
|
|||||||
|
|
||||||
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
|
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
|
||||||
|
|
||||||
# returns z score with inputs of point, mean and standard deviation of spread
|
|
||||||
def z_score(point, mean, stdev):
|
def z_score(point, mean, stdev):
|
||||||
|
"""
|
||||||
|
Calculates z score of a specific point given mean and standard deviation of data.
|
||||||
|
parameters:
|
||||||
|
point: Real value corresponding to a single point of data
|
||||||
|
mean: Real value corresponding to the mean of the dataset
|
||||||
|
stdev: Real value corresponding to the standard deviation of the dataset
|
||||||
|
return:
|
||||||
|
Real value that is the point's z score
|
||||||
|
"""
|
||||||
score = (point - mean) / stdev
|
score = (point - mean) / stdev
|
||||||
|
|
||||||
return score
|
return score
|
||||||
|
|
||||||
# expects 2d array, normalizes across all axes
|
|
||||||
def z_normalize(array, *args):
|
def z_normalize(array, *args):
|
||||||
|
"""
|
||||||
|
Applies sklearn.normalize(array, axis = args) on any arraylike parseable by numpy.
|
||||||
|
parameters:
|
||||||
|
array: array like structure of reals aka nested indexables
|
||||||
|
*args: arguments relating to axis normalized against
|
||||||
|
return:
|
||||||
|
numpy array of normalized values from ArrayLike input
|
||||||
|
"""
|
||||||
array = np.array(array)
|
array = np.array(array)
|
||||||
for arg in args:
|
for arg in args:
|
||||||
array = sklearn.preprocessing.normalize(array, axis = arg)
|
array = sklearn.preprocessing.normalize(array, axis = arg)
|
||||||
|
|
||||||
return array
|
return array
|
||||||
|
|
||||||
# expects 2d array of [x,y]
|
|
||||||
def histo_analysis(hist_data):
|
def histo_analysis(hist_data):
|
||||||
|
"""
|
||||||
|
Calculates the mean and standard deviation of derivatives of (x,y) points. Requires at least 2 points to compute.
|
||||||
|
parameters:
|
||||||
|
hist_data: list of real coordinate point data (x, y)
|
||||||
|
return:
|
||||||
|
Dictionary with (mean, deviation) as keys to corresponding values
|
||||||
|
"""
|
||||||
if len(hist_data[0]) > 2:
|
if len(hist_data[0]) > 2:
|
||||||
|
|
||||||
hist_data = np.array(hist_data)
|
hist_data = np.array(hist_data)
|
||||||
@ -446,7 +474,15 @@ def histo_analysis(hist_data):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||||
|
"""
|
||||||
|
Applies specified regression kernels onto input, output data pairs.
|
||||||
|
parameters:
|
||||||
|
inputs: List of Reals representing independent variable values of each point
|
||||||
|
outputs: List of Reals representing dependent variable values of each point
|
||||||
|
args: List of Strings from values (lin, log, exp, ply, sig)
|
||||||
|
return:
|
||||||
|
Dictionary with keys (lin, log, exp, ply, sig) as keys to correspondiong regression models
|
||||||
|
"""
|
||||||
X = np.array(inputs)
|
X = np.array(inputs)
|
||||||
y = np.array(outputs)
|
y = np.array(outputs)
|
||||||
|
|
||||||
@ -550,13 +586,39 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
|||||||
return regressions
|
return regressions
|
||||||
|
|
||||||
class Metric:
|
class Metric:
|
||||||
|
"""
|
||||||
|
The metric class wraps the metrics models. Call without instantiation as Metric.<method>(...)
|
||||||
|
"""
|
||||||
def elo(self, starting_score, opposing_score, observed, N, K):
|
def elo(self, starting_score, opposing_score, observed, N, K):
|
||||||
|
"""
|
||||||
|
Calculates an elo adjusted ELO score given a player's current score, opponent's score, and outcome of match.
|
||||||
|
reference: https://en.wikipedia.org/wiki/Elo_rating_system
|
||||||
|
parameters:
|
||||||
|
starting_score: Real value representing player's ELO score before a match
|
||||||
|
opposing_score: Real value representing opponent's score before the match
|
||||||
|
observed: Array of Real values representing multiple sequential match outcomes against the same opponent. 1 for match win, 0.5 for tie, 0 for loss.
|
||||||
|
N: Real value representing the normal or mean score expected (usually 1200)
|
||||||
|
K: R eal value representing a system constant, determines how quickly players will change scores (usually 24)
|
||||||
|
return:
|
||||||
|
Real value representing the player's new ELO score
|
||||||
|
"""
|
||||||
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
||||||
|
|
||||||
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||||
|
"""
|
||||||
|
Calculates an adjusted Glicko-2 score given a player's current score, multiple opponent's score, and outcome of several matches.
|
||||||
|
reference: http://www.glicko.net/glicko/glicko2.pdf
|
||||||
|
parameters:
|
||||||
|
starting_score: Real value representing the player's Glicko-2 score
|
||||||
|
starting_rd: Real value representing the player's RD
|
||||||
|
starting_vol: Real value representing the player's volatility
|
||||||
|
opposing_score: List of Real values representing multiple opponent's Glicko-2 scores
|
||||||
|
opposing_rd: List of Real values representing multiple opponent's RD
|
||||||
|
opposing_vol: List of Real values representing multiple opponent's volatility
|
||||||
|
observations: List of Real values representing the outcome of several matches, where each match's opponent corresponds with the opposing_score, opposing_rd, opposing_vol values of the same indesx. Outcomes can be a score, presuming greater score is better.
|
||||||
|
return:
|
||||||
|
Tuple of 3 Real values representing the player's new score, rd, and vol
|
||||||
|
"""
|
||||||
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||||
|
|
||||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||||
@ -564,7 +626,15 @@ class Metric:
|
|||||||
return (player.rating, player.rd, player.vol)
|
return (player.rating, player.rd, player.vol)
|
||||||
|
|
||||||
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||||
|
"""
|
||||||
|
Calculates the score changes for multiple teams playing in a single match accoding to the trueskill algorithm.
|
||||||
|
reference: https://trueskill.org/
|
||||||
|
parameters:
|
||||||
|
teams_data: List of List of Tuples of 2 Real values representing multiple player ratings. List of teams, which is a List of players. Each player rating is a Tuple of 2 Real values (mu, sigma).
|
||||||
|
observations: List of Real values representing the match outcome. Each value in the List is the score corresponding to the team at the same index in teams_data.
|
||||||
|
return:
|
||||||
|
List of List of Tuples of 2 Real values representing new player ratings. Same structure as teams_data.
|
||||||
|
"""
|
||||||
team_ratings = []
|
team_ratings = []
|
||||||
|
|
||||||
for team in teams_data:
|
for team in teams_data:
|
||||||
@ -599,24 +669,32 @@ def npmin(data):
|
|||||||
def npmax(data):
|
def npmax(data):
|
||||||
|
|
||||||
return np.amax(data)
|
return np.amax(data)
|
||||||
""" need to decide what to do with this function
|
|
||||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
|
||||||
|
|
||||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
|
||||||
kernel.fit(data)
|
|
||||||
predictions = kernel.predict(data)
|
|
||||||
centers = kernel.cluster_centers_
|
|
||||||
|
|
||||||
return centers, predictions
|
|
||||||
"""
|
|
||||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||||
|
"""
|
||||||
|
Performs a principle component analysis on the input data.
|
||||||
|
reference: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
|
||||||
|
parameters:
|
||||||
|
data: Arraylike of Reals representing the set of data to perform PCA on
|
||||||
|
* : refer to reference for usage, parameters follow same usage
|
||||||
|
return:
|
||||||
|
Arraylike of Reals representing the set of data that has had PCA performed. The dimensionality of the Arraylike may be smaller or equal.
|
||||||
|
"""
|
||||||
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||||
|
|
||||||
return kernel.fit_transform(data)
|
return kernel.fit_transform(data)
|
||||||
|
|
||||||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||||||
|
"""
|
||||||
|
Generates a decision tree classifier fitted to the given data.
|
||||||
|
reference: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
|
||||||
|
parameters:
|
||||||
|
data: List of values representing each data point of multiple axes
|
||||||
|
labels: List of values represeing the labels corresponding to the same index at data
|
||||||
|
* : refer to reference for usage, parameters follow same usage
|
||||||
|
return:
|
||||||
|
DecisionTreeClassifier model and corresponding classification accuracy metrics
|
||||||
|
"""
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||||
model = model.fit(data_train,labels_train)
|
model = model.fit(data_train,labels_train)
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
|
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.1"
|
__version__ = "1.0.2"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.2:
|
||||||
|
- optimized imports
|
||||||
1.0.1:
|
1.0.1:
|
||||||
- fixed __all__
|
- fixed __all__
|
||||||
1.0.0:
|
1.0.0:
|
||||||
@ -22,7 +24,6 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn import metrics
|
|
||||||
|
|
||||||
class ClassificationMetric():
|
class ClassificationMetric():
|
||||||
|
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
|
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.1"
|
__version__ = "1.0.2"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.2:
|
||||||
|
- optimized imports
|
||||||
1.0.1:
|
1.0.1:
|
||||||
- fixed __all__
|
- fixed __all__
|
||||||
1.0.0:
|
1.0.0:
|
||||||
@ -29,7 +31,6 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
import scipy
|
import scipy
|
||||||
from scipy import stats
|
|
||||||
|
|
||||||
def anova_oneway(*args): #expects arrays of samples
|
def anova_oneway(*args): #expects arrays of samples
|
||||||
|
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import KNN'
|
# this should be imported as a python module using 'from tra_analysis import KNN'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.0"
|
__version__ = "1.0.1"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.1:
|
||||||
|
- optimized imports
|
||||||
1.0.0:
|
1.0.0:
|
||||||
- ported analysis.KNN() here
|
- ported analysis.KNN() here
|
||||||
- removed classness
|
- removed classness
|
||||||
@ -23,7 +25,6 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn import model_selection, neighbors
|
|
||||||
from . import ClassificationMetric, RegressionMetric
|
from . import ClassificationMetric, RegressionMetric
|
||||||
|
|
||||||
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
|
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.0"
|
__version__ = "1.0.1"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.1:
|
||||||
|
- optimized imports
|
||||||
1.0.0:
|
1.0.0:
|
||||||
- ported analysis.NaiveBayes() here
|
- ported analysis.NaiveBayes() here
|
||||||
- removed classness
|
- removed classness
|
||||||
@ -24,8 +26,7 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn import model_selection, naive_bayes
|
from . import ClassificationMetric
|
||||||
from . import ClassificationMetric, RegressionMetric
|
|
||||||
|
|
||||||
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||||
|
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import RandomForest'
|
# this should be imported as a python module using 'from tra_analysis import RandomForest'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.1"
|
__version__ = "1.0.2"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.2:
|
||||||
|
- optimized imports
|
||||||
1.0.1:
|
1.0.1:
|
||||||
- fixed __all__
|
- fixed __all__
|
||||||
1.0.0:
|
1.0.0:
|
||||||
@ -23,8 +25,7 @@ __all__ = [
|
|||||||
"random_forest_regressor",
|
"random_forest_regressor",
|
||||||
]
|
]
|
||||||
|
|
||||||
import sklearn
|
import sklearn, sklearn.ensemble, sklearn.naive_bayes
|
||||||
from sklearn import ensemble, model_selection
|
|
||||||
from . import ClassificationMetric, RegressionMetric
|
from . import ClassificationMetric, RegressionMetric
|
||||||
|
|
||||||
def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
|
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.0"
|
__version__ = "1.0.1"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.1:
|
||||||
|
- optimized imports
|
||||||
1.0.0:
|
1.0.0:
|
||||||
- ported analysis.RegressionMetric() here
|
- ported analysis.RegressionMetric() here
|
||||||
"""
|
"""
|
||||||
@ -21,7 +23,6 @@ __all__ = [
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn import metrics
|
|
||||||
|
|
||||||
class RegressionMetric():
|
class RegressionMetric():
|
||||||
|
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import SVM'
|
# this should be imported as a python module using 'from tra_analysis import SVM'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.2"
|
__version__ = "1.0.3"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.3:
|
||||||
|
- optimized imports
|
||||||
1.0.2:
|
1.0.2:
|
||||||
- fixed __all__
|
- fixed __all__
|
||||||
1.0.1:
|
1.0.1:
|
||||||
@ -30,7 +32,6 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
import sklearn
|
import sklearn
|
||||||
from sklearn import svm
|
|
||||||
from . import ClassificationMetric, RegressionMetric
|
from . import ClassificationMetric, RegressionMetric
|
||||||
|
|
||||||
class CustomKernel:
|
class CustomKernel:
|
||||||
|
@ -16,7 +16,7 @@ __changelog__ = """changelog:
|
|||||||
|
|
||||||
__author__ = (
|
__author__ = (
|
||||||
"Arthur Lu <learthurgo@gmail.com>",
|
"Arthur Lu <learthurgo@gmail.com>",
|
||||||
"James Pan <zpan@imsa.edu>"
|
"James Pan <zpan@imsa.edu>",
|
||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
|
@ -4,9 +4,11 @@
|
|||||||
# this should be imported as a python module using 'from tra_analysis import StatisticalTest'
|
# this should be imported as a python module using 'from tra_analysis import StatisticalTest'
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.2"
|
__version__ = "1.0.3"
|
||||||
|
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.3:
|
||||||
|
- optimized imports
|
||||||
1.0.2:
|
1.0.2:
|
||||||
- added tukey_multicomparison
|
- added tukey_multicomparison
|
||||||
- fixed styling
|
- fixed styling
|
||||||
@ -61,7 +63,6 @@ __all__ = [
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy
|
import scipy
|
||||||
from scipy import stats, interpolate
|
|
||||||
|
|
||||||
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
|
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||||
|
|
||||||
@ -279,9 +280,9 @@ def get_tukeyQcrit(k, df, alpha=0.05):
|
|||||||
cv001 = c[:, 2::2]
|
cv001 = c[:, 2::2]
|
||||||
|
|
||||||
if alpha == 0.05:
|
if alpha == 0.05:
|
||||||
intp = interpolate.interp1d(crows, cv005[:,k-2])
|
intp = scipy.interpolate.interp1d(crows, cv005[:,k-2])
|
||||||
elif alpha == 0.01:
|
elif alpha == 0.01:
|
||||||
intp = interpolate.interp1d(crows, cv001[:,k-2])
|
intp = scipy.interpolate.interp1d(crows, cv001[:,k-2])
|
||||||
else:
|
else:
|
||||||
raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
|
raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
|
||||||
return intp(df)
|
return intp(df)
|
||||||
|
@ -16,6 +16,8 @@ __changelog__ = """changelog:
|
|||||||
- deprecated titanlearn.py
|
- deprecated titanlearn.py
|
||||||
- deprecated visualization.py
|
- deprecated visualization.py
|
||||||
- removed matplotlib from requirements
|
- removed matplotlib from requirements
|
||||||
|
- removed extra submodule imports in Analysis
|
||||||
|
- added typehinting, docstrings for each function
|
||||||
3.0.0:
|
3.0.0:
|
||||||
- incremented version to release 3.0.0
|
- incremented version to release 3.0.0
|
||||||
3.0.0-rc2:
|
3.0.0-rc2:
|
||||||
@ -45,6 +47,7 @@ __all__ = [
|
|||||||
"Analysis",
|
"Analysis",
|
||||||
"Array",
|
"Array",
|
||||||
"ClassificationMetric",
|
"ClassificationMetric",
|
||||||
|
"Clustering",
|
||||||
"CorrelationTest",
|
"CorrelationTest",
|
||||||
"Expression",
|
"Expression",
|
||||||
"Fit",
|
"Fit",
|
||||||
|
Loading…
Reference in New Issue
Block a user