mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-26 06:35:56 +00:00
Merge pull request #84 from titanscouting/typehinting-docstrings
Grab docstrings for Analysis to analysis-v4
This commit is contained in:
commit
a50be44c18
@ -7,10 +7,15 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "3.0.4"
|
||||
__version__ = "3.0.6"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
3.0.6:
|
||||
- added docstrings
|
||||
3.0.5:
|
||||
- removed extra submodule imports
|
||||
- fixed/optimized header
|
||||
3.0.4:
|
||||
- removed -_obj imports
|
||||
3.0.3:
|
||||
@ -361,7 +366,6 @@ __all__ = [
|
||||
'histo_analysis',
|
||||
'regression',
|
||||
'Metric',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
@ -374,34 +378,39 @@ __all__ = [
|
||||
import csv
|
||||
from tra_analysis.metrics import elo as Elo
|
||||
from tra_analysis.metrics import glicko2 as Glicko2
|
||||
import math
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import optimize, stats
|
||||
import sklearn
|
||||
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
|
||||
import sklearn, sklearn.cluster
|
||||
from tra_analysis.metrics import trueskill as Trueskill
|
||||
import warnings
|
||||
|
||||
# import submodules
|
||||
|
||||
from .Array import Array
|
||||
from .ClassificationMetric import ClassificationMetric
|
||||
from .RegressionMetric import RegressionMetric
|
||||
from . import SVM
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def load_csv(filepath):
|
||||
"""
|
||||
Loads csv file into 2D numpy array. Does not check csv file validity.
|
||||
parameters:
|
||||
filepath: String path to the csv file
|
||||
return:
|
||||
2D numpy array of values stored in csv file
|
||||
"""
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
csvfile.close()
|
||||
return file_array
|
||||
|
||||
# expects 1d array
|
||||
def basic_stats(data):
|
||||
|
||||
"""
|
||||
Calculates mean, median, standard deviation, variance, minimum, maximum of a simple set of elements.
|
||||
parameters:
|
||||
data: List representing set of unordered elements
|
||||
return:
|
||||
Dictionary with (mean, median, standard-deviation, variance, minimum, maximum) as keys and corresponding values
|
||||
"""
|
||||
data_t = np.array(data).astype(float)
|
||||
|
||||
_mean = mean(data_t)
|
||||
@ -413,24 +422,43 @@ def basic_stats(data):
|
||||
|
||||
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
def z_score(point, mean, stdev):
|
||||
"""
|
||||
Calculates z score of a specific point given mean and standard deviation of data.
|
||||
parameters:
|
||||
point: Real value corresponding to a single point of data
|
||||
mean: Real value corresponding to the mean of the dataset
|
||||
stdev: Real value corresponding to the standard deviation of the dataset
|
||||
return:
|
||||
Real value that is the point's z score
|
||||
"""
|
||||
score = (point - mean) / stdev
|
||||
|
||||
return score
|
||||
|
||||
# expects 2d array, normalizes across all axes
|
||||
def z_normalize(array, *args):
|
||||
|
||||
"""
|
||||
Applies sklearn.normalize(array, axis = args) on any arraylike parseable by numpy.
|
||||
parameters:
|
||||
array: array like structure of reals aka nested indexables
|
||||
*args: arguments relating to axis normalized against
|
||||
return:
|
||||
numpy array of normalized values from ArrayLike input
|
||||
"""
|
||||
array = np.array(array)
|
||||
for arg in args:
|
||||
array = sklearn.preprocessing.normalize(array, axis = arg)
|
||||
|
||||
return array
|
||||
|
||||
# expects 2d array of [x,y]
|
||||
def histo_analysis(hist_data):
|
||||
|
||||
"""
|
||||
Calculates the mean and standard deviation of derivatives of (x,y) points. Requires at least 2 points to compute.
|
||||
parameters:
|
||||
hist_data: list of real coordinate point data (x, y)
|
||||
return:
|
||||
Dictionary with (mean, deviation) as keys to corresponding values
|
||||
"""
|
||||
if len(hist_data[0]) > 2:
|
||||
|
||||
hist_data = np.array(hist_data)
|
||||
@ -446,7 +474,15 @@ def histo_analysis(hist_data):
|
||||
return None
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
"""
|
||||
Applies specified regression kernels onto input, output data pairs.
|
||||
parameters:
|
||||
inputs: List of Reals representing independent variable values of each point
|
||||
outputs: List of Reals representing dependent variable values of each point
|
||||
args: List of Strings from values (lin, log, exp, ply, sig)
|
||||
return:
|
||||
Dictionary with keys (lin, log, exp, ply, sig) as keys to correspondiong regression models
|
||||
"""
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
@ -550,13 +586,39 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
return regressions
|
||||
|
||||
class Metric:
|
||||
|
||||
"""
|
||||
The metric class wraps the metrics models. Call without instantiation as Metric.<method>(...)
|
||||
"""
|
||||
def elo(self, starting_score, opposing_score, observed, N, K):
|
||||
|
||||
"""
|
||||
Calculates an elo adjusted ELO score given a player's current score, opponent's score, and outcome of match.
|
||||
reference: https://en.wikipedia.org/wiki/Elo_rating_system
|
||||
parameters:
|
||||
starting_score: Real value representing player's ELO score before a match
|
||||
opposing_score: Real value representing opponent's score before the match
|
||||
observed: Array of Real values representing multiple sequential match outcomes against the same opponent. 1 for match win, 0.5 for tie, 0 for loss.
|
||||
N: Real value representing the normal or mean score expected (usually 1200)
|
||||
K: R eal value representing a system constant, determines how quickly players will change scores (usually 24)
|
||||
return:
|
||||
Real value representing the player's new ELO score
|
||||
"""
|
||||
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
||||
|
||||
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
"""
|
||||
Calculates an adjusted Glicko-2 score given a player's current score, multiple opponent's score, and outcome of several matches.
|
||||
reference: http://www.glicko.net/glicko/glicko2.pdf
|
||||
parameters:
|
||||
starting_score: Real value representing the player's Glicko-2 score
|
||||
starting_rd: Real value representing the player's RD
|
||||
starting_vol: Real value representing the player's volatility
|
||||
opposing_score: List of Real values representing multiple opponent's Glicko-2 scores
|
||||
opposing_rd: List of Real values representing multiple opponent's RD
|
||||
opposing_vol: List of Real values representing multiple opponent's volatility
|
||||
observations: List of Real values representing the outcome of several matches, where each match's opponent corresponds with the opposing_score, opposing_rd, opposing_vol values of the same indesx. Outcomes can be a score, presuming greater score is better.
|
||||
return:
|
||||
Tuple of 3 Real values representing the player's new score, rd, and vol
|
||||
"""
|
||||
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||
|
||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||
@ -564,7 +626,15 @@ class Metric:
|
||||
return (player.rating, player.rd, player.vol)
|
||||
|
||||
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
|
||||
"""
|
||||
Calculates the score changes for multiple teams playing in a single match accoding to the trueskill algorithm.
|
||||
reference: https://trueskill.org/
|
||||
parameters:
|
||||
teams_data: List of List of Tuples of 2 Real values representing multiple player ratings. List of teams, which is a List of players. Each player rating is a Tuple of 2 Real values (mu, sigma).
|
||||
observations: List of Real values representing the match outcome. Each value in the List is the score corresponding to the team at the same index in teams_data.
|
||||
return:
|
||||
List of List of Tuples of 2 Real values representing new player ratings. Same structure as teams_data.
|
||||
"""
|
||||
team_ratings = []
|
||||
|
||||
for team in teams_data:
|
||||
@ -599,24 +669,32 @@ def npmin(data):
|
||||
def npmax(data):
|
||||
|
||||
return np.amax(data)
|
||||
""" need to decide what to do with this function
|
||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||
|
||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||
kernel.fit(data)
|
||||
predictions = kernel.predict(data)
|
||||
centers = kernel.cluster_centers_
|
||||
|
||||
return centers, predictions
|
||||
"""
|
||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||
|
||||
"""
|
||||
Performs a principle component analysis on the input data.
|
||||
reference: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
|
||||
parameters:
|
||||
data: Arraylike of Reals representing the set of data to perform PCA on
|
||||
* : refer to reference for usage, parameters follow same usage
|
||||
return:
|
||||
Arraylike of Reals representing the set of data that has had PCA performed. The dimensionality of the Arraylike may be smaller or equal.
|
||||
"""
|
||||
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||
|
||||
return kernel.fit_transform(data)
|
||||
|
||||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||||
|
||||
"""
|
||||
Generates a decision tree classifier fitted to the given data.
|
||||
reference: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
|
||||
parameters:
|
||||
data: List of values representing each data point of multiple axes
|
||||
labels: List of values represeing the labels corresponding to the same index at data
|
||||
* : refer to reference for usage, parameters follow same usage
|
||||
return:
|
||||
DecisionTreeClassifier model and corresponding classification accuracy metrics
|
||||
"""
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||
model = model.fit(data_train,labels_train)
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.1"
|
||||
__version__ = "1.0.2"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.2:
|
||||
- optimized imports
|
||||
1.0.1:
|
||||
- fixed __all__
|
||||
1.0.0:
|
||||
@ -22,7 +24,6 @@ __all__ = [
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import metrics
|
||||
|
||||
class ClassificationMetric():
|
||||
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.1"
|
||||
__version__ = "1.0.2"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.2:
|
||||
- optimized imports
|
||||
1.0.1:
|
||||
- fixed __all__
|
||||
1.0.0:
|
||||
@ -29,7 +31,6 @@ __all__ = [
|
||||
]
|
||||
|
||||
import scipy
|
||||
from scipy import stats
|
||||
|
||||
def anova_oneway(*args): #expects arrays of samples
|
||||
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import KNN'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__version__ = "1.0.1"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.1:
|
||||
- optimized imports
|
||||
1.0.0:
|
||||
- ported analysis.KNN() here
|
||||
- removed classness
|
||||
@ -23,7 +25,6 @@ __all__ = [
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import model_selection, neighbors
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__version__ = "1.0.1"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.1:
|
||||
- optimized imports
|
||||
1.0.0:
|
||||
- ported analysis.NaiveBayes() here
|
||||
- removed classness
|
||||
@ -24,8 +26,7 @@ __all__ = [
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import model_selection, naive_bayes
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
from . import ClassificationMetric
|
||||
|
||||
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import RandomForest'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.1"
|
||||
__version__ = "1.0.2"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.2:
|
||||
- optimized imports
|
||||
1.0.1:
|
||||
- fixed __all__
|
||||
1.0.0:
|
||||
@ -23,8 +25,7 @@ __all__ = [
|
||||
"random_forest_regressor",
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import ensemble, model_selection
|
||||
import sklearn, sklearn.ensemble, sklearn.naive_bayes
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__version__ = "1.0.1"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.1:
|
||||
- optimized imports
|
||||
1.0.0:
|
||||
- ported analysis.RegressionMetric() here
|
||||
"""
|
||||
@ -21,7 +23,6 @@ __all__ = [
|
||||
|
||||
import numpy as np
|
||||
import sklearn
|
||||
from sklearn import metrics
|
||||
|
||||
class RegressionMetric():
|
||||
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import SVM'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.2"
|
||||
__version__ = "1.0.3"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.3:
|
||||
- optimized imports
|
||||
1.0.2:
|
||||
- fixed __all__
|
||||
1.0.1:
|
||||
@ -30,7 +32,6 @@ __all__ = [
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import svm
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
class CustomKernel:
|
||||
|
@ -16,7 +16,7 @@ __changelog__ = """changelog:
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"James Pan <zpan@imsa.edu>"
|
||||
"James Pan <zpan@imsa.edu>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
|
@ -4,9 +4,11 @@
|
||||
# this should be imported as a python module using 'from tra_analysis import StatisticalTest'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.2"
|
||||
__version__ = "1.0.3"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.3:
|
||||
- optimized imports
|
||||
1.0.2:
|
||||
- added tukey_multicomparison
|
||||
- fixed styling
|
||||
@ -61,7 +63,6 @@ __all__ = [
|
||||
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import stats, interpolate
|
||||
|
||||
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
@ -279,9 +280,9 @@ def get_tukeyQcrit(k, df, alpha=0.05):
|
||||
cv001 = c[:, 2::2]
|
||||
|
||||
if alpha == 0.05:
|
||||
intp = interpolate.interp1d(crows, cv005[:,k-2])
|
||||
intp = scipy.interpolate.interp1d(crows, cv005[:,k-2])
|
||||
elif alpha == 0.01:
|
||||
intp = interpolate.interp1d(crows, cv001[:,k-2])
|
||||
intp = scipy.interpolate.interp1d(crows, cv001[:,k-2])
|
||||
else:
|
||||
raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
|
||||
return intp(df)
|
||||
|
@ -16,6 +16,8 @@ __changelog__ = """changelog:
|
||||
- deprecated titanlearn.py
|
||||
- deprecated visualization.py
|
||||
- removed matplotlib from requirements
|
||||
- removed extra submodule imports in Analysis
|
||||
- added typehinting, docstrings for each function
|
||||
3.0.0:
|
||||
- incremented version to release 3.0.0
|
||||
3.0.0-rc2:
|
||||
@ -45,6 +47,7 @@ __all__ = [
|
||||
"Analysis",
|
||||
"Array",
|
||||
"ClassificationMetric",
|
||||
"Clustering",
|
||||
"CorrelationTest",
|
||||
"Expression",
|
||||
"Fit",
|
||||
|
Loading…
Reference in New Issue
Block a user