mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
analysis pkg v 1.0.0.7
This commit is contained in:
parent
b6ac05a66e
commit
9b412b51a8
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: analysis
|
||||
Version: 1.0.0.6
|
||||
Version: 1.0.0.7
|
||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||
Author: The Titan Scouting Team
|
||||
|
@ -1,27 +1,28 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import regression'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.002"
|
||||
__version__ = "1.0.0.003"
|
||||
|
||||
# changelog should be viewed using print(regression.__changelog__)
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.002:
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
|
||||
1.0.0.001:
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
@ -39,35 +40,13 @@ __all__ = [
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
|
||||
# imports (just one for now):
|
||||
|
||||
import torch
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
def factorial(n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*factorial(n-1)
|
||||
def num_poly_terms(num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
|
||||
|
||||
def take_all_pwrs(vec,pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0])
|
||||
for i in torch.t(combins):
|
||||
out *= i
|
||||
return torch.cat(out,take_all_pwrs(vec, pwr-1))
|
||||
|
||||
def set_device(new_device):
|
||||
global device
|
||||
def set_device(self, new_device):
|
||||
device=new_device
|
||||
|
||||
class LinearRegKernel():
|
||||
@ -154,20 +133,39 @@ class PolyRegKernel():
|
||||
power=None
|
||||
def __init__(self, num_vars, power):
|
||||
self.power=power
|
||||
num_terms=num_poly_terms(num_vars, power)
|
||||
num_terms=self.num_poly_terms(num_vars, power)
|
||||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||
self.parameters=[self.weights,self.bias]
|
||||
def num_poly_terms(self,num_vars, power):
|
||||
if power == 0:
|
||||
return 0
|
||||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||
def factorial(self,n):
|
||||
if n==0:
|
||||
return 1
|
||||
else:
|
||||
return n*self.factorial(n-1)
|
||||
def take_all_pwrs(self, vec, pwr):
|
||||
#todo: vectorize (kinda)
|
||||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||
for i in torch.t(combins).to(device).to(torch.float):
|
||||
out *= i
|
||||
if pwr == 1:
|
||||
return out
|
||||
else:
|
||||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||
def forward(self,mtx):
|
||||
#TODO: Vectorize the last part
|
||||
cols=[]
|
||||
for i in torch.t(mtx):
|
||||
cols.append(take_all_pwrs(i,self.power))
|
||||
cols.append(self.take_all_pwrs(i,self.power))
|
||||
new_mtx=torch.t(torch.stack(cols))
|
||||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||
|
||||
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
@ -192,7 +190,7 @@ def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, lea
|
||||
optim.step()
|
||||
return kernel
|
||||
|
||||
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||
data_cuda=data.to(device)
|
||||
ground_cuda=ground.to(device)
|
||||
if (return_losses):
|
||||
|
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.6.tar.gz
vendored
BIN
analysis-master/dist/analysis-1.0.0.6.tar.gz
vendored
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.7-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.7-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.7.tar.gz
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.7.tar.gz
vendored
Normal file
Binary file not shown.
@ -2,7 +2,7 @@ import setuptools
|
||||
|
||||
setuptools.setup(
|
||||
name="analysis", # Replace with your own username
|
||||
version="1.0.0.006",
|
||||
version="1.0.0.007",
|
||||
author="The Titan Scouting Team",
|
||||
author_email="titanscout2022@gmail.com",
|
||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||
|
Loading…
Reference in New Issue
Block a user