mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-26 22:55:56 +00:00
analysis.py v 1.1.13.000
This commit is contained in:
parent
d9b26f8ef9
commit
8e0e706fe9
Binary file not shown.
@ -7,10 +7,12 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.12.006"
|
||||
__version__ = "1.1.13.000"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.000:
|
||||
- fixed all regressions to now properly work
|
||||
1.1.12.006:
|
||||
- fixed bg with a division by zero in histo_analysis
|
||||
1.1.12.005:
|
||||
@ -268,6 +270,8 @@ import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import math
|
||||
import scipy
|
||||
from scipy import *
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
import torch
|
||||
@ -346,24 +350,62 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
try:
|
||||
|
||||
X = np.array(inputs).reshape(-1,1)
|
||||
y = np.array(outputs)
|
||||
|
||||
model = sklearn.linear_model.LinearRegression().fit(X, y)
|
||||
|
||||
ret = model.coef_.flatten().tolist()
|
||||
ret.append(model.intercept_)
|
||||
|
||||
regressions.append((ret, model.score(X,y)))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
print(e)
|
||||
pass
|
||||
|
||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||
|
||||
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.log(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
print(e)
|
||||
pass
|
||||
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.exp(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
print(e)
|
||||
pass
|
||||
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
@ -385,12 +427,25 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
||||
|
||||
regressions.append(plys)
|
||||
|
||||
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
||||
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||
|
||||
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||
params = model[0].parameters
|
||||
params[:] = map(lambda x: x.item(), params)
|
||||
regressions.append((params, model[1][::-1][0]))
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.tanh(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||
|
||||
regressions.append((popt.flatten().tolist(), None))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
print(e)
|
||||
pass
|
||||
|
||||
return regressions
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user