mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-26 22:55:56 +00:00
analysis.py v 1.1.13.006
regression.py v 1.0.0.003 analysis pkg v 1.0.0.8
This commit is contained in:
parent
3827bb7d84
commit
767a1197b3
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: analysis
|
||||
Version: 1.0.0.7
|
||||
Version: 1.0.0.8
|
||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||
Author: The Titan Scouting Team
|
||||
|
@ -8,4 +8,5 @@ analysis/visualization.py
|
||||
analysis.egg-info/PKG-INFO
|
||||
analysis.egg-info/SOURCES.txt
|
||||
analysis.egg-info/dependency_links.txt
|
||||
analysis.egg-info/requires.txt
|
||||
analysis.egg-info/top_level.txt
|
6
analysis-master/analysis.egg-info/requires.txt
Normal file
6
analysis-master/analysis.egg-info/requires.txt
Normal file
@ -0,0 +1,6 @@
|
||||
numba
|
||||
numpy
|
||||
scipy
|
||||
scikit-learn
|
||||
six
|
||||
matplotlib
|
@ -7,10 +7,12 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.005"
|
||||
__version__ = "1.1.13.006"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.006:
|
||||
- cleaned up imports
|
||||
1.1.13.005:
|
||||
- cleaned up package
|
||||
1.1.13.004:
|
||||
@ -283,10 +285,7 @@ import scipy
|
||||
from scipy import *
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
try:
|
||||
from analysis import trueskill as Trueskill
|
||||
except:
|
||||
import trueskill as Trueskill
|
||||
from analysis import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
@ -5,19 +5,22 @@
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.003"
|
||||
__version__ = "1.0.0.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
1.0.0.004:
|
||||
- bug fixes
|
||||
- fixed changelog
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
@ -40,6 +43,8 @@ __all__ = [
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
import torch
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
@ -7,10 +7,20 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.001"
|
||||
__version__ = "1.1.13.006"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.006:
|
||||
- cleaned up imports
|
||||
1.1.13.005:
|
||||
- cleaned up package
|
||||
1.1.13.004:
|
||||
- small fixes to regression to improve performance
|
||||
1.1.13.003:
|
||||
- filtered nans from regression
|
||||
1.1.13.002:
|
||||
- removed torch requirement, and moved Regression back to regression.py
|
||||
1.1.13.001:
|
||||
- bug fix with linear regression not returning a proper value
|
||||
- cleaned up regression
|
||||
@ -239,7 +249,6 @@ __author__ = (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'_init_device',
|
||||
'load_csv',
|
||||
'basic_stats',
|
||||
'z_score',
|
||||
@ -260,7 +269,6 @@ __all__ = [
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'Regression',
|
||||
'Glicko2',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
@ -273,15 +281,11 @@ import csv
|
||||
import numba
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import math
|
||||
import scipy
|
||||
from scipy import *
|
||||
import sklearn
|
||||
from sklearn import *
|
||||
try:
|
||||
from analysis import trueskill as Trueskill
|
||||
except:
|
||||
import trueskill as Trueskill
|
||||
from analysis import trueskill as Trueskill
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
@ -344,15 +348,15 @@ def histo_analysis(hist_data):
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
regressions = []
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b):
|
||||
|
||||
return a * x + b
|
||||
@ -369,9 +373,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
return a * np.log(b*(x + c)) + d
|
||||
@ -386,10 +387,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
@ -405,8 +403,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
inputs = [inputs]
|
||||
outputs = [outputs]
|
||||
inputs = np.array([inputs])
|
||||
outputs = np.array([outputs])
|
||||
|
||||
plys = []
|
||||
limit = len(outputs[0])
|
||||
@ -428,10 +426,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
try:
|
||||
|
||||
def func(x, a, b, c, d):
|
||||
|
||||
|
@ -5,19 +5,22 @@
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.003"
|
||||
__version__ = "1.0.0.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||
__changelog__ = """
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
1.0.0.004:
|
||||
- bug fixes
|
||||
- fixed changelog
|
||||
1.0.0.003:
|
||||
- bug fixes
|
||||
1.0.0.002:
|
||||
-Added more parameters to log, exponential, polynomial
|
||||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||
to train the scaling and shifting of sigmoids
|
||||
1.0.0.001:
|
||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
@ -40,6 +43,8 @@ __all__ = [
|
||||
'CustomTrain'
|
||||
]
|
||||
|
||||
import torch
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
|
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.7.tar.gz
vendored
BIN
analysis-master/dist/analysis-1.0.0.7.tar.gz
vendored
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.8-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.8.tar.gz
vendored
Normal file
Binary file not shown.
@ -2,7 +2,7 @@ import setuptools
|
||||
|
||||
setuptools.setup(
|
||||
name="analysis", # Replace with your own username
|
||||
version="1.0.0.007",
|
||||
version="1.0.0.008",
|
||||
author="The Titan Scouting Team",
|
||||
author_email="titanscout2022@gmail.com",
|
||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||
@ -10,6 +10,14 @@ setuptools.setup(
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/titanscout2022/tr2022-strategy",
|
||||
packages=setuptools.find_packages(),
|
||||
install_requires=[
|
||||
"numba",
|
||||
"numpy",
|
||||
"scipy",
|
||||
"scikit-learn",
|
||||
"six",
|
||||
"matplotlib"
|
||||
],
|
||||
license = "GNU General Public License v3.0",
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
|
Loading…
Reference in New Issue
Block a user