analysis.py - v 1.0.6.002

changelog:
	- bug fixes
This commit is contained in:
ltcptgeneral 2018-11-28 10:17:18 -06:00
parent 655387df8f
commit 6bfc258e85
2 changed files with 22 additions and 97 deletions

View File

@ -8,9 +8,12 @@
#setup: #setup:
__version__ = "1.0.6.001" __version__ = "1.0.6.002"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.6.002:
- bug fixes
1.0.6.001: 1.0.6.001:
- corrected __all__ to contain all of the functions - corrected __all__ to contain all of the functions
1.0.6.000: 1.0.6.000:
@ -62,7 +65,7 @@ __changelog__ = """changelog:
- major bug fixes - major bug fixes
1.0.0.xxx: 1.0.0.xxx:
- added loading csv - added loading csv
- added 1d, column, row basic stats""" #changelog should be viewed using print(analysis.__changelog__) - added 1d, column, row basic stats"""
__author__ = ( __author__ = (
"Arthur Lu <arthurlu@ttic.edu>, " "Arthur Lu <arthurlu@ttic.edu>, "
@ -392,7 +395,6 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
data_t = [] data_t = []
for i in range (0, len(data) - 1, 1): for i in range (0, len(data) - 1, 1):
data_t.append(float(data[i])) data_t.append(float(data[i]))
_mean = mean(data_t) _mean = mean(data_t)
@ -403,19 +405,14 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
_mode = None _mode = None
try: try:
_stdev = stdev(data_t) _stdev = stdev(data_t)
except: except:
_stdev = None _stdev = None
try: try:
_variance = variance(data_t) _variance = variance(data_t)
except: except:
_variance = None _variance = None
out = [_mean, _median, _mode, _stdev, _variance] return [_mean, _median, _mode, _stdev, _variance]
return out
elif method == "column" or method == 1: elif method == "column" or method == 1:
@ -443,9 +440,7 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
except: except:
_variance = None _variance = None
out = [_mean, _median, _mode, _stdev, _variance] return [_mean, _median, _mode, _stdev, _variance]
return out
elif method == "row" or method == 2: elif method == "row" or method == 2:
@ -469,9 +464,8 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
except: except:
_variance = None _variance = None
out = [_mean, _median, _mode, _stdev, _variance] return [_mean, _median, _mode, _stdev, _variance]
return out
else: else:
raise error("method error") raise error("method error")
@ -482,17 +476,12 @@ def z_score(point, mean, stdev): #returns z score with inputs of point, mean and
def stdev_z_split(mean, stdev, delta, low_bound, high_bound): #returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score def stdev_z_split(mean, stdev, delta, low_bound, high_bound): #returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
z_split = [] z_split = []
i = low_bound i = low_bound
while True: while True:
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2)))) z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
i = i + delta i = i + delta
if i > high_bound: if i > high_bound:
break break
return z_split return z_split
@ -546,15 +535,12 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
i = low_bound i = low_bound
while True: while True:
if i > high_bound: if i > high_bound:
break break
try: try:
pred_change = mean_derivative + i * stdev_derivative pred_change = mean_derivative + i * stdev_derivative
except: except:
pred_change = mean_derivative pred_change = mean_derivative
predictions.append(float(hist_data[-1:][0]) + pred_change) predictions.append(float(hist_data[-1:][0]) + pred_change)
@ -566,21 +552,16 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
def poly_regression(x, y, power): def poly_regression(x, y, power):
if x == "null": #if x is 'null', then x will be filled with integer points between 1 and the size of y if x == "null": #if x is 'null', then x will be filled with integer points between 1 and the size of y
x = [] x = []
for i in range(len(y)): for i in range(len(y)):
print(i) print(i)
x.append(i+1) x.append(i+1)
reg_eq = scipy.polyfit(x, y, deg = power) reg_eq = scipy.polyfit(x, y, deg = power)
eq_str = "" eq_str = ""
for i in range(0, len(reg_eq), 1): for i in range(0, len(reg_eq), 1):
if i < len(reg_eq)- 1: if i < len(reg_eq)- 1:
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")+" eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")+"
else: else:
@ -590,11 +571,9 @@ def poly_regression(x, y, power):
for i in range(0, len(x), 1): for i in range(0, len(x), 1):
z = x[i] z = x[i]
exec("vals.append(" + eq_str + ")") exec("vals.append(" + eq_str + ")")
_rms = rms(vals, y) _rms = rms(vals, y)
r2_d2 = r_squared(vals, y) r2_d2 = r_squared(vals, y)
return [eq_str, _rms, r2_d2] return [eq_str, _rms, r2_d2]
@ -604,23 +583,17 @@ def log_regression(x, y, base):
x_fit = [] x_fit = []
for i in range(len(x)): for i in range(len(x)):
x_fit.append(np.log(x[i]) / np.log(base)) #change of base for logs x_fit.append(np.log(x[i]) / np.log(base)) #change of base for logs
reg_eq = np.polyfit(x_fit, y, 1) # y = reg_eq[0] * log(x, base) + reg_eq[1] reg_eq = np.polyfit(x_fit, y, 1) # y = reg_eq[0] * log(x, base) + reg_eq[1]
eq_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + str(base) +"))+" + str(reg_eq[1]) eq_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + str(base) +"))+" + str(reg_eq[1])
vals = [] vals = []
for i in range(len(x)): for i in range(len(x)):
z = x[i] z = x[i]
exec("vals.append(" + eq_str + ")") exec("vals.append(" + eq_str + ")")
_rms = rms(vals, y) _rms = rms(vals, y)
r2_d2 = r_squared(vals, y) r2_d2 = r_squared(vals, y)
return [eq_str, _rms, r2_d2] return [eq_str, _rms, r2_d2]
@ -630,23 +603,17 @@ def exp_regression(x, y, base):
y_fit = [] y_fit = []
for i in range(len(y)): for i in range(len(y)):
y_fit.append(np.log(y[i]) / np.log(base)) #change of base for logs y_fit.append(np.log(y[i]) / np.log(base)) #change of base for logs
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1]) reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
eq_str = "(" + str(base) + "**(" + str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))" eq_str = "(" + str(base) + "**(" + str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
vals = [] vals = []
for i in range(len(x)): for i in range(len(x)):
z = x[i] z = x[i]
exec("vals.append(" + eq_str + ")") exec("vals.append(" + eq_str + ")")
_rms = rms(vals, y) _rms = rms(vals, y)
r2_d2 = r_squared(vals, y) r2_d2 = r_squared(vals, y)
return [eq_str, _rms, r2_d2] return [eq_str, _rms, r2_d2]
@ -660,25 +627,17 @@ def r_squared(predictions, targets): # assumes equal size inputs
def rms(predictions, targets): # assumes equal size inputs def rms(predictions, targets): # assumes equal size inputs
out = 0 out = 0
_sum = 0 _sum = 0
avg = 0
for i in range(0, len(targets), 1): for i in range(0, len(targets), 1):
_sum = (targets[i] - predictions[i]) ** 2 _sum = (targets[i] - predictions[i]) ** 2
avg = _sum/len(targets) return float(math.sqrt(_sum/len(targets)))
out = math.sqrt(avg)
return float(out)
def calc_overfit(equation, rms_train, r2_train, x_test, y_test): def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
#overfit = performance(train) - performance(test) where performance is r^2 #performance overfit = performance(train) - performance(test) where performance is r^2
#overfir = error(train) - error(test) where error is rms #error overfit = error(train) - error(test) where error is rms; biased towards smaller values
vals = [] vals = []
@ -696,107 +655,79 @@ def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
def strip_data(data, mode): def strip_data(data, mode):
if mode == "adam": #x is the row number, y are the data if mode == "adam": #x is the row number, y are the data
pass pass
if mode == "eve": #x are the data, y is the column number if mode == "eve": #x are the data, y is the column number
pass pass
else: else:
raise error("mode error") raise error("mode error")
def optimize_regression(x, y, _range, resolution):#_range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000 def optimize_regression(x, y, _range, resolution):#_range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
#usage not: for demonstration purpose only, performance is shit #usage not: for demonstration purpose only, performance is shit
if type(resolution) != int: if type(resolution) != int:
raise error("resolution must be int") raise error("resolution must be int")
x = x
y = y
x_train = [] x_train = x
y_train = [] y_train = y
x_test = [] x_test = []
y_test = [] y_test = []
for i in range (0, math.floor(len(x) * 0.4), 1): for i in range (0, math.floor(len(x) * 0.4), 1):
index = random.randint(0, len(x) - 1) index = random.randint(0, len(x) - 1)
x_test.append(x[index]) x_test.append(x[index])
y_test.append(y[index]) y_test.append(y[index])
x.pop(index) x_train.pop(index)
y.pop(index) y_train.pop(index)
x_train = x
y_train = y
#print(x_train, x_test) #print(x_train, x_test)
#print(y_train, y_test) #print(y_train, y_test)
eqs = [] eqs = []
rmss = [] rmss = []
r2s = [] r2s = []
for i in range (0, _range + 1, 1): for i in range (0, _range + 1, 1):
eqs.append(poly_regression(x_train, y_train, i)[0]) eqs.append(poly_regression(x_train, y_train, i)[0])
rmss.append(poly_regression(x_train, y_train, i)[1]) rmss.append(poly_regression(x_train, y_train, i)[1])
r2s.append(poly_regression(x_train, y_train, i)[2]) r2s.append(poly_regression(x_train, y_train, i)[2])
for i in range (1, 100 * resolution + 1): for i in range (1, 100 * resolution + 1):
try: try:
eqs.append(exp_regression(x_train, y_train, float(i / resolution))[0]) eqs.append(exp_regression(x_train, y_train, float(i / resolution))[0])
rmss.append(exp_regression(x_train, y_train, float(i / resolution))[1]) rmss.append(exp_regression(x_train, y_train, float(i / resolution))[1])
r2s.append(exp_regression(x_train, y_train, float(i / resolution))[2]) r2s.append(exp_regression(x_train, y_train, float(i / resolution))[2])
except: except:
pass pass
for i in range (1, 100 * resolution + 1): for i in range (1, 100 * resolution + 1):
try: try:
eqs.append(log_regression(x_train, y_train, float(i / resolution))[0]) eqs.append(log_regression(x_train, y_train, float(i / resolution))[0])
rmss.append(log_regression(x_train, y_train, float(i / resolution))[1]) rmss.append(log_regression(x_train, y_train, float(i / resolution))[1])
r2s.append(log_regression(x_train, y_train, float(i / resolution))[2]) r2s.append(log_regression(x_train, y_train, float(i / resolution))[2])
except: except:
pass pass
for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data
if r2s[i] == 1: if r2s[i] == 1:
eqs[i] = "" eqs[i] = ""
rmss[i] = "" rmss[i] = ""
r2s[i] = "" r2s[i] = ""
while True: #removes all equations marked for removal while True: #removes all equations marked for removal
try: try:
eqs.remove('') eqs.remove('')
rmss.remove('') rmss.remove('')
r2s.remove('') r2s.remove('')
except: except:
break break
overfit = [] overfit = []
for i in range (0, len(eqs), 1): for i in range (0, len(eqs), 1):
overfit.append(calc_overfit(eqs[i], rmss[i], r2s[i], x_test, y_test)) overfit.append(calc_overfit(eqs[i], rmss[i], r2s[i], x_test, y_test))
return eqs, rmss, r2s, overfit return eqs, rmss, r2s, overfit
@ -809,7 +740,6 @@ def basic_analysis(filepath): #assumes that rows are the independent variable an
column = [] column = []
for i in range(0, row, 1): for i in range(0, row, 1):
column.append(len(data[i])) column.append(len(data[i]))
column_max = max(column) column_max = max(column)
@ -844,11 +774,9 @@ def generate_data(filename, x, y, low, high):
file = open(filename, "w") file = open(filename, "w")
for i in range (0, y, 1): for i in range (0, y, 1):
temp = "" temp = ""
for j in range (0, x - 1, 1): for j in range (0, x - 1, 1):
temp = str(random.uniform(low, high)) + "," + temp temp = str(random.uniform(low, high)) + "," + temp
temp = temp + str(random.uniform(low, high)) temp = temp + str(random.uniform(low, high))
@ -906,18 +834,15 @@ def debug():
print("--------------------------------") print("--------------------------------")
print(poly_regression([1, 2, 3, 4, 5], [1, 2, 4, 8, 16], 2)) print(poly_regression([1, 2, 3, 4, 5], [1, 2, 4, 8, 16], 2))
print(log_regression([1, 2, 3, 4], [2, 4, 8, 16], 2.717)) print(log_regression([1, 2, 3, 4], [2, 4, 8, 16], 2.717))
print(exp_regression([1, 2, 3, 4], [2, 4, 8, 16], 2.717)) print(exp_regression([1, 2, 3, 4], [2, 4, 8, 16], 2.717))
x, y, z = optimize_regression([0, 1, 2, 3, 4], [1, 2, 4, 7, 19], 10, 100) x, y, z = optimize_regression([0, 1, 2, 3, 4], [1, 2, 4, 7, 19], 10, 100)
for i in range(0, len(x), 1): for i in range(0, len(x), 1):
print(str(x[i]) + " | " + str(y[i]) + " | " + str(z[i])) print(str(x[i]) + " | " + str(y[i]) + " | " + str(z[i]))
#statistics def below------------------------------------------------------------------------------------------------------------------------------------------------------ #statistics def below
class StatisticsError(ValueError): class StatisticsError(ValueError):
pass pass