mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
analysis.py - v 1.0.6.002
changelog: - bug fixes
This commit is contained in:
parent
655387df8f
commit
6bfc258e85
Binary file not shown.
@ -8,9 +8,12 @@
|
||||
|
||||
#setup:
|
||||
|
||||
__version__ = "1.0.6.001"
|
||||
__version__ = "1.0.6.002"
|
||||
|
||||
#changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.0.6.002:
|
||||
- bug fixes
|
||||
1.0.6.001:
|
||||
- corrected __all__ to contain all of the functions
|
||||
1.0.6.000:
|
||||
@ -62,7 +65,7 @@ __changelog__ = """changelog:
|
||||
- major bug fixes
|
||||
1.0.0.xxx:
|
||||
- added loading csv
|
||||
- added 1d, column, row basic stats""" #changelog should be viewed using print(analysis.__changelog__)
|
||||
- added 1d, column, row basic stats"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>, "
|
||||
@ -392,7 +395,6 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
|
||||
data_t = []
|
||||
|
||||
for i in range (0, len(data) - 1, 1):
|
||||
|
||||
data_t.append(float(data[i]))
|
||||
|
||||
_mean = mean(data_t)
|
||||
@ -402,20 +404,15 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
|
||||
except:
|
||||
_mode = None
|
||||
try:
|
||||
_stdev = stdev(data_t)
|
||||
|
||||
_stdev = stdev(data_t)
|
||||
except:
|
||||
|
||||
_stdev = None
|
||||
|
||||
try:
|
||||
_variance = variance(data_t)
|
||||
except:
|
||||
_variance = None
|
||||
|
||||
out = [_mean, _median, _mode, _stdev, _variance]
|
||||
|
||||
return out
|
||||
return [_mean, _median, _mode, _stdev, _variance]
|
||||
|
||||
elif method == "column" or method == 1:
|
||||
|
||||
@ -442,10 +439,8 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
|
||||
_variance = variance(c_data)
|
||||
except:
|
||||
_variance = None
|
||||
|
||||
out = [_mean, _median, _mode, _stdev, _variance]
|
||||
|
||||
return out
|
||||
return [_mean, _median, _mode, _stdev, _variance]
|
||||
|
||||
elif method == "row" or method == 2:
|
||||
|
||||
@ -469,9 +464,8 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
|
||||
except:
|
||||
_variance = None
|
||||
|
||||
out = [_mean, _median, _mode, _stdev, _variance]
|
||||
return [_mean, _median, _mode, _stdev, _variance]
|
||||
|
||||
return out
|
||||
else:
|
||||
raise error("method error")
|
||||
|
||||
@ -482,17 +476,12 @@ def z_score(point, mean, stdev): #returns z score with inputs of point, mean and
|
||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound): #returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
||||
|
||||
z_split = []
|
||||
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
|
||||
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
||||
|
||||
i = i + delta
|
||||
|
||||
if i > high_bound:
|
||||
|
||||
break
|
||||
|
||||
return z_split
|
||||
@ -546,15 +535,12 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
|
||||
if i > high_bound:
|
||||
break
|
||||
|
||||
try:
|
||||
pred_change = mean_derivative + i * stdev_derivative
|
||||
|
||||
except:
|
||||
|
||||
except:
|
||||
pred_change = mean_derivative
|
||||
|
||||
predictions.append(float(hist_data[-1:][0]) + pred_change)
|
||||
@ -566,21 +552,16 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
|
||||
def poly_regression(x, y, power):
|
||||
|
||||
if x == "null": #if x is 'null', then x will be filled with integer points between 1 and the size of y
|
||||
|
||||
x = []
|
||||
|
||||
for i in range(len(y)):
|
||||
|
||||
print(i)
|
||||
|
||||
x.append(i+1)
|
||||
|
||||
reg_eq = scipy.polyfit(x, y, deg = power)
|
||||
|
||||
eq_str = ""
|
||||
|
||||
for i in range(0, len(reg_eq), 1):
|
||||
|
||||
if i < len(reg_eq)- 1:
|
||||
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")+"
|
||||
else:
|
||||
@ -590,11 +571,9 @@ def poly_regression(x, y, power):
|
||||
|
||||
for i in range(0, len(x), 1):
|
||||
z = x[i]
|
||||
|
||||
exec("vals.append(" + eq_str + ")")
|
||||
|
||||
_rms = rms(vals, y)
|
||||
|
||||
r2_d2 = r_squared(vals, y)
|
||||
|
||||
return [eq_str, _rms, r2_d2]
|
||||
@ -604,23 +583,17 @@ def log_regression(x, y, base):
|
||||
x_fit = []
|
||||
|
||||
for i in range(len(x)):
|
||||
|
||||
x_fit.append(np.log(x[i]) / np.log(base)) #change of base for logs
|
||||
|
||||
reg_eq = np.polyfit(x_fit, y, 1) # y = reg_eq[0] * log(x, base) + reg_eq[1]
|
||||
|
||||
eq_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + str(base) +"))+" + str(reg_eq[1])
|
||||
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
|
||||
z = x[i]
|
||||
|
||||
exec("vals.append(" + eq_str + ")")
|
||||
|
||||
_rms = rms(vals, y)
|
||||
|
||||
r2_d2 = r_squared(vals, y)
|
||||
|
||||
return [eq_str, _rms, r2_d2]
|
||||
@ -629,24 +602,18 @@ def exp_regression(x, y, base):
|
||||
|
||||
y_fit = []
|
||||
|
||||
for i in range(len(y)):
|
||||
|
||||
for i in range(len(y)):
|
||||
y_fit.append(np.log(y[i]) / np.log(base)) #change of base for logs
|
||||
|
||||
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
||||
|
||||
eq_str = "(" + str(base) + "**(" + str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
|
||||
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
|
||||
z = x[i]
|
||||
|
||||
exec("vals.append(" + eq_str + ")")
|
||||
|
||||
_rms = rms(vals, y)
|
||||
|
||||
r2_d2 = r_squared(vals, y)
|
||||
|
||||
return [eq_str, _rms, r2_d2]
|
||||
@ -660,25 +627,17 @@ def r_squared(predictions, targets): # assumes equal size inputs
|
||||
def rms(predictions, targets): # assumes equal size inputs
|
||||
|
||||
out = 0
|
||||
|
||||
_sum = 0
|
||||
|
||||
avg = 0
|
||||
|
||||
for i in range(0, len(targets), 1):
|
||||
|
||||
_sum = (targets[i] - predictions[i]) ** 2
|
||||
|
||||
avg = _sum/len(targets)
|
||||
|
||||
out = math.sqrt(avg)
|
||||
|
||||
return float(out)
|
||||
return float(math.sqrt(_sum/len(targets)))
|
||||
|
||||
def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
||||
|
||||
#overfit = performance(train) - performance(test) where performance is r^2
|
||||
#overfir = error(train) - error(test) where error is rms
|
||||
#performance overfit = performance(train) - performance(test) where performance is r^2
|
||||
#error overfit = error(train) - error(test) where error is rms; biased towards smaller values
|
||||
|
||||
vals = []
|
||||
|
||||
@ -696,107 +655,79 @@ def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
||||
def strip_data(data, mode):
|
||||
|
||||
if mode == "adam": #x is the row number, y are the data
|
||||
|
||||
pass
|
||||
|
||||
if mode == "eve": #x are the data, y is the column number
|
||||
|
||||
pass
|
||||
|
||||
else:
|
||||
|
||||
raise error("mode error")
|
||||
|
||||
def optimize_regression(x, y, _range, resolution):#_range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
|
||||
#usage not: for demonstration purpose only, performance is shit
|
||||
if type(resolution) != int:
|
||||
|
||||
raise error("resolution must be int")
|
||||
x = x
|
||||
y = y
|
||||
|
||||
x_train = []
|
||||
y_train = []
|
||||
x_train = x
|
||||
y_train = y
|
||||
|
||||
x_test = []
|
||||
y_test = []
|
||||
|
||||
for i in range (0, math.floor(len(x) * 0.4), 1):
|
||||
|
||||
index = random.randint(0, len(x) - 1)
|
||||
|
||||
x_test.append(x[index])
|
||||
y_test.append(y[index])
|
||||
|
||||
x.pop(index)
|
||||
y.pop(index)
|
||||
|
||||
x_train = x
|
||||
y_train = y
|
||||
x_train.pop(index)
|
||||
y_train.pop(index)
|
||||
|
||||
#print(x_train, x_test)
|
||||
#print(y_train, y_test)
|
||||
|
||||
eqs = []
|
||||
|
||||
rmss = []
|
||||
|
||||
r2s = []
|
||||
|
||||
for i in range (0, _range + 1, 1):
|
||||
|
||||
eqs.append(poly_regression(x_train, y_train, i)[0])
|
||||
rmss.append(poly_regression(x_train, y_train, i)[1])
|
||||
r2s.append(poly_regression(x_train, y_train, i)[2])
|
||||
|
||||
for i in range (1, 100 * resolution + 1):
|
||||
|
||||
try:
|
||||
|
||||
eqs.append(exp_regression(x_train, y_train, float(i / resolution))[0])
|
||||
rmss.append(exp_regression(x_train, y_train, float(i / resolution))[1])
|
||||
r2s.append(exp_regression(x_train, y_train, float(i / resolution))[2])
|
||||
|
||||
except:
|
||||
|
||||
pass
|
||||
|
||||
for i in range (1, 100 * resolution + 1):
|
||||
|
||||
try:
|
||||
|
||||
eqs.append(log_regression(x_train, y_train, float(i / resolution))[0])
|
||||
rmss.append(log_regression(x_train, y_train, float(i / resolution))[1])
|
||||
r2s.append(log_regression(x_train, y_train, float(i / resolution))[2])
|
||||
|
||||
except:
|
||||
|
||||
pass
|
||||
|
||||
for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data
|
||||
|
||||
if r2s[i] == 1:
|
||||
|
||||
eqs[i] = ""
|
||||
rmss[i] = ""
|
||||
r2s[i] = ""
|
||||
|
||||
while True: #removes all equations marked for removal
|
||||
|
||||
try:
|
||||
|
||||
try:
|
||||
eqs.remove('')
|
||||
rmss.remove('')
|
||||
r2s.remove('')
|
||||
|
||||
except:
|
||||
|
||||
break
|
||||
|
||||
overfit = []
|
||||
|
||||
for i in range (0, len(eqs), 1):
|
||||
|
||||
overfit.append(calc_overfit(eqs[i], rmss[i], r2s[i], x_test, y_test))
|
||||
|
||||
return eqs, rmss, r2s, overfit
|
||||
@ -808,8 +739,7 @@ def basic_analysis(filepath): #assumes that rows are the independent variable an
|
||||
|
||||
column = []
|
||||
|
||||
for i in range(0, row, 1):
|
||||
|
||||
for i in range(0, row, 1):
|
||||
column.append(len(data[i]))
|
||||
|
||||
column_max = max(column)
|
||||
@ -844,11 +774,9 @@ def generate_data(filename, x, y, low, high):
|
||||
file = open(filename, "w")
|
||||
|
||||
for i in range (0, y, 1):
|
||||
|
||||
temp = ""
|
||||
|
||||
for j in range (0, x - 1, 1):
|
||||
|
||||
temp = str(random.uniform(low, high)) + "," + temp
|
||||
|
||||
temp = temp + str(random.uniform(low, high))
|
||||
@ -906,18 +834,15 @@ def debug():
|
||||
print("--------------------------------")
|
||||
|
||||
print(poly_regression([1, 2, 3, 4, 5], [1, 2, 4, 8, 16], 2))
|
||||
|
||||
print(log_regression([1, 2, 3, 4], [2, 4, 8, 16], 2.717))
|
||||
|
||||
print(exp_regression([1, 2, 3, 4], [2, 4, 8, 16], 2.717))
|
||||
|
||||
x, y, z = optimize_regression([0, 1, 2, 3, 4], [1, 2, 4, 7, 19], 10, 100)
|
||||
|
||||
for i in range(0, len(x), 1):
|
||||
|
||||
print(str(x[i]) + " | " + str(y[i]) + " | " + str(z[i]))
|
||||
|
||||
#statistics def below------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
#statistics def below
|
||||
|
||||
class StatisticsError(ValueError):
|
||||
pass
|
||||
@ -1110,4 +1035,4 @@ def stdev(data, xbar=None):
|
||||
try:
|
||||
return var.sqrt()
|
||||
except AttributeError:
|
||||
return math.sqrt(var)
|
||||
return math.sqrt(var)
|
Loading…
Reference in New Issue
Block a user