feat: init LSC fitting

cuda and cpu-based LSC fitting using cupy and numpy

Signed-off-by: Dev Singh <dev@devksingh.com>
This commit is contained in:
Dev Singh 2020-09-22 18:55:27 +00:00
parent 9bb8b23b76
commit 4e2054a95b
2 changed files with 66 additions and 4 deletions

View File

@ -4,3 +4,4 @@ scipy
scikit-learn
six
matplotlib
cupy

View File

@ -2,7 +2,7 @@
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
# setup:
__version__ = "0.0.4"
@ -25,7 +25,8 @@ __changelog__ = """
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
"Arthur Lu <learthurgo@gmail.com>",
"Dev Singh <dev@devksingh.com>"
)
__all__ = [
@ -44,6 +45,8 @@ __all__ = [
]
import torch
import cupy as cp
import numpy as np
global device
@ -218,3 +221,61 @@ def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iter
ls.backward()
optim.step()
return kernel
class CircleFit:
"""Class to fit data to a circle using both the Least Square Circle (LSC) method and the HyperFit method"""
# For more information on the LSC method, see:
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
def __init__(self, x, y, xy=None):
if data != None:
self.coords = data
self.ournp = np if device === "cpu" else cp # use the correct numpy implementation based on resources available
else:
# following block combines x and y into one array if not already done
self.coords = self.ournp.vstack(([x_data.T], [y_data.T])).T
if device !== "cpu"
cp.cuda.Stream.null.synchronize() # ensure code finishes executing on GPU before continuing
def calc_R(x, y, xc, yc):
"""Returns distance between center and point"""
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
def f(c, x, y):
"""Returns distance between point and circle at c"""
Ri = calc_R(x, y, *c)
return Ri - Ri.mean()
def LSC(self):
"""Fits given data to a circle and returns the center, radius, and variance"""
x = coords[:, 0]
y = coords[:, 1]
# guessing at a center
x_m = self.ournp.mean(x)
y_m = self.ournp.mean(y)
# calculation of the reduced coordinates
u = x - x_m
v = y - y_m
# linear system defining the center (uc, vc) in reduced coordinates:
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
Suv = self.ournp.sum(u*v)
Suu = self.ournp.sum(u**2)
Svv = self.ournp.sum(v**2)
Suuv = self.ournp.sum(u**2 * v)
Suvv = self.ournp.sum(u * v**2)
Suuu = self.ournp.sum(u**3)
Svvv = self.ournp.sum(v**3)
# Solving the linear system
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
uc, vc = self.ournp.linalg.solve(A, B)
xc_1 = x_m + uc
yc_1 = y_m + vc
# Calculate the distances from center (xc_1, yc_1)
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
R_1 = self.ournp.mean(Ri_1)
# calcualte residual error
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
return xc_1, yc_1, R_1, residu_1