mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-13 22:56:18 +00:00
feat: init LSC fitting
cuda and cpu-based LSC fitting using cupy and numpy Signed-off-by: Dev Singh <dev@devksingh.com>
This commit is contained in:
parent
9bb8b23b76
commit
4e2054a95b
@ -3,4 +3,5 @@ numpy
|
||||
scipy
|
||||
scikit-learn
|
||||
six
|
||||
matplotlib
|
||||
matplotlib
|
||||
cupy
|
@ -2,7 +2,7 @@
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.4"
|
||||
@ -25,7 +25,8 @@ __changelog__ = """
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"Dev Singh <dev@devksingh.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
@ -44,6 +45,8 @@ __all__ = [
|
||||
]
|
||||
|
||||
import torch
|
||||
import cupy as cp
|
||||
import numpy as np
|
||||
|
||||
global device
|
||||
|
||||
@ -217,4 +220,62 @@ def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iter
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
return kernel
|
||||
|
||||
class CircleFit:
|
||||
"""Class to fit data to a circle using both the Least Square Circle (LSC) method and the HyperFit method"""
|
||||
# For more information on the LSC method, see:
|
||||
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
|
||||
def __init__(self, x, y, xy=None):
|
||||
if data != None:
|
||||
self.coords = data
|
||||
self.ournp = np if device === "cpu" else cp # use the correct numpy implementation based on resources available
|
||||
else:
|
||||
# following block combines x and y into one array if not already done
|
||||
self.coords = self.ournp.vstack(([x_data.T], [y_data.T])).T
|
||||
if device !== "cpu"
|
||||
cp.cuda.Stream.null.synchronize() # ensure code finishes executing on GPU before continuing
|
||||
def calc_R(x, y, xc, yc):
|
||||
"""Returns distance between center and point"""
|
||||
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
|
||||
def f(c, x, y):
|
||||
"""Returns distance between point and circle at c"""
|
||||
Ri = calc_R(x, y, *c)
|
||||
return Ri - Ri.mean()
|
||||
def LSC(self):
|
||||
"""Fits given data to a circle and returns the center, radius, and variance"""
|
||||
x = coords[:, 0]
|
||||
y = coords[:, 1]
|
||||
# guessing at a center
|
||||
x_m = self.ournp.mean(x)
|
||||
y_m = self.ournp.mean(y)
|
||||
|
||||
# calculation of the reduced coordinates
|
||||
u = x - x_m
|
||||
v = y - y_m
|
||||
|
||||
# linear system defining the center (uc, vc) in reduced coordinates:
|
||||
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
|
||||
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
|
||||
Suv = self.ournp.sum(u*v)
|
||||
Suu = self.ournp.sum(u**2)
|
||||
Svv = self.ournp.sum(v**2)
|
||||
Suuv = self.ournp.sum(u**2 * v)
|
||||
Suvv = self.ournp.sum(u * v**2)
|
||||
Suuu = self.ournp.sum(u**3)
|
||||
Svvv = self.ournp.sum(v**3)
|
||||
|
||||
# Solving the linear system
|
||||
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
|
||||
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
|
||||
uc, vc = self.ournp.linalg.solve(A, B)
|
||||
|
||||
xc_1 = x_m + uc
|
||||
yc_1 = y_m + vc
|
||||
|
||||
# Calculate the distances from center (xc_1, yc_1)
|
||||
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
|
||||
R_1 = self.ournp.mean(Ri_1)
|
||||
# calcualte residual error
|
||||
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
|
||||
return xc_1, yc_1, R_1, residu_1
|
Loading…
Reference in New Issue
Block a user