mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-26 06:35:56 +00:00
Added Clustering.py
moved kmeans from Analysis to Clustering
This commit is contained in:
parent
924b48fe63
commit
4923881829
@ -599,7 +599,7 @@ def npmin(data):
|
||||
def npmax(data):
|
||||
|
||||
return np.amax(data)
|
||||
|
||||
""" need to decide what to do with this function
|
||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||
|
||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||
@ -608,7 +608,7 @@ def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.
|
||||
centers = kernel.cluster_centers_
|
||||
|
||||
return centers, predictions
|
||||
|
||||
"""
|
||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||
|
||||
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||
|
30
analysis-master/tra_analysis/Clustering.py
Normal file
30
analysis-master/tra_analysis/Clustering.py
Normal file
@ -0,0 +1,30 @@
|
||||
# Titan Robotics Team 2022: Clustering submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import Clustering'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- created this submodule
|
||||
- copied kmeans clustering from Analysis
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
]
|
||||
|
||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||
|
||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||
kernel.fit(data)
|
||||
predictions = kernel.predict(data)
|
||||
centers = kernel.cluster_centers_
|
||||
|
||||
return centers, predictions
|
Loading…
Reference in New Issue
Block a user