mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
titanlearn.py v 2.0.0.000
This commit is contained in:
parent
03431fc5eb
commit
47dbdd2b39
@ -1,10 +1,10 @@
|
||||
# Titan Robotics Team 2022: Data Analysis Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been optimized for multhreaded computing
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# this should be imported as a python module using 'import analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been optimized for multhreaded computing
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.5.001"
|
||||
|
@ -1,9 +1,9 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import regression'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# this should be imported as a python module using 'import regression'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0.002"
|
||||
|
52
data analysis/analysis/titanlearn.py
Normal file
52
data analysis/analysis/titanlearn.py
Normal file
@ -0,0 +1,52 @@
|
||||
# Titan Robotics Team 2022: ML Module
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'import titanlearn'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module is optimized for multhreaded computing
|
||||
# this module learns from its mistakes far faster than 2022's captains
|
||||
# setup:
|
||||
|
||||
__version__ = "2.0.0.000"
|
||||
|
||||
#changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
2.0.0.000:
|
||||
- complete rewrite planned
|
||||
- depreciated 1.0.0.xxx versions
|
||||
- added simple training loop
|
||||
1.0.0.xxx:
|
||||
-added generation of ANNS, basic SGD training
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <arthurlu@ttic.edu>, "
|
||||
"Jacob Levine <jlevine@ttic.edu>,"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'train',
|
||||
]
|
||||
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
|
||||
def train(device, net, epochs, trainloader, optimizer, criterion):
|
||||
|
||||
for epoch in range(epochs): # loop over the dataset multiple times
|
||||
|
||||
for i, data in enumerate(trainloader, 0):
|
||||
|
||||
inputs = data[0].to(device)
|
||||
labels = data[1].to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels.to(torch.float))
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
return net
|
||||
print("finished training")
|
Loading…
Reference in New Issue
Block a user