mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 09:59:10 +00:00
analysis.py v 1.1.0.002
This commit is contained in:
parent
b2ac70a148
commit
3fa6af8594
Binary file not shown.
@ -7,10 +7,14 @@
|
||||
# number of easter eggs: 2
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.0.001"
|
||||
__version__ = "1.1.0.002"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.0.002:
|
||||
- snapped (removed) majority of uneeded imports
|
||||
- forced object mode (bad) on all jit
|
||||
- TODO: stop numba complaining about not being able to compile in nopython mode
|
||||
1.1.0.001:
|
||||
- removed from sklearn import * to resolve uneeded wildcard imports
|
||||
1.1.0.000:
|
||||
@ -132,28 +136,11 @@ __all__ = [
|
||||
|
||||
# imports (now in alphabetical order! v 1.0.3.006):
|
||||
|
||||
from bisect import bisect_left, bisect_right
|
||||
import collections
|
||||
import csv
|
||||
from decimal import Decimal
|
||||
import functools
|
||||
from fractions import Fraction
|
||||
from itertools import groupby
|
||||
import math
|
||||
import matplotlib
|
||||
import numba
|
||||
from numba import jit
|
||||
import numbers
|
||||
import numpy as np
|
||||
import pandas
|
||||
import random
|
||||
import scipy
|
||||
from scipy.optimize import curve_fit
|
||||
from scipy import stats
|
||||
from sklearn import preprocessing
|
||||
# import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002
|
||||
import time
|
||||
import torch
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
@ -172,7 +159,7 @@ def _init_device(setting, arg): # initiates computation device for ANNs
|
||||
else:
|
||||
raise error("specified device does not exist")
|
||||
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
@ -180,7 +167,7 @@ def load_csv(filepath):
|
||||
return file_array
|
||||
|
||||
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def basic_stats(data):
|
||||
|
||||
data_t = np.array(data).astype(float)
|
||||
@ -193,13 +180,13 @@ def basic_stats(data):
|
||||
return _mean, _median, _stdev, _variance
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean) / stdev
|
||||
return score
|
||||
|
||||
# expects 2d array, normalizes across all axes
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def z_normalize(array, *args):
|
||||
|
||||
array = np.array(array)
|
||||
@ -210,7 +197,7 @@ def z_normalize(array, *args):
|
||||
|
||||
return array
|
||||
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
# expects 2d array of [x,y]
|
||||
def histo_analysis(hist_data):
|
||||
|
||||
@ -228,22 +215,22 @@ def histo_analysis(hist_data):
|
||||
|
||||
return mean_derivative, stdev_derivative
|
||||
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def mean(data):
|
||||
|
||||
return np.mean(data)
|
||||
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def median(data):
|
||||
|
||||
return np.median(data)
|
||||
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def stdev(data):
|
||||
|
||||
return np.std(data)
|
||||
|
||||
@jit
|
||||
@jit(forceobj=True)
|
||||
def variance(data):
|
||||
|
||||
return np.var(data)
|
Loading…
Reference in New Issue
Block a user