diff --git a/data analysis/analysis/__pycache__/analysis.cpython-37.pyc b/data analysis/analysis/__pycache__/analysis.cpython-37.pyc index 9ad5ef20..0c111de6 100644 Binary files a/data analysis/analysis/__pycache__/analysis.cpython-37.pyc and b/data analysis/analysis/__pycache__/analysis.cpython-37.pyc differ diff --git a/data analysis/analysis/analysis.py b/data analysis/analysis/analysis.py index e17b0665..8b3589c4 100644 --- a/data analysis/analysis/analysis.py +++ b/data analysis/analysis/analysis.py @@ -7,10 +7,14 @@ # number of easter eggs: 2 # setup: -__version__ = "1.1.0.001" +__version__ = "1.1.0.002" # changelog should be viewed using print(analysis.__changelog__) __changelog__ = """changelog: +1.1.0.002: + - snapped (removed) majority of uneeded imports + - forced object mode (bad) on all jit + - TODO: stop numba complaining about not being able to compile in nopython mode 1.1.0.001: - removed from sklearn import * to resolve uneeded wildcard imports 1.1.0.000: @@ -132,28 +136,11 @@ __all__ = [ # imports (now in alphabetical order! v 1.0.3.006): -from bisect import bisect_left, bisect_right -import collections import csv -from decimal import Decimal -import functools -from fractions import Fraction -from itertools import groupby -import math -import matplotlib import numba from numba import jit -import numbers import numpy as np -import pandas -import random -import scipy -from scipy.optimize import curve_fit -from scipy import stats from sklearn import preprocessing -# import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002 -import time -import torch class error(ValueError): pass @@ -172,7 +159,7 @@ def _init_device(setting, arg): # initiates computation device for ANNs else: raise error("specified device does not exist") -@jit +@jit(forceobj=True) def load_csv(filepath): with open(filepath, newline='') as csvfile: file_array = np.array(list(csv.reader(csvfile))) @@ -180,7 +167,7 @@ def load_csv(filepath): return file_array # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row -@jit +@jit(forceobj=True) def basic_stats(data): data_t = np.array(data).astype(float) @@ -193,13 +180,13 @@ def basic_stats(data): return _mean, _median, _stdev, _variance # returns z score with inputs of point, mean and standard deviation of spread -@jit +@jit(forceobj=True) def z_score(point, mean, stdev): score = (point - mean) / stdev return score # expects 2d array, normalizes across all axes -@jit +@jit(forceobj=True) def z_normalize(array, *args): array = np.array(array) @@ -210,7 +197,7 @@ def z_normalize(array, *args): return array -@jit +@jit(forceobj=True) # expects 2d array of [x,y] def histo_analysis(hist_data): @@ -228,22 +215,22 @@ def histo_analysis(hist_data): return mean_derivative, stdev_derivative -@jit +@jit(forceobj=True) def mean(data): return np.mean(data) -@jit +@jit(forceobj=True) def median(data): return np.median(data) -@jit +@jit(forceobj=True) def stdev(data): return np.std(data) -@jit +@jit(forceobj=True) def variance(data): return np.var(data) \ No newline at end of file