mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 09:59:10 +00:00
analysis.py v 1.1.0.002
This commit is contained in:
parent
b2ac70a148
commit
3fa6af8594
Binary file not shown.
@ -7,10 +7,14 @@
|
|||||||
# number of easter eggs: 2
|
# number of easter eggs: 2
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.0.001"
|
__version__ = "1.1.0.002"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.0.002:
|
||||||
|
- snapped (removed) majority of uneeded imports
|
||||||
|
- forced object mode (bad) on all jit
|
||||||
|
- TODO: stop numba complaining about not being able to compile in nopython mode
|
||||||
1.1.0.001:
|
1.1.0.001:
|
||||||
- removed from sklearn import * to resolve uneeded wildcard imports
|
- removed from sklearn import * to resolve uneeded wildcard imports
|
||||||
1.1.0.000:
|
1.1.0.000:
|
||||||
@ -132,28 +136,11 @@ __all__ = [
|
|||||||
|
|
||||||
# imports (now in alphabetical order! v 1.0.3.006):
|
# imports (now in alphabetical order! v 1.0.3.006):
|
||||||
|
|
||||||
from bisect import bisect_left, bisect_right
|
|
||||||
import collections
|
|
||||||
import csv
|
import csv
|
||||||
from decimal import Decimal
|
|
||||||
import functools
|
|
||||||
from fractions import Fraction
|
|
||||||
from itertools import groupby
|
|
||||||
import math
|
|
||||||
import matplotlib
|
|
||||||
import numba
|
import numba
|
||||||
from numba import jit
|
from numba import jit
|
||||||
import numbers
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas
|
|
||||||
import random
|
|
||||||
import scipy
|
|
||||||
from scipy.optimize import curve_fit
|
|
||||||
from scipy import stats
|
|
||||||
from sklearn import preprocessing
|
from sklearn import preprocessing
|
||||||
# import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002
|
|
||||||
import time
|
|
||||||
import torch
|
|
||||||
|
|
||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
pass
|
pass
|
||||||
@ -172,7 +159,7 @@ def _init_device(setting, arg): # initiates computation device for ANNs
|
|||||||
else:
|
else:
|
||||||
raise error("specified device does not exist")
|
raise error("specified device does not exist")
|
||||||
|
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def load_csv(filepath):
|
def load_csv(filepath):
|
||||||
with open(filepath, newline='') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = np.array(list(csv.reader(csvfile)))
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
@ -180,7 +167,7 @@ def load_csv(filepath):
|
|||||||
return file_array
|
return file_array
|
||||||
|
|
||||||
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def basic_stats(data):
|
def basic_stats(data):
|
||||||
|
|
||||||
data_t = np.array(data).astype(float)
|
data_t = np.array(data).astype(float)
|
||||||
@ -193,13 +180,13 @@ def basic_stats(data):
|
|||||||
return _mean, _median, _stdev, _variance
|
return _mean, _median, _stdev, _variance
|
||||||
|
|
||||||
# returns z score with inputs of point, mean and standard deviation of spread
|
# returns z score with inputs of point, mean and standard deviation of spread
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def z_score(point, mean, stdev):
|
def z_score(point, mean, stdev):
|
||||||
score = (point - mean) / stdev
|
score = (point - mean) / stdev
|
||||||
return score
|
return score
|
||||||
|
|
||||||
# expects 2d array, normalizes across all axes
|
# expects 2d array, normalizes across all axes
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def z_normalize(array, *args):
|
def z_normalize(array, *args):
|
||||||
|
|
||||||
array = np.array(array)
|
array = np.array(array)
|
||||||
@ -210,7 +197,7 @@ def z_normalize(array, *args):
|
|||||||
|
|
||||||
return array
|
return array
|
||||||
|
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
# expects 2d array of [x,y]
|
# expects 2d array of [x,y]
|
||||||
def histo_analysis(hist_data):
|
def histo_analysis(hist_data):
|
||||||
|
|
||||||
@ -228,22 +215,22 @@ def histo_analysis(hist_data):
|
|||||||
|
|
||||||
return mean_derivative, stdev_derivative
|
return mean_derivative, stdev_derivative
|
||||||
|
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def mean(data):
|
def mean(data):
|
||||||
|
|
||||||
return np.mean(data)
|
return np.mean(data)
|
||||||
|
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def median(data):
|
def median(data):
|
||||||
|
|
||||||
return np.median(data)
|
return np.median(data)
|
||||||
|
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def stdev(data):
|
def stdev(data):
|
||||||
|
|
||||||
return np.std(data)
|
return np.std(data)
|
||||||
|
|
||||||
@jit
|
@jit(forceobj=True)
|
||||||
def variance(data):
|
def variance(data):
|
||||||
|
|
||||||
return np.var(data)
|
return np.var(data)
|
Loading…
Reference in New Issue
Block a user