mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 01:59:08 +00:00
added type hinting for a few functions,
added typedef module to hold custom typings Signed-off-by: Arthur Lu <learthurgo@gmail.com>
This commit is contained in:
parent
5d5d6c4c5e
commit
33c462570d
@ -380,6 +380,7 @@ import numpy as np
|
|||||||
import scipy
|
import scipy
|
||||||
import sklearn, sklearn.cluster
|
import sklearn, sklearn.cluster
|
||||||
from tra_analysis.metrics import trueskill as Trueskill
|
from tra_analysis.metrics import trueskill as Trueskill
|
||||||
|
from tra_analysis.typedef import R, List, Dict
|
||||||
|
|
||||||
# import submodules
|
# import submodules
|
||||||
|
|
||||||
@ -388,15 +389,27 @@ from .ClassificationMetric import ClassificationMetric
|
|||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def load_csv(filepath):
|
def load_csv(filepath: str) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Loads csv file into 2D numpy array. Does not check csv file validity.
|
||||||
|
parameters:
|
||||||
|
filepath: String path to the csv file
|
||||||
|
return:
|
||||||
|
2D numpy array of values stored in csv file
|
||||||
|
"""
|
||||||
with open(filepath, newline='') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = np.array(list(csv.reader(csvfile)))
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
csvfile.close()
|
csvfile.close()
|
||||||
return file_array
|
return file_array
|
||||||
|
|
||||||
# expects 1d array
|
def basic_stats(data: List[R]) -> Dict[str, R]:
|
||||||
def basic_stats(data):
|
"""
|
||||||
|
Calculates mean, median, standard deviation, variance, minimum, maximum of a simple set of elements
|
||||||
|
parameters:
|
||||||
|
data: List representing set of unordered elements
|
||||||
|
return:
|
||||||
|
Dictionary with (mean, median, standard-deviation, variance, minimum, maximum) as keys and corresponding values
|
||||||
|
"""
|
||||||
data_t = np.array(data).astype(float)
|
data_t = np.array(data).astype(float)
|
||||||
|
|
||||||
_mean = mean(data_t)
|
_mean = mean(data_t)
|
||||||
@ -408,8 +421,16 @@ def basic_stats(data):
|
|||||||
|
|
||||||
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
|
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
|
||||||
|
|
||||||
# returns z score with inputs of point, mean and standard deviation of spread
|
def z_score(point: R, mean: R, stdev: R) -> R:
|
||||||
def z_score(point, mean, stdev):
|
"""
|
||||||
|
Calculates z score of a specific point given mean and standard deviation of data
|
||||||
|
parameters:
|
||||||
|
point: Real value corresponding to a single point of data
|
||||||
|
mean: Real value corresponding to the mean of the dataset
|
||||||
|
stdev: Real value corresponding to the standard deviation of the dataset
|
||||||
|
return:
|
||||||
|
Real value that is the point's z score
|
||||||
|
"""
|
||||||
score = (point - mean) / stdev
|
score = (point - mean) / stdev
|
||||||
|
|
||||||
return score
|
return score
|
||||||
|
@ -74,3 +74,5 @@ from .RegressionMetric import RegressionMetric
|
|||||||
from . import Sort
|
from . import Sort
|
||||||
from . import StatisticalTest
|
from . import StatisticalTest
|
||||||
from . import SVM
|
from . import SVM
|
||||||
|
|
||||||
|
from . import typedef
|
4
analysis-master/tra_analysis/typedef.py
Normal file
4
analysis-master/tra_analysis/typedef.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
from typing import TypeVar, List, Dict
|
||||||
|
List = List
|
||||||
|
Dict = Dict
|
||||||
|
R = TypeVar('R', int, float)
|
Loading…
Reference in New Issue
Block a user