mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
added type hinting for a few functions,
added typedef module to hold custom typings Signed-off-by: Arthur Lu <learthurgo@gmail.com>
This commit is contained in:
parent
5d5d6c4c5e
commit
33c462570d
@ -380,6 +380,7 @@ import numpy as np
|
||||
import scipy
|
||||
import sklearn, sklearn.cluster
|
||||
from tra_analysis.metrics import trueskill as Trueskill
|
||||
from tra_analysis.typedef import R, List, Dict
|
||||
|
||||
# import submodules
|
||||
|
||||
@ -388,15 +389,27 @@ from .ClassificationMetric import ClassificationMetric
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def load_csv(filepath):
|
||||
def load_csv(filepath: str) -> np.ndarray:
|
||||
"""
|
||||
Loads csv file into 2D numpy array. Does not check csv file validity.
|
||||
parameters:
|
||||
filepath: String path to the csv file
|
||||
return:
|
||||
2D numpy array of values stored in csv file
|
||||
"""
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
csvfile.close()
|
||||
return file_array
|
||||
|
||||
# expects 1d array
|
||||
def basic_stats(data):
|
||||
|
||||
def basic_stats(data: List[R]) -> Dict[str, R]:
|
||||
"""
|
||||
Calculates mean, median, standard deviation, variance, minimum, maximum of a simple set of elements
|
||||
parameters:
|
||||
data: List representing set of unordered elements
|
||||
return:
|
||||
Dictionary with (mean, median, standard-deviation, variance, minimum, maximum) as keys and corresponding values
|
||||
"""
|
||||
data_t = np.array(data).astype(float)
|
||||
|
||||
_mean = mean(data_t)
|
||||
@ -408,8 +421,16 @@ def basic_stats(data):
|
||||
|
||||
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
def z_score(point, mean, stdev):
|
||||
def z_score(point: R, mean: R, stdev: R) -> R:
|
||||
"""
|
||||
Calculates z score of a specific point given mean and standard deviation of data
|
||||
parameters:
|
||||
point: Real value corresponding to a single point of data
|
||||
mean: Real value corresponding to the mean of the dataset
|
||||
stdev: Real value corresponding to the standard deviation of the dataset
|
||||
return:
|
||||
Real value that is the point's z score
|
||||
"""
|
||||
score = (point - mean) / stdev
|
||||
|
||||
return score
|
||||
|
@ -73,4 +73,6 @@ from . import RandomForest
|
||||
from .RegressionMetric import RegressionMetric
|
||||
from . import Sort
|
||||
from . import StatisticalTest
|
||||
from . import SVM
|
||||
from . import SVM
|
||||
|
||||
from . import typedef
|
4
analysis-master/tra_analysis/typedef.py
Normal file
4
analysis-master/tra_analysis/typedef.py
Normal file
@ -0,0 +1,4 @@
|
||||
from typing import TypeVar, List, Dict
|
||||
List = List
|
||||
Dict = Dict
|
||||
R = TypeVar('R', int, float)
|
Loading…
Reference in New Issue
Block a user