mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
6
This commit is contained in:
parent
97f56a2ff2
commit
07a381b01b
Binary file not shown.
@ -618,10 +618,10 @@ def exp_regression(x, y, base):
|
||||
y_fit = []
|
||||
|
||||
for i in range(len(y)):
|
||||
|
||||
|
||||
y_fit.append(np.log(y[i]) / np.log(base)) #change of base for logs
|
||||
|
||||
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
||||
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
||||
|
||||
eq_str = "(" + str(base) + "**(" + str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
|
||||
|
||||
@ -663,6 +663,64 @@ def rms(predictions, targets): # assumes equal size inputs
|
||||
|
||||
return float(out)
|
||||
|
||||
def strip_data(data, mode):
|
||||
|
||||
if mode == "adam": #x is the row number, y are the data
|
||||
|
||||
pass
|
||||
|
||||
if mode == "eve": #x are the data, y is the column number
|
||||
|
||||
pass
|
||||
|
||||
else:
|
||||
|
||||
raise error("mode error")
|
||||
|
||||
def optimize_regression(x, y, _range, resolution):#_range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
|
||||
|
||||
if type(resolution) != int:
|
||||
|
||||
raise error("resolution must be int")
|
||||
|
||||
eqs = []
|
||||
|
||||
rmss = []
|
||||
|
||||
r2s = []
|
||||
|
||||
for i in range (0, _range + 1, 1):
|
||||
|
||||
eqs.append(poly_regression(x, y, i)[0])
|
||||
rmss.append(poly_regression(x, y, i)[1])
|
||||
r2s.append(poly_regression(x, y, i)[2])
|
||||
|
||||
for i in range (1, 100 * resolution + 1):
|
||||
|
||||
try:
|
||||
|
||||
eqs.append(exp_regression(x, y, float(i / resolution))[0])
|
||||
rmss.append(exp_regression(x, y, float(i / resolution))[1])
|
||||
r2s.append(exp_regression(x, y, float(i / resolution))[2])
|
||||
|
||||
except:
|
||||
|
||||
pass
|
||||
|
||||
for i in range (1, 100 * resolution + 1):
|
||||
|
||||
try:
|
||||
|
||||
eqs.append(log_regression(x, y, float(i / resolution))[0])
|
||||
rmss.append(log_regression(x, y, float(i / resolution))[1])
|
||||
r2s.append(log_regression(x, y, float(i / resolution))[2])
|
||||
|
||||
except:
|
||||
|
||||
pass
|
||||
|
||||
return [eqs, rmss, r2s]
|
||||
|
||||
def basic_analysis(filepath): #assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
|
||||
|
||||
data = load_csv(filepath)
|
||||
|
Loading…
Reference in New Issue
Block a user