tra-analysis/analysis.py

337 lines
9.9 KiB
Python
Raw Normal View History

2018-11-07 03:56:51 +00:00
#this should be imported as a python module using 'import analysis'
import statistics
import math
import csv
import functools
class c_entities:
c_names = []
c_ids = []
c_pos = []
c_porperties = []
c_logic = []
class nc_entities:
c_names = []
c_ids = []
c_pos = []
c_properties = []
c_effects = []
def debug(self):
print ("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of psoitions, 2d array of properties, and 2d array of effects.")
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
def __init__(self, names, ids, pos, properties, effects):
self.c_names = names
self.c_ids = ids
self.c_pos = pos
self.c_properties = properties
self.c_effects = effects
return None
def append(self, n_name, n_id, n_pos, n_property, n_effect):
self.c_names.append(n_name)
self.c_ids.append(n_id)
self.c_pos.append(n_pos)
self.c_properties.append(n_property)
self.c_effects.append(n_effect)
def edit(self, search, n_name, n_id, n_pos, n_property, n_effect):
position = 0
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
if n_name != "null":
self.c_names[position] = n_name
if n_id != "null":
self.c_ids[position] = n_id
if n_pos != "null":
self.c_pos[position] = n_pos
if n_property != "null":
self.c_properties[position] = n_property
if n_effect != "null":
self.c_effects[position] = n_effect
return None
def search(self, search):
position = 0
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_properties[position], self.c_effects[position]]
class obstacles:
c_names = []
c_ids = []
c_perim = []
c_effects = []
def debug(self):
print("obstacles has atributes names, ids, positions, perimeters, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 3d array of perimeters, 2d array of effects.")
return [self.c_names, self.c_ids, self.c_perim, self.c_effects]
def __init__(self, names, ids, perims, effects):
self.c_names = names
self.c_ids = ids
self.c_perim = perims
self.c_effects = effects
return None
def append(self, n_name, n_id, n_perim, n_effect):
self.c_names.append(n_name)
self.c_ids.append(n_id)
self.c_perim.append(n_perim)
self.c_effects.append(n_effect)
return None
def edit(self, search, n_name, n_id, n_perim, n_effect):
position = 0
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
if n_name != "null":
self.c_names[position] = n_name
if n_id != "null":
self.c_ids[position] = n_id
if n_perim != "null":
self.c_perim[position] = n_perim
if n_effect != "null":
self.c_effects[position] = n_effect
return None
def search(self, search):
position = 0
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
return [self.c_names[position], self.c_ids[position], self.c_perim[position], self.c_effects[position]]
class objectives:
c_names = []
c_ids = []
c_pos = []
c_effects = []
def debug(self):
print("objectives has atributes names, ids, positions, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 1d array of effects.")
return [self.c_names, self.c_ids, self.c_pos, self.c_effects]
def __init__(self, names, ids, pos, effects):
self.c_names = names
self.c_ids = ids
self.c_pos = pos
self.c_effects = effects
return None
def append(self, n_name, n_id, n_pos, n_effect):
self.c_names.append(n_name)
self.c_ids.append(n_id)
self.c_pos.append(n_pos)
self.c_effects.append(n_effect)
return None
def edit(self, search, n_name, n_id, n_pos, n_effect):
position = 0
print(self.c_ids)
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
if n_name != "null":
self.c_names[position] = n_name
if n_id != "null":
self.c_ids[position] = n_id
if n_pos != "null":
self.c_pos[position] = n_pos
if n_effect != "null":
self.c_effects[position] = n_effect
return None
def search(self, search):
position = 0
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_effects[position]]
def load_csv(filepath):
with open(filepath, newline = '') as csvfile:
file_array = list(csv.reader(csvfile))
return file_array
def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
if mode == 'debug':
out = "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
return out
if mode == "1d" or mode == 0:
data_t = []
for i in range (0, len(data) - 1, 1):
data_t.append(float(data[i]))
mean = statistics.mean(data_t)
median = statistics.median(data_t)
try:
mode = statistics.mode(data_t)
except:
mode = None
stdev = statistics.stdev(data_t)
variance = statistics.variance(data_t)
out = [mean, median, mode, stdev, variance]
return out
elif mode == "column" or mode == 1:
c_data = []
c_data_sorted = []
for i in data:
c_data.append(float(i[arg]))
mean = statistics.mean(c_data)
median = statistics.median(c_data)
try:
mode = statistics.mode(c_data)
except:
mode = None
stdev = statistics.stdev(c_data)
variance = statistics.variance(c_data)
out = [mean, median, mode, stdev, variance]
return out
elif mode == "row" or mode == 2:
r_data = []
for i in range(len(data[arg])):
r_data.append(float(data[arg][i]))
mean = statistics.mean(r_data)
median = statistics.median(r_data)
try:
mode = statistics.mode(r_data)
except:
mode = None
stdev = statistics.stdev(r_data)
variance = statistics.variance(r_data)
out = [mean, median, mode, stdev, variance]
return out
else:
return ["mode_error", "mode_error"]
def z_score(point, mean, stdev):
score = (point - mean)/stdev
return score
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
z_split = []
i = low_bound
while True:
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
i = i + delta
if i > high_bound:
break
return z_split
def histo_analysis(hist_data): #note: depreciated
if hist_data == 'debug':
return['lower estimate (5%)', 'lower middle estimate (25%)', 'middle estimate (50%)', 'higher middle estimate (75%)', 'high estimate (95%)', 'standard deviation', 'note: this has been depreciated']
derivative = []
for i in range(0, len(hist_data) - 1, 1):
derivative.append(float(hist_data[i+1]) - float(hist_data[i]))
derivative_sorted = sorted(derivative, key=int)
mean_derivative = basic_stats(derivative_sorted, "1d", 0)[0]
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
low_bound = mean_derivative + -1.645 * stdev_derivative
lm_bound = mean_derivative + -0.674 * stdev_derivative
mid_bound = mean_derivative * 0 * stdev_derivative
hm_bound = mean_derivative + 0.674 * stdev_derivative
high_bound = mean_derivative + 1.645 * stdev_derivative
low_est = float(hist_data[-1:][0]) + low_bound
lm_est = float(hist_data[-1:][0]) + lm_bound
mid_est = float(hist_data[-1:][0]) + mid_bound
hm_est = float(hist_data[-1:][0]) + hm_bound
high_est = float(hist_data[-1:][0]) + high_bound
return [low_est, lm_est, mid_est, hm_est, high_est, stdev_derivative]
def histo_analysis_2(hist_data, delta, low_bound, high_bound):
if hist_data == 'debug':
return ('returns list of predicted values based on historical data; input delta for delta step in z-score and lower and igher bounds in number for standard deviations')
derivative = []
for i in range(0, len(hist_data) - 1, 1):
derivative.append(float(hist_data[i + 1]) - float(hist_data [i]))
derivative_sorted = sorted(derivative, key=int)
mean_derivative = basic_stats(derivative_sorted,"1d", 0)[0]
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
predictions = []
pred_change = 0
i = low_bound
while True:
pred_change = mean_derivative + i * stdev_derivative
predictions.append(float(hist_data[-1:][0]) + pred_change)
i = i + delta
if i > high_bound:
break
return predictions