#this should be imported as a python module using 'import analysis' import statistics import math import csv import functools class c_entities: c_names = [] c_ids = [] c_pos = [] c_porperties = [] c_logic = [] class nc_entities: c_names = [] c_ids = [] c_pos = [] c_properties = [] c_effects = [] def debug(self): print ("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of psoitions, 2d array of properties, and 2d array of effects.") return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects] def __init__(self, names, ids, pos, properties, effects): self.c_names = names self.c_ids = ids self.c_pos = pos self.c_properties = properties self.c_effects = effects return None def append(self, n_name, n_id, n_pos, n_property, n_effect): self.c_names.append(n_name) self.c_ids.append(n_id) self.c_pos.append(n_pos) self.c_properties.append(n_property) self.c_effects.append(n_effect) def edit(self, search, n_name, n_id, n_pos, n_property, n_effect): position = 0 for i in range(0, len(self.c_ids), 1): if self.c_ids[i] == search: position = i if n_name != "null": self.c_names[position] = n_name if n_id != "null": self.c_ids[position] = n_id if n_pos != "null": self.c_pos[position] = n_pos if n_property != "null": self.c_properties[position] = n_property if n_effect != "null": self.c_effects[position] = n_effect return None def search(self, search): position = 0 for i in range(0, len(self.c_ids), 1): if self.c_ids[i] == search: position = i return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_properties[position], self.c_effects[position]] class obstacles: c_names = [] c_ids = [] c_perim = [] c_effects = [] def debug(self): print("obstacles has atributes names, ids, positions, perimeters, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 3d array of perimeters, 2d array of effects.") return [self.c_names, self.c_ids, self.c_perim, self.c_effects] def __init__(self, names, ids, perims, effects): self.c_names = names self.c_ids = ids self.c_perim = perims self.c_effects = effects return None def append(self, n_name, n_id, n_perim, n_effect): self.c_names.append(n_name) self.c_ids.append(n_id) self.c_perim.append(n_perim) self.c_effects.append(n_effect) return None def edit(self, search, n_name, n_id, n_perim, n_effect): position = 0 for i in range(0, len(self.c_ids), 1): if self.c_ids[i] == search: position = i if n_name != "null": self.c_names[position] = n_name if n_id != "null": self.c_ids[position] = n_id if n_perim != "null": self.c_perim[position] = n_perim if n_effect != "null": self.c_effects[position] = n_effect return None def search(self, search): position = 0 for i in range(0, len(self.c_ids), 1): if self.c_ids[i] == search: position = i return [self.c_names[position], self.c_ids[position], self.c_perim[position], self.c_effects[position]] class objectives: c_names = [] c_ids = [] c_pos = [] c_effects = [] def debug(self): print("objectives has atributes names, ids, positions, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 1d array of effects.") return [self.c_names, self.c_ids, self.c_pos, self.c_effects] def __init__(self, names, ids, pos, effects): self.c_names = names self.c_ids = ids self.c_pos = pos self.c_effects = effects return None def append(self, n_name, n_id, n_pos, n_effect): self.c_names.append(n_name) self.c_ids.append(n_id) self.c_pos.append(n_pos) self.c_effects.append(n_effect) return None def edit(self, search, n_name, n_id, n_pos, n_effect): position = 0 print(self.c_ids) for i in range(0, len(self.c_ids), 1): if self.c_ids[i] == search: position = i if n_name != "null": self.c_names[position] = n_name if n_id != "null": self.c_ids[position] = n_id if n_pos != "null": self.c_pos[position] = n_pos if n_effect != "null": self.c_effects[position] = n_effect return None def search(self, search): position = 0 for i in range(0, len(self.c_ids), 1): if self.c_ids[i] == search: position = i return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_effects[position]] def load_csv(filepath): with open(filepath, newline = '') as csvfile: file_array = list(csv.reader(csvfile)) return file_array def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row if mode == 'debug': out = "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]" return out if mode == "1d" or mode == 0: data_t = [] for i in range (0, len(data) - 1, 1): data_t.append(float(data[i])) mean = statistics.mean(data_t) median = statistics.median(data_t) try: mode = statistics.mode(data_t) except: mode = None stdev = statistics.stdev(data_t) variance = statistics.variance(data_t) out = [mean, median, mode, stdev, variance] return out elif mode == "column" or mode == 1: c_data = [] c_data_sorted = [] for i in data: c_data.append(float(i[arg])) mean = statistics.mean(c_data) median = statistics.median(c_data) try: mode = statistics.mode(c_data) except: mode = None stdev = statistics.stdev(c_data) variance = statistics.variance(c_data) out = [mean, median, mode, stdev, variance] return out elif mode == "row" or mode == 2: r_data = [] for i in range(len(data[arg])): r_data.append(float(data[arg][i])) mean = statistics.mean(r_data) median = statistics.median(r_data) try: mode = statistics.mode(r_data) except: mode = None stdev = statistics.stdev(r_data) variance = statistics.variance(r_data) out = [mean, median, mode, stdev, variance] return out else: return ["mode_error", "mode_error"] def z_score(point, mean, stdev): score = (point - mean)/stdev return score def stdev_z_split(mean, stdev, delta, low_bound, high_bound): z_split = [] i = low_bound while True: z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2)))) i = i + delta if i > high_bound: break return z_split def histo_analysis(hist_data): #note: depreciated if hist_data == 'debug': return['lower estimate (5%)', 'lower middle estimate (25%)', 'middle estimate (50%)', 'higher middle estimate (75%)', 'high estimate (95%)', 'standard deviation', 'note: this has been depreciated'] derivative = [] for i in range(0, len(hist_data) - 1, 1): derivative.append(float(hist_data[i+1]) - float(hist_data[i])) derivative_sorted = sorted(derivative, key=int) mean_derivative = basic_stats(derivative_sorted, "1d", 0)[0] stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3] low_bound = mean_derivative + -1.645 * stdev_derivative lm_bound = mean_derivative + -0.674 * stdev_derivative mid_bound = mean_derivative * 0 * stdev_derivative hm_bound = mean_derivative + 0.674 * stdev_derivative high_bound = mean_derivative + 1.645 * stdev_derivative low_est = float(hist_data[-1:][0]) + low_bound lm_est = float(hist_data[-1:][0]) + lm_bound mid_est = float(hist_data[-1:][0]) + mid_bound hm_est = float(hist_data[-1:][0]) + hm_bound high_est = float(hist_data[-1:][0]) + high_bound return [low_est, lm_est, mid_est, hm_est, high_est, stdev_derivative] def histo_analysis_2(hist_data, delta, low_bound, high_bound): if hist_data == 'debug': return ('returns list of predicted values based on historical data; input delta for delta step in z-score and lower and igher bounds in number for standard deviations') derivative = [] for i in range(0, len(hist_data) - 1, 1): derivative.append(float(hist_data[i + 1]) - float(hist_data [i])) derivative_sorted = sorted(derivative, key=int) mean_derivative = basic_stats(derivative_sorted,"1d", 0)[0] stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3] predictions = [] pred_change = 0 i = low_bound while True: pred_change = mean_derivative + i * stdev_derivative predictions.append(float(hist_data[-1:][0]) + pred_change) i = i + delta if i > high_bound: break return predictions