mirror of
https://github.com/ltcptgeneral/cse151b-final-project.git
synced 2025-10-23 10:59:21 +00:00
Compare commits
4 Commits
gymnasium-
...
ethan-test
Author | SHA1 | Date | |
---|---|---|---|
|
335d56ac88 | ||
|
496b8ad796 | ||
|
8d3ce990e3 | ||
|
7ad5b97463 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -1,4 +1,3 @@
|
|||||||
**/data/*
|
**/data/*
|
||||||
**/*.zip
|
|
||||||
**/__pycache__
|
|
||||||
/env
|
/env
|
||||||
|
**/*.zip
|
129
Gym-Wordle-main/.gitignore
vendored
Normal file
129
Gym-Wordle-main/.gitignore
vendored
Normal file
@@ -0,0 +1,129 @@
|
|||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
pip-wheel-metadata/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
21
Gym-Wordle-main/LICENSE
Normal file
21
Gym-Wordle-main/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2022 David Kraemer
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
78
Gym-Wordle-main/README.md
Normal file
78
Gym-Wordle-main/README.md
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
# Gym-Wordle
|
||||||
|
|
||||||
|
An OpenAI gym compatible environment for training agents to play Wordle.
|
||||||
|
|
||||||
|
<p align='center'>
|
||||||
|
<img src="https://user-images.githubusercontent.com/8514041/152437216-d78e85f6-8049-4cb9-ae61-3c015a8a0e4f.gif"><br/>
|
||||||
|
<em>User-input demo of the environment</em>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
My goal is for a minimalist package that lets you install quickly and get on
|
||||||
|
with your research. Installation is just a simple call to `pip`:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ pip install gym_wordle
|
||||||
|
```
|
||||||
|
|
||||||
|
### Requirements
|
||||||
|
|
||||||
|
In keeping with my desire to have a minimalist package, there are only three
|
||||||
|
major requirements:
|
||||||
|
|
||||||
|
* `numpy`
|
||||||
|
* `gym`
|
||||||
|
* `sty`, a lovely little package for stylizing text in terminals
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
The basic flow for training agents with the `Wordle-v0` environment is the same
|
||||||
|
as with gym environments generally:
|
||||||
|
|
||||||
|
```Python
|
||||||
|
import gym
|
||||||
|
import gym_wordle
|
||||||
|
|
||||||
|
eng = gym.make("Wordle-v0")
|
||||||
|
|
||||||
|
done = False
|
||||||
|
while not done:
|
||||||
|
action = ... # RL magic
|
||||||
|
state, reward, done, info = env.step(action)
|
||||||
|
```
|
||||||
|
|
||||||
|
If you're like millions of other people, you're a Wordle-obsessive in your own
|
||||||
|
right. I have good news for you! The `Wordle-v0` environment currently has an
|
||||||
|
implemented `render` method, which allows you to see a human-friendly version
|
||||||
|
of the game. And it isn't so hard to set up the environment to play for
|
||||||
|
yourself. Here's an example script:
|
||||||
|
|
||||||
|
```Python
|
||||||
|
from gym_wordle.utils import play
|
||||||
|
|
||||||
|
play()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Documentation
|
||||||
|
|
||||||
|
Coming soon!
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
Coming soon!
|
||||||
|
|
||||||
|
## Citing
|
||||||
|
|
||||||
|
If you decide to use this project in your work, please consider a citation!
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@misc{gym_wordle,
|
||||||
|
author = {Kraemer, David},
|
||||||
|
title = {An Environment for Reinforcement Learning with Wordle},
|
||||||
|
year = {2022},
|
||||||
|
publisher = {GitHub},
|
||||||
|
journal = {GitHub repository},
|
||||||
|
howpublished = {\url{https://github.com/DavidNKraemer/Gym-Wordle}},
|
||||||
|
}
|
||||||
|
```
|
7
Gym-Wordle-main/gym-wordle.toml
Normal file
7
Gym-Wordle-main/gym-wordle.toml
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
[build-system]
|
||||||
|
|
||||||
|
requires = [
|
||||||
|
"setuptools>=42",
|
||||||
|
"wheel"
|
||||||
|
]
|
||||||
|
build-backend = "setuptools.build_meta"
|
@@ -91,3 +91,4 @@ def play():
|
|||||||
env.render()
|
env.render()
|
||||||
|
|
||||||
print(f"The word was {solution}")
|
print(f"The word was {solution}")
|
||||||
|
|
@@ -1,16 +1,18 @@
|
|||||||
import gymnasium as gym
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import numpy.typing as npt
|
import numpy.typing as npt
|
||||||
from sty import fg, bg, ef, rs
|
from sty import fg, bg, ef, rs
|
||||||
|
|
||||||
from collections import Counter, defaultdict
|
from collections import Counter
|
||||||
from gym_wordle.utils import to_english, to_array, get_words
|
from gym_wordle.utils import to_english, to_array, get_words
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
|
||||||
class WordList(gym.spaces.Discrete):
|
class WordList(gym.spaces.Discrete):
|
||||||
"""Super class for defining a space of valid words according to a specified
|
"""Super class for defining a space of valid words according to a specified
|
||||||
list.
|
list.
|
||||||
|
|
||||||
|
TODO: Fix these paragraphs
|
||||||
The space is a subclass of gym.spaces.Discrete, where each element
|
The space is a subclass of gym.spaces.Discrete, where each element
|
||||||
corresponds to an index of a valid word in the word list. The obfuscation
|
corresponds to an index of a valid word in the word list. The obfuscation
|
||||||
is necessary for more direct implementation of RL algorithms, which expect
|
is necessary for more direct implementation of RL algorithms, which expect
|
||||||
@@ -71,9 +73,10 @@ class SolutionList(WordList):
|
|||||||
|
|
||||||
Of course, the set of solutions is a strict subset of the set of guesses.
|
Of course, the set of solutions is a strict subset of the set of guesses.
|
||||||
|
|
||||||
|
Reference: https://fivethirtyeight.com/features/when-the-riddler-met-wordle/
|
||||||
|
|
||||||
This class represents the set of solution words.
|
This class represents the set of solution words.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@@ -85,7 +88,7 @@ class SolutionList(WordList):
|
|||||||
|
|
||||||
class WordleObsSpace(gym.spaces.Box):
|
class WordleObsSpace(gym.spaces.Box):
|
||||||
"""Implementation of the state (observation) space in terms of gym
|
"""Implementation of the state (observation) space in terms of gym
|
||||||
primitives, in this case, gym.spaces.Box.
|
primatives, in this case, gym.spaces.Box.
|
||||||
|
|
||||||
The Wordle observation space can be thought of as a 6x5 array with two
|
The Wordle observation space can be thought of as a 6x5 array with two
|
||||||
channels:
|
channels:
|
||||||
@@ -98,11 +101,20 @@ class WordleObsSpace(gym.spaces.Box):
|
|||||||
where there are 6 rows, one for each turn in the game, and 5 columns, since
|
where there are 6 rows, one for each turn in the game, and 5 columns, since
|
||||||
the solution will always be a word of length 5.
|
the solution will always be a word of length 5.
|
||||||
|
|
||||||
For simplicity, and compatibility with stable_baselines algorithms,
|
For simplicity, and compatibility with the stable_baselines algorithms,
|
||||||
this multichannel is modeled as a 6x10 array, where the two channels are
|
this multichannel is modeled as a 6x10 array, where the two channels are
|
||||||
horizontally appended (along columns). Thus each row in the observation
|
horizontally appended (along columns). Thus each row in the observation
|
||||||
should be interpreted as c0 c1 c2 c3 c4 f0 f1 f2 f3 f4 when the word is
|
should be interpreted as
|
||||||
c0...c4 and its associated flags are f0...f4.
|
|
||||||
|
c0 c1 c2 c3 c4 f0 f1 f2 f3 f4
|
||||||
|
|
||||||
|
when the word is c0...c4 and its associated flags are f0...f4.
|
||||||
|
|
||||||
|
While the superclass method `sample` is available to the WordleObsSpace, it
|
||||||
|
should be emphasized that the output of `sample` will (almost surely) not
|
||||||
|
correspond to a real game configuration, because the sampling is not out of
|
||||||
|
possible game configurations. Instead, the Box superclass just samples the
|
||||||
|
integer array space uniformly.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
@@ -119,11 +131,20 @@ class WordleObsSpace(gym.spaces.Box):
|
|||||||
|
|
||||||
|
|
||||||
class GuessList(WordList):
|
class GuessList(WordList):
|
||||||
"""Space for *guess* words to the Wordle environment.
|
"""Space for *solution* words to the Wordle environment.
|
||||||
|
|
||||||
|
In the game Wordle, there are two different collections of words:
|
||||||
|
|
||||||
|
* "guesses", which the game accepts as valid words to use to guess the
|
||||||
|
answer.
|
||||||
|
* "solutions", which the game uses to choose solutions from.
|
||||||
|
|
||||||
|
Of course, the set of solutions is a strict subset of the set of guesses.
|
||||||
|
|
||||||
|
Reference: https://fivethirtyeight.com/features/when-the-riddler-met-wordle/
|
||||||
|
|
||||||
This class represents the set of guess words.
|
This class represents the set of guess words.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@@ -134,9 +155,10 @@ class GuessList(WordList):
|
|||||||
|
|
||||||
|
|
||||||
class WordleEnv(gym.Env):
|
class WordleEnv(gym.Env):
|
||||||
|
|
||||||
metadata = {'render.modes': ['human']}
|
metadata = {'render.modes': ['human']}
|
||||||
|
|
||||||
# Character flag codes
|
# character flag codes
|
||||||
no_char = 0
|
no_char = 0
|
||||||
right_pos = 1
|
right_pos = 1
|
||||||
wrong_pos = 2
|
wrong_pos = 2
|
||||||
@@ -145,6 +167,7 @@ class WordleEnv(gym.Env):
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
self.seed()
|
||||||
self.action_space = GuessList()
|
self.action_space = GuessList()
|
||||||
self.solution_space = SolutionList()
|
self.solution_space = SolutionList()
|
||||||
|
|
||||||
@@ -159,7 +182,6 @@ class WordleEnv(gym.Env):
|
|||||||
|
|
||||||
self.n_rounds = 6
|
self.n_rounds = 6
|
||||||
self.n_letters = 5
|
self.n_letters = 5
|
||||||
self.info = {'correct': False, 'guesses': defaultdict(int)}
|
|
||||||
|
|
||||||
def _highlighter(self, char: str, flag: int) -> str:
|
def _highlighter(self, char: str, flag: int) -> str:
|
||||||
"""Terminal renderer functionality. Properly highlights a character
|
"""Terminal renderer functionality. Properly highlights a character
|
||||||
@@ -180,43 +202,36 @@ class WordleEnv(gym.Env):
|
|||||||
front, back = self._highlights[flag]
|
front, back = self._highlights[flag]
|
||||||
return front + char + back
|
return front + char + back
|
||||||
|
|
||||||
def reset(self, seed=None, options=None):
|
def reset(self):
|
||||||
"""Reset the environment to an initial state and returns an initial
|
|
||||||
observation.
|
|
||||||
|
|
||||||
Note: The observation space instance should be a Box space.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
state (object): The initial observation of the space.
|
|
||||||
"""
|
|
||||||
self.round = 0
|
self.round = 0
|
||||||
self.solution = self.solution_space.sample()
|
self.solution = self.solution_space.sample()
|
||||||
|
|
||||||
self.state = np.zeros((self.n_rounds, 2 * self.n_letters), dtype=np.int64)
|
self.state = np.zeros((self.n_rounds, 2 * self.n_letters),
|
||||||
|
dtype=np.int64)
|
||||||
|
|
||||||
self.info = {'correct': False, 'guesses': defaultdict(int)}
|
return self.state
|
||||||
|
|
||||||
return self.state, self.info
|
|
||||||
|
|
||||||
def render(self, mode: str ='human'):
|
def render(self, mode: str ='human'):
|
||||||
"""Renders the Wordle environment.
|
"""Renders the Wordle environment.
|
||||||
|
|
||||||
Currently supported render modes:
|
Currently supported render modes:
|
||||||
|
|
||||||
- human: renders the Wordle game to the terminal.
|
- human: renders the Wordle game to the terminal.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
mode: the mode to render with.
|
mode: the mode to render with
|
||||||
"""
|
"""
|
||||||
if mode == 'human':
|
if mode == 'human':
|
||||||
for row in self.state:
|
for row in self.states:
|
||||||
text = ''.join(map(
|
text = ''.join(map(
|
||||||
self._highlighter,
|
self._highlighter,
|
||||||
to_english(row[:self.n_letters]).upper(),
|
to_english(row[:self.n_letters]).upper(),
|
||||||
row[self.n_letters:]
|
row[self.n_letters:]
|
||||||
))
|
))
|
||||||
|
|
||||||
print(text)
|
print(text)
|
||||||
else:
|
else:
|
||||||
super().render(mode=mode)
|
super(WordleEnv, self).render(mode=mode)
|
||||||
|
|
||||||
def step(self, action):
|
def step(self, action):
|
||||||
"""Run one step of the Wordle game. Every game must be previously
|
"""Run one step of the Wordle game. Every game must be previously
|
||||||
@@ -224,31 +239,38 @@ class WordleEnv(gym.Env):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
action: Word guessed by the agent.
|
action: Word guessed by the agent.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
state (object): Wordle game state after the guess.
|
state (object): Wordle game state after the guess.
|
||||||
reward (float): Reward associated with the guess.
|
reward (float): Reward associated with the guess (-1 for incorrect,
|
||||||
done (bool): Whether the game has ended.
|
0 for correct)
|
||||||
info (dict): Auxiliary diagnostic information.
|
done (bool): Whether the game has ended (by a correct guess or
|
||||||
|
after six guesses).
|
||||||
|
info (dict): Auxiliary diagnostic information (empty).
|
||||||
"""
|
"""
|
||||||
assert self.action_space.contains(action), 'Invalid word!'
|
assert self.action_space.contains(action), 'Invalid word!'
|
||||||
|
|
||||||
|
# transform the action, solution indices to their words
|
||||||
action = self.action_space[action]
|
action = self.action_space[action]
|
||||||
solution = self.solution_space[self.solution]
|
solution = self.solution_space[self.solution]
|
||||||
|
|
||||||
|
# populate the word chars into the row (character channel)
|
||||||
self.state[self.round][:self.n_letters] = action
|
self.state[self.round][:self.n_letters] = action
|
||||||
|
|
||||||
|
# populate the flag characters into the row (flag channel)
|
||||||
counter = Counter()
|
counter = Counter()
|
||||||
for i, char in enumerate(action):
|
for i, char in enumerate(action):
|
||||||
flag_i = i + self.n_letters
|
flag_i = i + self.n_letters # starts at 5
|
||||||
counter[char] += 1
|
counter[char] += 1
|
||||||
|
|
||||||
if char == solution[i]:
|
if char == solution[i]: # character is in correct position
|
||||||
self.state[self.round, flag_i] = self.right_pos
|
self.state[self.round, i] = self.right_pos
|
||||||
elif counter[char] <= (char == solution).sum():
|
elif counter[char] <= (char == solution).sum():
|
||||||
self.state[self.round, flag_i] = self.wrong_pos
|
# current character has been seen within correct number of
|
||||||
|
# occurrences
|
||||||
|
self.state[self.round, i] = self.wrong_pos
|
||||||
else:
|
else:
|
||||||
self.state[self.round, flag_i] = self.wrong_char
|
# wrong character, or "correct" character too many times
|
||||||
|
self.state[self.round, i] = self.wrong_char
|
||||||
|
|
||||||
self.round += 1
|
self.round += 1
|
||||||
|
|
||||||
@@ -257,29 +279,8 @@ class WordleEnv(gym.Env):
|
|||||||
|
|
||||||
done = correct or game_over
|
done = correct or game_over
|
||||||
|
|
||||||
reward = 0
|
# Total reward equals -(number of incorrect guesses)
|
||||||
# correct spot
|
reward = 0. if correct else -1.
|
||||||
reward += np.sum(self.state[:, 5:] == 1) * 2
|
|
||||||
|
|
||||||
# correct letter not correct spot
|
return self.state, reward, done, {}
|
||||||
reward += np.sum(self.state[:, 5:] == 2) * 1
|
|
||||||
|
|
||||||
# incorrect letter
|
|
||||||
reward += np.sum(self.state[:, 5:] == 3) * -1
|
|
||||||
|
|
||||||
# guess same word as before
|
|
||||||
hashable_action = to_english(action)
|
|
||||||
if hashable_action in self.info['guesses']:
|
|
||||||
reward += -10 * self.info['guesses'][hashable_action]
|
|
||||||
else: # guess different word
|
|
||||||
reward += 10
|
|
||||||
|
|
||||||
self.info['guesses'][hashable_action] += 1
|
|
||||||
|
|
||||||
# for game ending in win or loss
|
|
||||||
reward += 10 if correct else -10 if done else 0
|
|
||||||
|
|
||||||
self.info['correct'] = correct
|
|
||||||
|
|
||||||
# observation, reward, terminated, truncated, info
|
|
||||||
return self.state, reward, done, False, self.info
|
|
35
Gym-Wordle-main/setup.py
Normal file
35
Gym-Wordle-main/setup.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
from setuptools import setup, find_packages
|
||||||
|
|
||||||
|
with open('README.md', 'r', encoding='utf-8') as fh:
|
||||||
|
long_description = fh.read()
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name='gym_wordle',
|
||||||
|
version='0.1.3',
|
||||||
|
author='David Kraemer',
|
||||||
|
author_email='david.kraemer@stonybrook.edu',
|
||||||
|
description='OpenAI gym environment for training agents on Wordle',
|
||||||
|
long_description=long_description,
|
||||||
|
long_description_content_type='text/markdown',
|
||||||
|
url='https://github.com/DavidNKraemer/Gym-Wordle',
|
||||||
|
packages=find_packages(
|
||||||
|
include=[
|
||||||
|
'gym_wordle',
|
||||||
|
'gym_wordle.*'
|
||||||
|
]
|
||||||
|
),
|
||||||
|
package_data={
|
||||||
|
'gym_wordle': ['dictionary/*']
|
||||||
|
},
|
||||||
|
python_requires='>=3.7',
|
||||||
|
classifiers=[
|
||||||
|
"Programming Language :: Python :: 3",
|
||||||
|
"License :: OSI Approved :: MIT License",
|
||||||
|
"Operating System :: OS Independent",
|
||||||
|
],
|
||||||
|
install_requires=[
|
||||||
|
'numpy>=1.20',
|
||||||
|
'gym==0.19',
|
||||||
|
'sty==1.0',
|
||||||
|
],
|
||||||
|
)
|
91
custom_env/agent.py
Normal file
91
custom_env/agent.py
Normal file
@@ -0,0 +1,91 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class Agent:
|
||||||
|
|
||||||
|
def __init__(self, ) -> None:
|
||||||
|
# BATCH_SIZE is the number of transitions sampled from the replay buffer
|
||||||
|
# GAMMA is the discount factor as mentioned in the previous section
|
||||||
|
# EPS_START is the starting value of epsilon
|
||||||
|
# EPS_END is the final value of epsilon
|
||||||
|
# EPS_DECAY controls the rate of exponential decay of epsilon, higher means a slower decay
|
||||||
|
# TAU is the update rate of the target network
|
||||||
|
# LR is the learning rate of the ``AdamW`` optimizer
|
||||||
|
self.batch_size = 128
|
||||||
|
self.gamma = 0.99
|
||||||
|
self.eps_start = 0.9
|
||||||
|
self.eps_end = 0.05
|
||||||
|
self.eps_decay = 1000
|
||||||
|
self.tau = 0.005
|
||||||
|
self.lr = 1e-4
|
||||||
|
self.n_actions = n_actions
|
||||||
|
|
||||||
|
policy_net = DQN(n_observations, n_actions).to(device)
|
||||||
|
target_net = DQN(n_observations, n_actions).to(device)
|
||||||
|
target_net.load_state_dict(policy_net.state_dict())
|
||||||
|
|
||||||
|
optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
|
||||||
|
memory = ReplayMemory(10000)
|
||||||
|
|
||||||
|
def get_state(self, game):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def select_action(state):
|
||||||
|
sample = random.random()
|
||||||
|
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
|
||||||
|
math.exp(-1. * steps_done / EPS_DECAY)
|
||||||
|
steps_done += 1
|
||||||
|
if sample > eps_threshold:
|
||||||
|
with torch.no_grad():
|
||||||
|
# t.max(1) will return the largest column value of each row.
|
||||||
|
# second column on max result is index of where max element was
|
||||||
|
# found, so we pick action with the larger expected reward.
|
||||||
|
return policy_net(state).max(1).indices.view(1, 1)
|
||||||
|
else:
|
||||||
|
return torch.tensor([[env.action_space.sample()]], device=device, dtype=torch.long)
|
||||||
|
|
||||||
|
def optimize_model():
|
||||||
|
if len(memory) < BATCH_SIZE:
|
||||||
|
return
|
||||||
|
transitions = memory.sample(BATCH_SIZE)
|
||||||
|
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
|
||||||
|
# detailed explanation). This converts batch-array of Transitions
|
||||||
|
# to Transition of batch-arrays.
|
||||||
|
batch = Transition(*zip(*transitions))
|
||||||
|
|
||||||
|
# Compute a mask of non-final states and concatenate the batch elements
|
||||||
|
# (a final state would've been the one after which simulation ended)
|
||||||
|
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
|
||||||
|
batch.next_state)), device=device, dtype=torch.bool)
|
||||||
|
non_final_next_states = torch.cat([s for s in batch.next_state
|
||||||
|
if s is not None])
|
||||||
|
state_batch = torch.cat(batch.state)
|
||||||
|
action_batch = torch.cat(batch.action)
|
||||||
|
reward_batch = torch.cat(batch.reward)
|
||||||
|
|
||||||
|
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
|
||||||
|
# columns of actions taken. These are the actions which would've been taken
|
||||||
|
# for each batch state according to policy_net
|
||||||
|
state_action_values = policy_net(state_batch).gather(1, action_batch)
|
||||||
|
|
||||||
|
# Compute V(s_{t+1}) for all next states.
|
||||||
|
# Expected values of actions for non_final_next_states are computed based
|
||||||
|
# on the "older" target_net; selecting their best reward with max(1).values
|
||||||
|
# This is merged based on the mask, such that we'll have either the expected
|
||||||
|
# state value or 0 in case the state was final.
|
||||||
|
next_state_values = torch.zeros(BATCH_SIZE, device=device)
|
||||||
|
with torch.no_grad():
|
||||||
|
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1).values
|
||||||
|
# Compute the expected Q values
|
||||||
|
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
|
||||||
|
|
||||||
|
# Compute Huber loss
|
||||||
|
criterion = nn.SmoothL1Loss()
|
||||||
|
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
|
||||||
|
|
||||||
|
# Optimize the model
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
# In-place gradient clipping
|
||||||
|
torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100)
|
||||||
|
optimizer.step()
|
16
custom_env/create_wordlist.py
Normal file
16
custom_env/create_wordlist.py
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
import pathlib
|
||||||
|
import sys
|
||||||
|
from string import ascii_letters
|
||||||
|
|
||||||
|
in_path = pathlib.Path(sys.argv[1])
|
||||||
|
out_path = pathlib.Path(sys.argv[2])
|
||||||
|
|
||||||
|
words = sorted(
|
||||||
|
{
|
||||||
|
word.lower()
|
||||||
|
for word in in_path.read_text(encoding="utf-8").split()
|
||||||
|
if all(letter in ascii_letters for letter in word)
|
||||||
|
},
|
||||||
|
key=lambda word: (len(word), word),
|
||||||
|
)
|
||||||
|
out_path.write_text("\n".join(words))
|
5757
custom_env/five_letter_words.txt
Normal file
5757
custom_env/five_letter_words.txt
Normal file
File diff suppressed because it is too large
Load Diff
44
custom_env/model.py
Normal file
44
custom_env/model.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
import math
|
||||||
|
import random
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from collections import namedtuple, deque
|
||||||
|
from itertools import count
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
Transition = namedtuple('Transition',
|
||||||
|
('state', 'action', 'next_state', 'reward'))
|
||||||
|
|
||||||
|
|
||||||
|
class ReplayMemory(object):
|
||||||
|
|
||||||
|
def __init__(self, capacity: int) -> None:
|
||||||
|
self.memory = deque([], maxlen=capacity)
|
||||||
|
|
||||||
|
def push(self, *args):
|
||||||
|
self.memory.append(Transition(*args))
|
||||||
|
|
||||||
|
def sample(self, batch_size):
|
||||||
|
return random.sample(self.memory, batch_size)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.memory)
|
||||||
|
|
||||||
|
|
||||||
|
class DQN(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, n_observations: int, n_actions: int) -> None:
|
||||||
|
super(DQN, self).__init__()
|
||||||
|
self.layer1 = nn.Linear(n_observations, 128)
|
||||||
|
self.layer2 = nn.Linear(128, 128)
|
||||||
|
self.layer3 = nn.Linear(128, n_actions)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = F.relu(self.layer1(x))
|
||||||
|
x = F.relu(self.layer2(x))
|
||||||
|
return self.layer3(x)
|
61
custom_env/test2.ipynb
Normal file
61
custom_env/test2.ipynb
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from string import ascii_letters, ascii_uppercase, ascii_lowercase"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"'ABCDEFGHIJKLMNOPQRSTUVWXYZ'"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"ascii_uppercase"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "env",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.5"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
1098
custom_env/wordlist.txt
Normal file
1098
custom_env/wordlist.txt
Normal file
File diff suppressed because it is too large
Load Diff
119
custom_env/wyrdl.py
Normal file
119
custom_env/wyrdl.py
Normal file
@@ -0,0 +1,119 @@
|
|||||||
|
import contextlib
|
||||||
|
import pathlib
|
||||||
|
import random
|
||||||
|
from string import ascii_letters, ascii_lowercase
|
||||||
|
|
||||||
|
from rich.console import Console
|
||||||
|
from rich.theme import Theme
|
||||||
|
|
||||||
|
console = Console(width=40, theme=Theme({"warning": "red on yellow"}))
|
||||||
|
|
||||||
|
NUM_LETTERS = 5
|
||||||
|
NUM_GUESSES = 6
|
||||||
|
WORDS_PATH = pathlib.Path(__file__).parent / "wordlist.txt"
|
||||||
|
|
||||||
|
|
||||||
|
class Wordle:
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.word_list = WORDS_PATH.read_text(encoding="utf-8").split("\n")
|
||||||
|
self.n_guesses = 6
|
||||||
|
self.num_letters = 5
|
||||||
|
self.curr_word = None
|
||||||
|
self.reset()
|
||||||
|
|
||||||
|
def refresh_page(self, headline):
|
||||||
|
console.clear()
|
||||||
|
console.rule(f"[bold blue]:leafy_green: {headline} :leafy_green:[/]\n")
|
||||||
|
|
||||||
|
def start_game(self):
|
||||||
|
# get a new random word
|
||||||
|
word = self.get_random_word(self.word_list)
|
||||||
|
|
||||||
|
self.curr_word = word
|
||||||
|
|
||||||
|
def get_state(self):
|
||||||
|
return
|
||||||
|
|
||||||
|
def action_to_word(self, action):
|
||||||
|
# Calculate the word from the array
|
||||||
|
word = ''
|
||||||
|
for i in range(0, len(ascii_lowercase), 26):
|
||||||
|
# Find the index of 1 in each block of 26
|
||||||
|
letter_index = action[i:i+26].index(1)
|
||||||
|
# Append the corresponding letter to the word
|
||||||
|
word += ascii_lowercase[letter_index]
|
||||||
|
|
||||||
|
return word
|
||||||
|
|
||||||
|
def play_guess(self, action):
|
||||||
|
# probably an array of length 26 * 5 for 26 letters and 5 positions
|
||||||
|
guess = action
|
||||||
|
|
||||||
|
def get_random_word(self, word_list):
|
||||||
|
if words := [
|
||||||
|
word.upper()
|
||||||
|
for word in word_list
|
||||||
|
if len(word) == NUM_LETTERS
|
||||||
|
and all(letter in ascii_letters for letter in word)
|
||||||
|
]:
|
||||||
|
return random.choice(words)
|
||||||
|
else:
|
||||||
|
console.print(
|
||||||
|
f"No words of length {NUM_LETTERS} in the word list",
|
||||||
|
style="warning",
|
||||||
|
)
|
||||||
|
raise SystemExit()
|
||||||
|
|
||||||
|
def show_guesses(self, guesses, word):
|
||||||
|
letter_status = {letter: letter for letter in ascii_lowercase}
|
||||||
|
for guess in guesses:
|
||||||
|
styled_guess = []
|
||||||
|
for letter, correct in zip(guess, word):
|
||||||
|
if letter == correct:
|
||||||
|
style = "bold white on green"
|
||||||
|
elif letter in word:
|
||||||
|
style = "bold white on yellow"
|
||||||
|
elif letter in ascii_letters:
|
||||||
|
style = "white on #666666"
|
||||||
|
else:
|
||||||
|
style = "dim"
|
||||||
|
styled_guess.append(f"[{style}]{letter}[/]")
|
||||||
|
if letter != "_":
|
||||||
|
letter_status[letter] = f"[{style}]{letter}[/]"
|
||||||
|
|
||||||
|
console.print("".join(styled_guess), justify="center")
|
||||||
|
console.print("\n" + "".join(letter_status.values()), justify="center")
|
||||||
|
|
||||||
|
def guess_word(self, previous_guesses):
|
||||||
|
guess = console.input("\nGuess word: ").upper()
|
||||||
|
|
||||||
|
if guess in previous_guesses:
|
||||||
|
console.print(f"You've already guessed {guess}.", style="warning")
|
||||||
|
return guess_word(previous_guesses)
|
||||||
|
|
||||||
|
if len(guess) != NUM_LETTERS:
|
||||||
|
console.print(
|
||||||
|
f"Your guess must be {NUM_LETTERS} letters.", style="warning"
|
||||||
|
)
|
||||||
|
return guess_word(previous_guesses)
|
||||||
|
|
||||||
|
if any((invalid := letter) not in ascii_letters for letter in guess):
|
||||||
|
console.print(
|
||||||
|
f"Invalid letter: '{invalid}'. Please use English letters.",
|
||||||
|
style="warning",
|
||||||
|
)
|
||||||
|
return guess_word(previous_guesses)
|
||||||
|
|
||||||
|
return guess
|
||||||
|
|
||||||
|
def reset(self, guesses, word, guessed_correctly, n_episodes):
|
||||||
|
refresh_page(headline=f"Game: {n_episodes}")
|
||||||
|
|
||||||
|
if guessed_correctly:
|
||||||
|
console.print(f"\n[bold white on green]Correct, the word is {word}[/]")
|
||||||
|
else:
|
||||||
|
console.print(f"\n[bold white on red]Sorry, the word was {word}[/]")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
351
dqn_wordle.ipynb
351
dqn_wordle.ipynb
@@ -6,10 +6,9 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import gym_wordle\n",
|
"import gymnasium as gym\n",
|
||||||
"from stable_baselines3 import DQN, PPO, common\n",
|
"from stable_baselines3 import DQN\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np"
|
||||||
"from tqdm import tqdm"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -18,252 +17,68 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"ename": "NameNotFound",
|
||||||
"output_type": "stream",
|
"evalue": "Environment `Wordle` doesn't exist.",
|
||||||
"text": [
|
"output_type": "error",
|
||||||
"<Monitor<WordleEnv instance>>\n"
|
"traceback": [
|
||||||
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[1;31mNameNotFound\u001b[0m Traceback (most recent call last)",
|
||||||
|
"Cell \u001b[1;32mIn[2], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m env \u001b[38;5;241m=\u001b[39m \u001b[43mgym\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmake\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mWordle-v0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(env)\n",
|
||||||
|
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:741\u001b[0m, in \u001b[0;36mmake\u001b[1;34m(id, max_episode_steps, autoreset, apply_api_compatibility, disable_env_checker, **kwargs)\u001b[0m\n\u001b[0;32m 738\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mid\u001b[39m, \u001b[38;5;28mstr\u001b[39m)\n\u001b[0;32m 740\u001b[0m \u001b[38;5;66;03m# The environment name can include an unloaded module in \"module:env_name\" style\u001b[39;00m\n\u001b[1;32m--> 741\u001b[0m env_spec \u001b[38;5;241m=\u001b[39m \u001b[43m_find_spec\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mid\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 743\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(env_spec, EnvSpec)\n\u001b[0;32m 745\u001b[0m \u001b[38;5;66;03m# Update the env spec kwargs with the `make` kwargs\u001b[39;00m\n",
|
||||||
|
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:527\u001b[0m, in \u001b[0;36m_find_spec\u001b[1;34m(env_id)\u001b[0m\n\u001b[0;32m 521\u001b[0m logger\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[0;32m 522\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUsing the latest versioned environment `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnew_env_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 523\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minstead of the unversioned environment `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00menv_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m`.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 524\u001b[0m )\n\u001b[0;32m 526\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m env_spec \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 527\u001b[0m \u001b[43m_check_version_exists\u001b[49m\u001b[43m(\u001b[49m\u001b[43mns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mversion\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 528\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m error\u001b[38;5;241m.\u001b[39mError(\n\u001b[0;32m 529\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo registered env with id: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00menv_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. Did you register it, or import the package that registers it? Use `gymnasium.pprint_registry()` to see all of the registered environments.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 530\u001b[0m )\n\u001b[0;32m 532\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m env_spec\n",
|
||||||
|
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:393\u001b[0m, in \u001b[0;36m_check_version_exists\u001b[1;34m(ns, name, version)\u001b[0m\n\u001b[0;32m 390\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m get_env_id(ns, name, version) \u001b[38;5;129;01min\u001b[39;00m registry:\n\u001b[0;32m 391\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m--> 393\u001b[0m \u001b[43m_check_name_exists\u001b[49m\u001b[43m(\u001b[49m\u001b[43mns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 394\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m version \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 395\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n",
|
||||||
|
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:370\u001b[0m, in \u001b[0;36m_check_name_exists\u001b[1;34m(ns, name)\u001b[0m\n\u001b[0;32m 367\u001b[0m namespace_msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m in namespace \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mns\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m ns \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 368\u001b[0m suggestion_msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Did you mean: `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msuggestion[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m`?\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m suggestion \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m--> 370\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m error\u001b[38;5;241m.\u001b[39mNameNotFound(\n\u001b[0;32m 371\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEnvironment `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` doesn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt exist\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnamespace_msg\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msuggestion_msg\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 372\u001b[0m )\n",
|
||||||
|
"\u001b[1;31mNameNotFound\u001b[0m: Environment `Wordle` doesn't exist."
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"env = gym_wordle.wordle.WordleEnv()\n",
|
"env = gym.make(\"Wordle-v0\")\n",
|
||||||
"env = common.monitor.Monitor(env)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"print(env)"
|
"print(env)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 35,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Using cuda device\n",
|
|
||||||
"Wrapping the env in a DummyVecEnv.\n",
|
|
||||||
"---------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 2.14 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 750 |\n",
|
|
||||||
"| iterations | 1 |\n",
|
|
||||||
"| time_elapsed | 2 |\n",
|
|
||||||
"| total_timesteps | 2048 |\n",
|
|
||||||
"---------------------------------\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 4.59 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 625 |\n",
|
|
||||||
"| iterations | 2 |\n",
|
|
||||||
"| time_elapsed | 6 |\n",
|
|
||||||
"| total_timesteps | 4096 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.022059526 |\n",
|
|
||||||
"| clip_fraction | 0.331 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.47 |\n",
|
|
||||||
"| explained_variance | -0.0118 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 130 |\n",
|
|
||||||
"| n_updates | 10 |\n",
|
|
||||||
"| policy_gradient_loss | -0.0851 |\n",
|
|
||||||
"| value_loss | 253 |\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 5.86 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 585 |\n",
|
|
||||||
"| iterations | 3 |\n",
|
|
||||||
"| time_elapsed | 10 |\n",
|
|
||||||
"| total_timesteps | 6144 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.024416003 |\n",
|
|
||||||
"| clip_fraction | 0.462 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.47 |\n",
|
|
||||||
"| explained_variance | 0.152 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 85.2 |\n",
|
|
||||||
"| n_updates | 20 |\n",
|
|
||||||
"| policy_gradient_loss | -0.0987 |\n",
|
|
||||||
"| value_loss | 218 |\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 4.75 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 566 |\n",
|
|
||||||
"| iterations | 4 |\n",
|
|
||||||
"| time_elapsed | 14 |\n",
|
|
||||||
"| total_timesteps | 8192 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.026305672 |\n",
|
|
||||||
"| clip_fraction | 0.45 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.47 |\n",
|
|
||||||
"| explained_variance | 0.161 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 144 |\n",
|
|
||||||
"| n_updates | 30 |\n",
|
|
||||||
"| policy_gradient_loss | -0.105 |\n",
|
|
||||||
"| value_loss | 220 |\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 1.47 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 554 |\n",
|
|
||||||
"| iterations | 5 |\n",
|
|
||||||
"| time_elapsed | 18 |\n",
|
|
||||||
"| total_timesteps | 10240 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.02928267 |\n",
|
|
||||||
"| clip_fraction | 0.498 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.46 |\n",
|
|
||||||
"| explained_variance | 0.167 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 127 |\n",
|
|
||||||
"| n_updates | 40 |\n",
|
|
||||||
"| policy_gradient_loss | -0.116 |\n",
|
|
||||||
"| value_loss | 207 |\n",
|
|
||||||
"----------------------------------------\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 1.62 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 546 |\n",
|
|
||||||
"| iterations | 6 |\n",
|
|
||||||
"| time_elapsed | 22 |\n",
|
|
||||||
"| total_timesteps | 12288 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.028425258 |\n",
|
|
||||||
"| clip_fraction | 0.483 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.46 |\n",
|
|
||||||
"| explained_variance | 0.143 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 109 |\n",
|
|
||||||
"| n_updates | 50 |\n",
|
|
||||||
"| policy_gradient_loss | -0.117 |\n",
|
|
||||||
"| value_loss | 240 |\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 5.98 |\n",
|
|
||||||
"| ep_rew_mean | 6.14 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 541 |\n",
|
|
||||||
"| iterations | 7 |\n",
|
|
||||||
"| time_elapsed | 26 |\n",
|
|
||||||
"| total_timesteps | 14336 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.026178032 |\n",
|
|
||||||
"| clip_fraction | 0.453 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.46 |\n",
|
|
||||||
"| explained_variance | 0.174 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 141 |\n",
|
|
||||||
"| n_updates | 60 |\n",
|
|
||||||
"| policy_gradient_loss | -0.116 |\n",
|
|
||||||
"| value_loss | 235 |\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 3.03 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 537 |\n",
|
|
||||||
"| iterations | 8 |\n",
|
|
||||||
"| time_elapsed | 30 |\n",
|
|
||||||
"| total_timesteps | 16384 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.02457074 |\n",
|
|
||||||
"| clip_fraction | 0.423 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.45 |\n",
|
|
||||||
"| explained_variance | 0.171 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 111 |\n",
|
|
||||||
"| n_updates | 70 |\n",
|
|
||||||
"| policy_gradient_loss | -0.112 |\n",
|
|
||||||
"| value_loss | 212 |\n",
|
|
||||||
"----------------------------------------\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 9.54 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 532 |\n",
|
|
||||||
"| iterations | 9 |\n",
|
|
||||||
"| time_elapsed | 34 |\n",
|
|
||||||
"| total_timesteps | 18432 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.024578478 |\n",
|
|
||||||
"| clip_fraction | 0.417 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.45 |\n",
|
|
||||||
"| explained_variance | 0.178 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 121 |\n",
|
|
||||||
"| n_updates | 80 |\n",
|
|
||||||
"| policy_gradient_loss | -0.114 |\n",
|
|
||||||
"| value_loss | 232 |\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"-----------------------------------------\n",
|
|
||||||
"| rollout/ | |\n",
|
|
||||||
"| ep_len_mean | 6 |\n",
|
|
||||||
"| ep_rew_mean | 3.81 |\n",
|
|
||||||
"| time/ | |\n",
|
|
||||||
"| fps | 527 |\n",
|
|
||||||
"| iterations | 10 |\n",
|
|
||||||
"| time_elapsed | 38 |\n",
|
|
||||||
"| total_timesteps | 20480 |\n",
|
|
||||||
"| train/ | |\n",
|
|
||||||
"| approx_kl | 0.022704324 |\n",
|
|
||||||
"| clip_fraction | 0.379 |\n",
|
|
||||||
"| clip_range | 0.2 |\n",
|
|
||||||
"| entropy_loss | -9.45 |\n",
|
|
||||||
"| explained_variance | 0.194 |\n",
|
|
||||||
"| learning_rate | 0.0003 |\n",
|
|
||||||
"| loss | 108 |\n",
|
|
||||||
"| n_updates | 90 |\n",
|
|
||||||
"| policy_gradient_loss | -0.112 |\n",
|
|
||||||
"| value_loss | 216 |\n",
|
|
||||||
"-----------------------------------------\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"<stable_baselines3.ppo.ppo.PPO at 0x7f86ef4ddcd0>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 3,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"total_timesteps = 20_000\n",
|
"total_timesteps = 100000\n",
|
||||||
"model = PPO(\"MlpPolicy\", env, verbose=1, device='cuda')\n",
|
"model = DQN(\"MlpPolicy\", env, verbose=0)\n",
|
||||||
"model.learn(total_timesteps=total_timesteps)"
|
"model.learn(total_timesteps=total_timesteps, progress_bar=True)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def test(model):\n",
|
||||||
|
"\n",
|
||||||
|
" end_rewards = []\n",
|
||||||
|
"\n",
|
||||||
|
" for i in range(1000):\n",
|
||||||
|
" \n",
|
||||||
|
" state = env.reset()\n",
|
||||||
|
"\n",
|
||||||
|
" done = False\n",
|
||||||
|
"\n",
|
||||||
|
" while not done:\n",
|
||||||
|
"\n",
|
||||||
|
" action, _states = model.predict(state, deterministic=True)\n",
|
||||||
|
"\n",
|
||||||
|
" state, reward, done, info = env.step(action)\n",
|
||||||
|
" \n",
|
||||||
|
" end_rewards.append(reward == 0)\n",
|
||||||
|
" \n",
|
||||||
|
" return np.sum(end_rewards) / len(end_rewards)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -272,69 +87,11 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"model = PPO.load(\"dqn_wordle\")"
|
"model = DQN.load(\"dqn_wordle\")"
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 7,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"100%|██████████| 1000/1000 [00:03<00:00, 252.17it/s]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"[[ 7 18 1 19 16 3 3 3 2 3]\n",
|
|
||||||
" [16 9 5 14 4 3 3 3 3 3]\n",
|
|
||||||
" [16 9 5 14 4 3 3 3 3 3]\n",
|
|
||||||
" [16 9 5 14 4 3 3 3 3 3]\n",
|
|
||||||
" [ 7 18 1 19 16 3 3 3 2 3]\n",
|
|
||||||
" [ 7 18 1 19 16 3 3 3 2 3]] -54 {'correct': False, 'guesses': defaultdict(<class 'int'>, {'grasp': 3, 'piend': 3})}\n",
|
|
||||||
"0\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"env = gym_wordle.wordle.WordleEnv()\n",
|
|
||||||
"\n",
|
|
||||||
"for i in tqdm(range(1000)):\n",
|
|
||||||
" \n",
|
|
||||||
" state, info = env.reset()\n",
|
|
||||||
"\n",
|
|
||||||
" done = False\n",
|
|
||||||
"\n",
|
|
||||||
" wins = 0\n",
|
|
||||||
"\n",
|
|
||||||
" while not done:\n",
|
|
||||||
"\n",
|
|
||||||
" action, _states = model.predict(state, deterministic=True)\n",
|
|
||||||
"\n",
|
|
||||||
" state, reward, done, truncated, info = env.step(action)\n",
|
|
||||||
"\n",
|
|
||||||
" if info[\"correct\"]:\n",
|
|
||||||
" wins += 1\n",
|
|
||||||
"\n",
|
|
||||||
"print(state, reward, info)\n",
|
|
||||||
"\n",
|
|
||||||
"print(wins)\n"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -342,7 +99,9 @@
|
|||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": [
|
||||||
|
"print(test(model))"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@@ -361,7 +120,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.8.10"
|
"version": "3.11.5"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
Reference in New Issue
Block a user