added gym wordle package to edit

This commit is contained in:
Ethan Shapiro 2024-03-14 13:05:18 -07:00
parent 496b8ad796
commit 335d56ac88
12 changed files with 15944 additions and 0 deletions

129
Gym-Wordle-main/.gitignore vendored Normal file
View File

@ -0,0 +1,129 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/

21
Gym-Wordle-main/LICENSE Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 David Kraemer
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

78
Gym-Wordle-main/README.md Normal file
View File

@ -0,0 +1,78 @@
# Gym-Wordle
An OpenAI gym compatible environment for training agents to play Wordle.
<p align='center'>
<img src="https://user-images.githubusercontent.com/8514041/152437216-d78e85f6-8049-4cb9-ae61-3c015a8a0e4f.gif"><br/>
<em>User-input demo of the environment</em>
</p>
## Installation
My goal is for a minimalist package that lets you install quickly and get on
with your research. Installation is just a simple call to `pip`:
```
$ pip install gym_wordle
```
### Requirements
In keeping with my desire to have a minimalist package, there are only three
major requirements:
* `numpy`
* `gym`
* `sty`, a lovely little package for stylizing text in terminals
## Usage
The basic flow for training agents with the `Wordle-v0` environment is the same
as with gym environments generally:
```Python
import gym
import gym_wordle
eng = gym.make("Wordle-v0")
done = False
while not done:
action = ... # RL magic
state, reward, done, info = env.step(action)
```
If you're like millions of other people, you're a Wordle-obsessive in your own
right. I have good news for you! The `Wordle-v0` environment currently has an
implemented `render` method, which allows you to see a human-friendly version
of the game. And it isn't so hard to set up the environment to play for
yourself. Here's an example script:
```Python
from gym_wordle.utils import play
play()
```
## Documentation
Coming soon!
## Examples
Coming soon!
## Citing
If you decide to use this project in your work, please consider a citation!
```bibtex
@misc{gym_wordle,
author = {Kraemer, David},
title = {An Environment for Reinforcement Learning with Wordle},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/DavidNKraemer/Gym-Wordle}},
}
```

View File

@ -0,0 +1,7 @@
[build-system]
requires = [
"setuptools>=42",
"wheel"
]
build-backend = "setuptools.build_meta"

View File

@ -0,0 +1,7 @@
from gym.envs.registration import register
from .wordle import WordleEnv
register(
id='Wordle-v0',
entry_point='gym_wordle.wordle:WordleEnv'
)

File diff suppressed because it is too large Load Diff

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,94 @@
import numpy as np
import numpy.typing as npt
from pathlib import Path
_chars = ' abcdefghijklmnopqrstuvwxyz'
_char_d = {c: i for i, c in enumerate(_chars)}
def to_english(array: npt.NDArray[np.int64]) -> str:
"""Converts a numpy integer array into a corresponding English string.
Args:
array: Word in array (int) form. It is assumed that each integer in the
array is between 0,...,26 (inclusive).
Returns:
A (lowercase) string representation of the word.
"""
return ''.join(_chars[i] for i in array)
def to_array(word: str) -> npt.NDArray[np.int64]:
"""Converts a string of characters into a corresponding numpy array.
Args:
word: Word in string form. It is assumed that each character in the
string is either an empty space ' ' or lowercase alphabetical
character.
Returns:
An array representation of the word.
"""
return np.array([_char_d[c] for c in word])
def get_words(category: str, build: bool=False) -> npt.NDArray[np.int64]:
"""Loads a list of words in array form.
If specified, this will recompute the list from the human-readable list of
words, and save the results in array form.
Args:
category: Either 'guess' or 'solution', which corresponds to the list
of acceptable guess words and the list of acceptable solution words.
build: If True, recomputes and saves the array-version of the computed
list for future access.
Returns:
An array representation of the list of words specified by the category.
This array has two dimensions, and the number of columns is fixed at
five.
"""
assert category in {'guess', 'solution'}
arr_path = Path(__file__).parent / f'dictionary/{category}_list.npy'
if build:
list_path = Path(__file__).parent / f'dictionary/{category}_list.csv'
with open(list_path, 'r') as f:
words = np.array([to_array(line.strip()) for line in f])
np.save(arr_path, words)
return np.load(arr_path)
def play():
"""Play Wordle yourself!"""
import gym
import gym_wordle
env = gym.make('Wordle-v0') # load the environment
env.reset()
solution = to_english(env.unwrapped.solution_space[env.solution]).upper() # no peeking!
done = False
while not done:
action = -1
# in general, the environment won't be forgiving if you input an
# invalid word, but for this function I want to let you screw up user
# input without consequence, so just loops until valid input is taken
while not env.action_space.contains(action):
guess = input('Guess: ')
action = env.unwrapped.action_space.index_of(to_array(guess))
state, reward, done, info = env.step(action)
env.render()
print(f"The word was {solution}")

View File

@ -0,0 +1,286 @@
import gym
import numpy as np
import numpy.typing as npt
from sty import fg, bg, ef, rs
from collections import Counter
from gym_wordle.utils import to_english, to_array, get_words
from typing import Optional
class WordList(gym.spaces.Discrete):
"""Super class for defining a space of valid words according to a specified
list.
TODO: Fix these paragraphs
The space is a subclass of gym.spaces.Discrete, where each element
corresponds to an index of a valid word in the word list. The obfuscation
is necessary for more direct implementation of RL algorithms, which expect
spaces of less sophisticated form.
In addition to the default methods of the Discrete space, it implements
a __getitem__ method for easy index lookup, and an index_of method to
convert potential words into their corresponding index (if they exist).
"""
def __init__(self, words: npt.NDArray[np.int64], **kwargs):
"""
Args:
words: Collection of words in array form with shape (_, 5), where
each word is a row of the array. Each array element is an integer
between 0,...,26 (inclusive).
kwargs: See documentation for gym.spaces.MultiDiscrete
"""
super().__init__(words.shape[0], **kwargs)
self.words = words
def __getitem__(self, index: int) -> npt.NDArray[np.int64]:
"""Obtains the (int-encoded) word associated with the given index.
Args:
index: Index for the list of words.
Returns:
Associated word at the position specified by index.
"""
return self.words[index]
def index_of(self, word: npt.NDArray[np.int64]) -> int:
"""Given a word, determine its index in the list (if it exists),
otherwise returning -1 if no index exists.
Args:
word: Word to find in the word list.
Returns:
The index of the given word if it exists, otherwise -1.
"""
try:
index, = np.nonzero((word == self.words).all(axis=1))
return index[0]
except:
return -1
class SolutionList(WordList):
"""Space for *solution* words to the Wordle environment.
In the game Wordle, there are two different collections of words:
* "guesses", which the game accepts as valid words to use to guess the
answer.
* "solutions", which the game uses to choose solutions from.
Of course, the set of solutions is a strict subset of the set of guesses.
Reference: https://fivethirtyeight.com/features/when-the-riddler-met-wordle/
This class represents the set of solution words.
"""
def __init__(self, **kwargs):
"""
Args:
kwargs: See documentation for gym.spaces.MultiDiscrete
"""
words = get_words('solution')
super().__init__(words, **kwargs)
class WordleObsSpace(gym.spaces.Box):
"""Implementation of the state (observation) space in terms of gym
primatives, in this case, gym.spaces.Box.
The Wordle observation space can be thought of as a 6x5 array with two
channels:
- the character channel, indicating which characters are placed on the
board (unfilled rows are marked with the empty character, 0)
- the flag channel, indicating the in-game information associated with
each character's placement (green highlight, yellow highlight, etc.)
where there are 6 rows, one for each turn in the game, and 5 columns, since
the solution will always be a word of length 5.
For simplicity, and compatibility with the stable_baselines algorithms,
this multichannel is modeled as a 6x10 array, where the two channels are
horizontally appended (along columns). Thus each row in the observation
should be interpreted as
c0 c1 c2 c3 c4 f0 f1 f2 f3 f4
when the word is c0...c4 and its associated flags are f0...f4.
While the superclass method `sample` is available to the WordleObsSpace, it
should be emphasized that the output of `sample` will (almost surely) not
correspond to a real game configuration, because the sampling is not out of
possible game configurations. Instead, the Box superclass just samples the
integer array space uniformly.
"""
def __init__(self, **kwargs):
self.n_rows = 6
self.n_cols = 5
self.max_char = 26
self.max_flag = 4
low = np.zeros((self.n_rows, 2*self.n_cols))
high = np.c_[np.full((self.n_rows, self.n_cols), self.max_char),
np.full((self.n_rows, self.n_cols), self.max_flag)]
super().__init__(low, high, dtype=np.int64, **kwargs)
class GuessList(WordList):
"""Space for *solution* words to the Wordle environment.
In the game Wordle, there are two different collections of words:
* "guesses", which the game accepts as valid words to use to guess the
answer.
* "solutions", which the game uses to choose solutions from.
Of course, the set of solutions is a strict subset of the set of guesses.
Reference: https://fivethirtyeight.com/features/when-the-riddler-met-wordle/
This class represents the set of guess words.
"""
def __init__(self, **kwargs):
"""
Args:
kwargs: See documentation for gym.spaces.MultiDiscrete
"""
words = get_words('guess')
super().__init__(words, **kwargs)
class WordleEnv(gym.Env):
metadata = {'render.modes': ['human']}
# character flag codes
no_char = 0
right_pos = 1
wrong_pos = 2
wrong_char = 3
def __init__(self):
super().__init__()
self.seed()
self.action_space = GuessList()
self.solution_space = SolutionList()
self.observation_space = WordleObsSpace()
self._highlights = {
self.right_pos: (bg.green, bg.rs),
self.wrong_pos: (bg.yellow, bg.rs),
self.wrong_char: ('', ''),
self.no_char: ('', ''),
}
self.n_rounds = 6
self.n_letters = 5
def _highlighter(self, char: str, flag: int) -> str:
"""Terminal renderer functionality. Properly highlights a character
based on the flag associated with it.
Args:
char: Character in question.
flag: Associated flag, one of:
- 0: no character (render no background)
- 1: right position (render green background)
- 2: wrong position (render yellow background)
- 3: wrong character (render no background)
Returns:
Correct ASCII sequence producing the desired character in the
correct background.
"""
front, back = self._highlights[flag]
return front + char + back
def reset(self):
self.round = 0
self.solution = self.solution_space.sample()
self.state = np.zeros((self.n_rounds, 2 * self.n_letters),
dtype=np.int64)
return self.state
def render(self, mode: str ='human'):
"""Renders the Wordle environment.
Currently supported render modes:
- human: renders the Wordle game to the terminal.
Args:
mode: the mode to render with
"""
if mode == 'human':
for row in self.states:
text = ''.join(map(
self._highlighter,
to_english(row[:self.n_letters]).upper(),
row[self.n_letters:]
))
print(text)
else:
super(WordleEnv, self).render(mode=mode)
def step(self, action):
"""Run one step of the Wordle game. Every game must be previously
initialized by a call to the `reset` method.
Args:
action: Word guessed by the agent.
Returns:
state (object): Wordle game state after the guess.
reward (float): Reward associated with the guess (-1 for incorrect,
0 for correct)
done (bool): Whether the game has ended (by a correct guess or
after six guesses).
info (dict): Auxiliary diagnostic information (empty).
"""
assert self.action_space.contains(action), 'Invalid word!'
# transform the action, solution indices to their words
action = self.action_space[action]
solution = self.solution_space[self.solution]
# populate the word chars into the row (character channel)
self.state[self.round][:self.n_letters] = action
# populate the flag characters into the row (flag channel)
counter = Counter()
for i, char in enumerate(action):
flag_i = i + self.n_letters # starts at 5
counter[char] += 1
if char == solution[i]: # character is in correct position
self.state[self.round, i] = self.right_pos
elif counter[char] <= (char == solution).sum():
# current character has been seen within correct number of
# occurrences
self.state[self.round, i] = self.wrong_pos
else:
# wrong character, or "correct" character too many times
self.state[self.round, i] = self.wrong_char
self.round += 1
correct = (action == solution).all()
game_over = (self.round == self.n_rounds)
done = correct or game_over
# Total reward equals -(number of incorrect guesses)
reward = 0. if correct else -1.
return self.state, reward, done, {}

35
Gym-Wordle-main/setup.py Normal file
View File

@ -0,0 +1,35 @@
from setuptools import setup, find_packages
with open('README.md', 'r', encoding='utf-8') as fh:
long_description = fh.read()
setup(
name='gym_wordle',
version='0.1.3',
author='David Kraemer',
author_email='david.kraemer@stonybrook.edu',
description='OpenAI gym environment for training agents on Wordle',
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/DavidNKraemer/Gym-Wordle',
packages=find_packages(
include=[
'gym_wordle',
'gym_wordle.*'
]
),
package_data={
'gym_wordle': ['dictionary/*']
},
python_requires='>=3.7',
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
install_requires=[
'numpy>=1.20',
'gym==0.19',
'sty==1.0',
],
)